mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 13:38:38 +01:00
Update r.html.markdown
significant changes. style changes (no !, no =>). content additions. start by showing off R's non-programming features before getting to the language per se.
This commit is contained in:
parent
29d2880c61
commit
ee1b3546ad
311
r.html.markdown
311
r.html.markdown
@ -16,61 +16,242 @@ R is a statistical computing language. It has lots of good built-in functions fo
|
||||
|
||||
# Hit COMMAND-ENTER to execute a line
|
||||
|
||||
|
||||
###################################################################
|
||||
# Stuff you can do without understanding anything about programming
|
||||
###################################################################
|
||||
|
||||
data() # Browse pre-loaded data sets
|
||||
data(rivers) # Lengths of Major North American Rivers
|
||||
ls() # Notice that "rivers" appears in the workspace
|
||||
head(rivers) # peek at the dataset
|
||||
# 735 320 325 392 524 450
|
||||
length(rivers) # how many rivers were measured?
|
||||
# 141
|
||||
summary(rivers)
|
||||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
# 135.0 310.0 425.0 591.2 680.0 3710.0
|
||||
stem(rivers) #stem-and-leaf plot (like a histogram)
|
||||
#
|
||||
# The decimal point is 2 digit(s) to the right of the |
|
||||
#
|
||||
# 0 | 4
|
||||
# 2 | 011223334555566667778888899900001111223333344455555666688888999
|
||||
# 4 | 111222333445566779001233344567
|
||||
# 6 | 000112233578012234468
|
||||
# 8 | 045790018
|
||||
# 10 | 04507
|
||||
# 12 | 1471
|
||||
# 14 | 56
|
||||
# 16 | 7
|
||||
# 18 | 9
|
||||
# 20 |
|
||||
# 22 | 25
|
||||
# 24 | 3
|
||||
# 26 |
|
||||
# 28 |
|
||||
# 30 |
|
||||
# 32 |
|
||||
# 34 |
|
||||
# 36 | 1
|
||||
|
||||
|
||||
stem(log(rivers)) #Notice that the data are neither normal nor log-normal! Take that, Bell Curve fundamentalists.
|
||||
|
||||
# The decimal point is 1 digit(s) to the left of the |
|
||||
#
|
||||
# 48 | 1
|
||||
# 50 |
|
||||
# 52 | 15578
|
||||
# 54 | 44571222466689
|
||||
# 56 | 023334677000124455789
|
||||
# 58 | 00122366666999933445777
|
||||
# 60 | 122445567800133459
|
||||
# 62 | 112666799035
|
||||
# 64 | 00011334581257889
|
||||
# 66 | 003683579
|
||||
# 68 | 0019156
|
||||
# 70 | 079357
|
||||
# 72 | 89
|
||||
# 74 | 84
|
||||
# 76 | 56
|
||||
# 78 | 4
|
||||
# 80 |
|
||||
# 82 | 2
|
||||
|
||||
|
||||
hist(rivers, col="#333333", border="white", breaks=25) #play around with these parameters
|
||||
hist(log(rivers), col="#333333", border="white", breaks=25) #you'll do more plotting later
|
||||
|
||||
#Here's another neat data set that comes pre-loaded. R has tons of these. data()
|
||||
data(discoveries)
|
||||
plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
|
||||
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")
|
||||
|
||||
|
||||
#rather than leaving the default ordering (by year) we could also sort to see what's typical
|
||||
sort(discoveries)
|
||||
# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
|
||||
# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
|
||||
# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
|
||||
# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
|
||||
|
||||
stem(discoveries, scale=2)
|
||||
#
|
||||
# The decimal point is at the |
|
||||
#
|
||||
# 0 | 000000000
|
