1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-08-13 18:24:39 +02:00

still on a middle way

This commit is contained in:
Akira Hirose
2014-07-16 18:53:32 +09:00
parent 772370c518
commit bb1dc2de97

View File

@@ -221,26 +221,25 @@ class(-Inf) # "numeric"
# 不正な計算は "not-a-number"になる # 不正な計算は "not-a-number"になる
0 / 0 # NaN 0 / 0 # NaN
class(NaN) # "numeric" class(NaN) # "numeric"
# You can do arithmetic on two vectors with length greater than 1, # 長さが1より大きなベクター同士で計算ができます
# so long as the larger vector's length is an integer multiple of the smaller # どちらかが長い場合、短い方は何度も繰り返して使われます
c(1,2,3) + c(1,2,3) # 2 4 6 c(1,2,3) + c(1,2,3) # 2 4 6
# 文字
# CHARACTERS # Rでは、文字列と文字に区別がありません
# There's no difference between strings and characters in R
"Horatio" # "Horatio" "Horatio" # "Horatio"
class("Horatio") # "character" class("Horatio") # "character"
class('H') # "character" class('H') # "character"
# Those were both character vectors of length 1 # 上記は両方とも、長さ1のベクターです
# Here is a longer one: # 以下は、より長いものです
c('alef', 'bet', 'gimmel', 'dalet', 'he') c('alef', 'bet', 'gimmel', 'dalet', 'he')
# => # =>
# "alef" "bet" "gimmel" "dalet" "he" # "alef" "bet" "gimmel" "dalet" "he"
length(c("Call","me","Ishmael")) # 3 length(c("Call","me","Ishmael")) # 3
# You can do regex operations on character vectors: # 正規表現処理を文字ベクターに使えます
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis " substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis." gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
# R has several built-in character vectors: # Rはいくつかの文字ベクターを組み込みで持っています
letters letters
# => # =>
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" # [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
@@ -248,40 +247,40 @@ letters
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
# LOGICALS # 論理
# In R, a "logical" is a boolean # Rでは、Booleanは論理logical型です
class(TRUE) # "logical" class(TRUE) # "logical"
class(FALSE) # "logical" class(FALSE) # "logical"
# Their behavior is normal # 以下は正しい動きです
TRUE == TRUE # TRUE TRUE == TRUE # TRUE
TRUE == FALSE # FALSE TRUE == FALSE # FALSE
FALSE != FALSE # FALSE FALSE != FALSE # FALSE
FALSE != TRUE # TRUE FALSE != TRUE # TRUE
# Missing data (NA) is logical, too # 無いデータ (NA) も論理型です
class(NA) # "logical" class(NA) # "logical"
# Here we get a logical vector with many elements: # 以下のようにすると、複数の要素を持つ、論理型ベクターが返ります
c('Z', 'o', 'r', 'r', 'o') == "Zorro" # FALSE FALSE FALSE FALSE FALSE c('Z', 'o', 'r', 'r', 'o') == "Zorro" # FALSE FALSE FALSE FALSE FALSE
c('Z', 'o', 'r', 'r', 'o') == "Z" # TRUE FALSE FALSE FALSE FALSE c('Z', 'o', 'r', 'r', 'o') == "Z" # TRUE FALSE FALSE FALSE FALSE
# FACTORS # ファクター
# The factor class is for categorical data # ファクタークラスは、カテゴリカルデータようのクラスです
# Factors can be ordered (like childrens' grade levels) or unordered (like gender) # ファクターは、子供の学年のように順序がつけられるものか、性別のように順序がないものがあります
factor(c("female", "female", "male", "NA", "female")) factor(c("female", "female", "male", "NA", "female"))
# female female male NA female # female female male NA female
# Levels: female male NA # Levels: female male NA
# The "levels" are the values the categorical data can take # "levels" は、カテゴリカルデータがとりうる値を返します
levels(factor(c("male", "male", "female", "NA", "female"))) # "female" "male" "NA" levels(factor(c("male", "male", "female", "NA", "female"))) # "female" "male" "NA"
# If a factor vector has length 1, its levels will have length 1, too # ファクターベクターの長さが1ならば、そのlevelも1です
length(factor("male")) # 1 length(factor("male")) # 1
length(levels(factor("male"))) # 1 length(levels(factor("male"))) # 1
# Factors are commonly seen in data frames, a data structure we will cover later # ファクターは、この後で紹介するデータフレーム(というデータ型)内で、よくみられます
data(infert) # "Infertility after Spontaneous and Induced Abortion" data(infert) # "Infertility after Spontaneous and Induced Abortion"
levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs" levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
# NULL # NULL
# "NULL" is a weird one; use it to "blank out" a vector # "NULL" は変わった型です。ベクターを空にするときに使います
class(NULL) # NULL class(NULL) # NULL
parakeet parakeet
# => # =>
@@ -292,11 +291,11 @@ parakeet