||||
# 1 | 000000000000
|
||||
# 2 | 00000000000000000000000000
|
||||
# 3 | 00000000000000000000
|
||||
# 4 | 000000000000
|
||||
# 5 | 0000000
|
||||
# 6 | 000000
|
||||
# 7 | 0000
|
||||
# 8 | 0
|
||||
# 9 | 0
|
||||
# 10 | 0
|
||||
# 11 |
|
||||
# 12 | 0
|
||||
|
||||
max(discoveries)
|
||||
# 12
|
||||
|
||||
summary(discoveries)
|
||||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
# 0.0 2.0 3.0 3.1 4.0 12.0
|
||||
|
||||
|
||||
|
||||
|
||||
#Basic statistical operations don't require any programming knowledge either
|
||||
|
||||
#roll a die a few times
|
||||
round(runif(7, min=.5, max=6.5))
|
||||
# 1 4 6 1 4 6 4
|
||||
|
||||
#your numbers will differ from mine unless we set the same random.seed(31337)
|
||||
|
||||
|
||||
#draw from a standard Gaussian 9 times
|
||||
rnorm(9)
|
||||
# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
|
||||
# [7] -0.59975593 0.57629164 1.08455362
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#########################
|
||||
# The absolute basics
|
||||
# Basic programming stuff
|
||||
#########################
|
||||
|
||||
# NUMBERS
|
||||
|
||||
# We've got doubles! Behold the "numeric" class
|
||||
5 # => [1] 5
|
||||
class(5) # => [1] "numeric"
|
||||
# We've also got integers! They look suspiciously similar,
|
||||
# but indeed are different
|
||||
5L # => [1] 5
|
||||
class(5L) # => [1] "integer"
|
||||
# "numeric" means double-precision floating-point numbers
|
||||
5 # 5
|
||||
class(5) # "numeric"
|
||||
5e4 # 50000 #handy when dealing with large,small,or variable orders of magnitude
|
||||
6.02e23 # Avogadro's number
|
||||
1.6e-35 # Planck length
|
||||
|
||||
# long-storage integers are written with L
|
||||
5L # 5
|
||||
class(5L) # "integer"
|
||||
|
||||
# Try ?class for more information on the class() function
|
||||
# In fact, you can look up the documentation on just about anything with ?
|
||||
# In fact, you can look up the documentation on `xyz` with ?xyz
|
||||
# or see the source for `xyz` by evaluating xyz
|
||||
|
||||
# Arithmetic
|
||||
10 + 66 # 76
|
||||
53.2 - 4 # 49.2
|
||||
2 * 2.0 # 4
|
||||
3L / 4 # 0.75
|
||||
3 %% 2 # 1
|
||||
|
||||
# Weird number types
|
||||
class(NaN) # "numeric"
|
||||
class(Inf) # "numeric"
|
||||
class(-Inf) # "numeric" #used in for example integrate( dnorm(x), 3, Inf ) -- which obviates Z-score tables
|
||||
|
||||
# but beware, NaN isn't the only weird type...
|
||||
class(NA) # see below
|
||||
class(NULL) # NULL
|
||||
|
||||
|
||||
# SIMPLE LISTS
|
||||
c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9
|
||||
c('alef', 'bet', 'gimmel', 'dalet', 'he') # "alef" "bet" "gimmel" "dalet" "he"
|
||||
c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
|
||||
|
||||
#some more nice built-ins
|
||||
5:15 # 5 6 7 8 9 10 11 12 13 14 15
|
||||
|
||||
seq(from=0, to=31337, by=1337)
|
||||
# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
|
||||
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
|
||||
|
||||
letters
|
||||
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
|
||||
# [20] "t" "u" "v" "w" "x" "y" "z"
|
||||
|
||||
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
|
||||
|
||||
|
||||
# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
|
||||
letters[18] # "r"
|
||||
LETTERS[13] # "M"
|
||||
month.name[9] # "September"
|
||||
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
|
||||
|
||||
# All the normal operations!
|
||||
10 + 66 # => [1] 76
|
||||
53.2 - 4 # => [1] 49.2
|
||||
2 * 2.0 # => [1] 4
|
||||
3L / 4 # => [1] 0.75
|
||||
3 %% 2 # => [1] 1
|
||||
|
||||
# Finally, we've got not-a-numbers! They're numerics too
|
||||
class(NaN) # => [1] "numeric"
|
||||
|
||||
# CHARACTERS
|
||||
|
||||
# We've (sort of) got strings! Behold the "character" class
|
||||
"plugh" # => [1] "plugh"
|
||||
class("plugh") # "character"
|
||||
# There's no difference between strings and characters in R
|
||||
|
||||
"Horatio" # "Horatio"
|
||||
class("Horatio") # "character"
|
||||
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
|
||||
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
|
||||
|
||||
|
||||
|
||||
# LOGICALS
|
||||
|
||||
# We've got booleans! Behold the "logical" class
|
||||
class(TRUE) # => [1] "logical"
|
||||
class(FALSE) # => [1] "logical"
|
||||
# booleans
|
||||
class(TRUE) # "logical"
|
||||
class(FALSE) # "logical"
|
||||
# Behavior is normal
|
||||
TRUE == TRUE # => [1] TRUE
|
||||
TRUE == FALSE # => [1] FALSE
|
||||
FALSE != FALSE # => [1] FALSE
|
||||
FALSE != TRUE # => [1] TRUE
|
||||
TRUE == TRUE # TRUE
|
||||
TRUE == FALSE # FALSE
|
||||
FALSE != FALSE # FALSE
|
||||
FALSE != TRUE # TRUE
|
||||
# Missing data (NA) is logical, too
|
||||
class(NA) # => [1] "logical"
|
||||
class(NA) # "logical"
|
||||
|
||||
|
||||
|
||||
# FACTORS
|
||||
|
||||
# The factor class is for categorical data
|
||||
# It has an attribute called levels that describes all the possible categories
|
||||
factor("dog")
|
||||
# =>
|
||||
# [1] dog
|
||||
# Levels: dog
|
||||
# (This will make more sense once we start talking about vectors)
|
||||
# which can be ordered (like childrens' grade levels)
|
||||
# or unordered (like gender)
|
||||
levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA"
|
||||
|
||||
factor(c("female", "female", "male", "NA", "female"))
|
||||
# female female male NA female
|
||||
# Levels: female male NA
|
||||
|
||||
data(infert) #Infertility after Spontaneous and Induced Abortion
|
||||
levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
|
||||
|
||||
|
||||
|
||||
# VARIABLES
|
||||
|
||||
@ -80,8 +261,8 @@ y <- "1" # this is preferred
|
||||
TRUE -> z # this works but is weird
|
||||
|
||||
# We can use coerce variables to different classes
|
||||
as.numeric(y) # => [1] 1
|
||||
as.character(x) # => [1] "5"
|
||||
as.numeric(y) # 1
|
||||
as.character(x) # "5"
|
||||
|
||||
# LOOPS
|
||||
|
||||
@ -122,7 +303,7 @@ myFunc <- function(x) {
|
||||
}
|
||||
|
||||
# Called like any other R function:
|
||||
myFunc(5) # => [1] 19
|
||||
myFunc(5) # 19
|
||||
|
||||
#########################
|
||||
# Fun with data: vectors, matrices, data frames, and arrays
|
||||
@ -132,35 +313,35 @@ myFunc(5) # => [1] 19
|
||||
|
||||
# You can vectorize anything, so long as all components have the same type
|
||||
vec <- c(8, 9, 10, 11)
|
||||
vec # => [1] 8 9 10 11
|
||||
vec # 8 9 10 11
|
||||
# The class of a vector is the class of its components
|
||||
class(vec) # => [1] "numeric"
|
||||
class(vec) # "numeric"
|
||||
# If you vectorize items of different classes, weird coercions happen
|
||||
c(TRUE, 4) # => [1] 1 4