# NULL # NULL
# TYPE COERCION # 型の強制
# Type-coercion is when you force a value to take on a different type # 型の強制は、ある値を、強制的にある型として利用する事です
as.character(c(6, 8)) # "6" "8" as.character(c(6, 8)) # "6" "8"
as.logical(c(1,0,1,1)) # TRUE FALSE TRUE TRUE as.logical(c(1,0,1,1)) # TRUE FALSE TRUE TRUE
# If you put elements of different types into a vector, weird coercions happen: # さまざまな要素が入っているベクターに対して型の強制を行うと、おかしなことになります
c(TRUE, 4) # 1 4 c(TRUE, 4) # 1 4
c("dog", TRUE, 4) # "dog" "TRUE" "4" c("dog", TRUE, 4) # "dog" "TRUE" "4"
as.numeric("Bilbo") as.numeric("Bilbo")
@@ -306,8 +305,8 @@ as.numeric("Bilbo")
# NAs introduced by coercion # NAs introduced by coercion
# Also note: those were just the basic data types # 追記: ここで紹介したのは、基本的な型だけです
# There are many more data types, such as for dates, time series, etc. # 実際には、日付datesや時系列time seriesなど、いろいろな型があります
@@ -315,40 +314,40 @@ as.numeric("Bilbo")
################################################## ##################################################
# Variables, loops, if/else # 変数、ループ、もし/ほかに(if/else
################################################## ##################################################
# A variable is like a box you store a value in for later use. # 変数は、ある値を後で使うために入れておく、箱のようなものです
# We call this "assigning" the value to the variable. # 箱に入れることを、変数に値を代入する、といいます
# Having variables lets us write loops, functions, and if/else statements # 変数を使うと、ループや関数、if/else 分岐を利用できます
# VARIABLES # 変数
# Lots of way to assign stuff: # 代入する方法はいろいろあります
x = 5 # this is possible x = 5 # これはできます
y <- "1" # this is preferred y <- "1" # これがおすすめです
TRUE -> z # this works but is weird TRUE -> z # これも使えますが、変です
# LOOPS # ループ
# We've got for loops # forでループできます
for (i in 1:4) { for (i in 1:4) {
print(i) print(i)
} }
# We've got while loops # whileでループできます
a <- 10 a <- 10
while (a > 4) { while (a > 4) {
cat(a, "...", sep = "") cat(a, "...", sep = "")
a <- a - 1 a <- a - 1
} }
# Keep in mind that for and while loops run slowly in R # Rでは、forやwhileは遅いことを覚えておいてください
# Operations on entire vectors (i.e. a whole row, a whole column) # 処理を行う場合は、ベクター丸ごと処理する(つまり、行全体や、列全体)を指定して行うか、
# or apply()-type functions (we'll discuss later) are preferred # 後述する、apply()系の関数を使うのがお勧めです
# IF/ELSE # IF/ELSE
# Again, pretty standard # ごく普通のif文です
if (4 > 3) { if (4 > 3) {
print("4 is greater than 3") print("4 is greater than 3")
} else { } else {
@@ -358,14 +357,14 @@ if (4 > 3) {
# [1] "4 is greater than 3" # [1] "4 is greater than 3"
# FUNCTIONS # 関数
# Defined like so: # 以下のように定義します
jiggle <- function(x) { jiggle <- function(x) {
x = x + rnorm(1, sd=.1) #add in a bit of (controlled) noise x = x + rnorm(1, sd=.1) #すこしだけ(制御された)ノイズを入れます
return(x) return(x)
} }
# Called like any other R function: # 他のR関数と同じように呼びます
jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043 jiggle(5) # 5±ε. set.seed(2716057)をすると、jiggle(5)==5.005043
@@ -373,26 +372,26 @@ jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
########################################################################### ###########################################################################
# Data structures: Vectors, matrices, data frames, and arrays # データ構造: ベクター、行列、データフレーム、配列
########################################################################### ###########################################################################
# ONE-DIMENSIONAL # 1次元
# Let's start from the very beginning, and with something you already know: vectors. # まずは基本からです。すでにご存じのベクターからです
vec <- c(8, 9, 10, 11) vec <- c(8, 9, 10, 11)
vec # 8 9 10 11 vec # 8 9 10 11
# We ask for specific elements by subsetting with square brackets # 特定の要素を、[角括弧]による指定で取り出せます
# (Note that R starts counting from 1) # (Rでは、最初の要素は1番目と数えます)
vec[1] # 8 vec[1] # 8
letters[18] # "r" letters[18] # "r"
LETTERS[13] # "M" LETTERS[13] # "M"
month.name[9] # "September" month.name[9] # "September"
c(6, 8, 7, 5, 3, 0, 9)[3] # 7 c(6, 8, 7, 5, 3, 0, 9)[3] # 7
# We can also search for the indices of specific components, # 特定のルールに当てはまる要素を見つけることもできます
which(vec %% 2 == 0) # 1 3 which(vec %% 2 == 0) # 1 3
# grab just the first or last few entries in the vector, # 最初か最後の数個を取り出すこともできます
head(vec, 1) # 8 head(vec, 1) # 8
tail(vec, 2) # 10 11 tail(vec, 2) # 10 11
# or figure out if a certain value is in the vector # or figure out if a certain value is in the vector