|
||||
c("dog", TRUE, 4) # => [1] "dog" "TRUE" "4"
|
||||
c(TRUE, 4) # 1 4
|
||||
c("dog", TRUE, 4) # "dog" "TRUE" "4"
|
||||
|
||||
# We ask for specific components like so (R starts counting from 1)
|
||||
vec[1] # => [1] 8
|
||||
vec[1] # 8
|
||||
# We can also search for the indices of specific components,
|
||||
which(vec %% 2 == 0) # => [1] 1 3
|
||||
which(vec %% 2 == 0) # 1 3
|
||||
# or grab just the first or last entry in the vector
|
||||
head(vec, 1) # => [1] 8
|
||||
tail(vec, 1) # => [1] 11
|
||||
head(vec, 1) # 8
|
||||
tail(vec, 1) # 11
|
||||
# If an index "goes over" you'll get NA:
|
||||
vec[6] # => [1] NA
|
||||
vec[6] # NA
|
||||
# You can find the length of your vector with length()
|
||||
length(vec) # => [1] 4
|
||||
length(vec) # 4
|
||||
|
||||
# You can perform operations on entire vectors or subsets of vectors
|
||||
vec * 4 # => [1] 16 20 24 28
|
||||
vec[2:3] * 5 # => [1] 25 30
|
||||
vec * 4 # 16 20 24 28
|
||||
vec[2:3] * 5 # 25 30
|
||||
# and there are many built-in functions to summarize vectors
|
||||
mean(vec) # => [1] 9.5
|
||||
var(vec) # => [1] 1.666667
|
||||
sd(vec) # => [1] 1.290994
|
||||
max(vec) # => [1] 11
|
||||
min(vec) # => [1] 8
|
||||
sum(vec) # => [1] 38
|
||||
mean(vec) # 9.5
|
||||
var(vec) # 1.666667
|
||||
sd(vec) # 1.290994
|
||||
max(vec) # 11
|
||||
min(vec) # 8
|
||||
sum(vec) # 38
|
||||
|
||||
# TWO-DIMENSIONAL (ALL ONE CLASS)
|
||||
|
||||
@ -175,11 +356,11 @@ mat
|
||||
# Unlike a vector, the class of a matrix is "matrix", no matter what's in it
|
||||
class(mat) # => "matrix"
|
||||
# Ask for the first row
|
||||
mat[1,] # => [1] 1 4
|
||||
mat[1,] # 1 4
|
||||
# Perform operation on the first column
|
||||
3 * mat[,1] # => [1] 3 6 9
|
||||
3 * mat[,1] # 3 6 9
|
||||
# Ask for a specific cell
|
||||
mat[3,2] # => [1] 6
|
||||
mat[3,2] # 6
|
||||
# Transpose the whole matrix
|
||||
t(mat)
|
||||
# =>
|
||||
@ -196,7 +377,7 @@ mat2
|
||||
# [2,] "2" "cat"
|
||||
# [3,] "3" "bird"
|
||||
# [4,] "4" "dog"
|
||||
class(mat2) # => [1] matrix
|
||||
class(mat2) # matrix
|
||||
# Again, note what happened!
|
||||
# Because matrices must contain entries all of the same class,
|
||||
# everything got converted to the character class
|
||||
@ -216,7 +397,7 @@ mat3
|
||||
# For columns of different classes, use the data frame
|
||||
dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
|
||||
names(dat) <- c("number", "species") # name the columns
|
||||
class(dat) # => [1] "data.frame"
|
||||
class(dat) # "data.frame"
|
||||
dat
|
||||
# =>
|
||||
# number species
|
||||
@ -224,14 +405,14 @@ dat
|
||||
# 2 2 cat
|
||||
# 3 1 bird
|
||||
# 4 4 dog
|
||||
class(dat$number) # => [1] "numeric"
|
||||
class(dat[,2]) # => [1] "factor"
|
||||
class(dat$number) # "numeric"
|
||||
class(dat[,2]) # "factor"
|
||||
# The data.frame() function converts character vectors to factor vectors
|
||||
|
||||
# There are many twisty ways to subset data frames, all subtly unalike
|
||||
dat$number # => [1] 5 2 1 4
|
||||
dat[,1] # => [1] 5 2 1 4
|
||||
dat[,"number"] # => [1] 5 2 1 4
|
||||
dat$number # 5 2 1 4
|
||||
dat[,1] # 5 2 1 4
|
||||
dat[,"number"] # 5 2 1 4
|
||||
|
||||
# MULTI-DIMENSIONAL (ALL OF ONE CLASS)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user