diff --git a/julia.html.markdown b/julia.html.markdown
index 15c09da4..839e414d 100644
--- a/julia.html.markdown
+++ b/julia.html.markdown
@@ -114,12 +114,12 @@ println("I'm Julia. Nice to meet you!") # => I'm Julia. Nice to meet you!
####################################################
# You don't declare variables before assigning to them.
-some_var = 5 # => 5
-some_var # => 5
+someVar = 5 # => 5
+someVar # => 5
# Accessing a previously unassigned variable is an error
try
- some_other_var # => ERROR: UndefVarError: some_other_var not defined
+ someOtherVar # => ERROR: UndefVarError: someOtherVar not defined
catch e
println(e)
end
@@ -286,62 +286,62 @@ d # => 5
e # => 4
# Dictionaries store mappings
-empty_dict = Dict() # => Dict{Any,Any} with 0 entries
+emptyDict = Dict() # => Dict{Any,Any} with 0 entries
# You can create a dictionary using a literal
-filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
+filledDict = Dict("one" => 1, "two" => 2, "three" => 3)
# => Dict{String,Int64} with 3 entries:
# => "two" => 2, "one" => 1, "three" => 3
# Look up values with []
-filled_dict["one"] # => 1
+filledDict["one"] # => 1
# Get all keys
-keys(filled_dict)
+keys(filledDict)
# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:
# => "two", "one", "three"
# Note - dictionary keys are not sorted or in the order you inserted them.
# Get all values
-values(filled_dict)
+values(filledDict)
# => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values:
# => 2, 1, 3
# Note - Same as above regarding key ordering.
# Check for existence of keys in a dictionary with in, haskey
-in(("one" => 1), filled_dict) # => true
-in(("two" => 3), filled_dict) # => false
-haskey(filled_dict, "one") # => true
-haskey(filled_dict, 1) # => false
+in(("one" => 1), filledDict) # => true
+in(("two" => 3), filledDict) # => false
+haskey(filledDict, "one") # => true
+haskey(filledDict, 1) # => false
# Trying to look up a non-existent key will raise an error
try
- filled_dict["four"] # => ERROR: KeyError: key "four" not found
+ filledDict["four"] # => ERROR: KeyError: key "four" not found
catch e
println(e)
end
# Use the get method to avoid that error by providing a default value
-# get(dictionary, key, default_value)
-get(filled_dict, "one", 4) # => 1
-get(filled_dict, "four", 4) # => 4
+# get(dictionary, key, defaultValue)
+get(filledDict, "one", 4) # => 1
+get(filledDict, "four", 4) # => 4
# Use Sets to represent collections of unordered, unique values
-empty_set = Set() # => Set(Any[])
+emptySet = Set() # => Set(Any[])
# Initialize a set with values
-filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
+filledSet = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
# Add more values to a set
-push!(filled_set, 5) # => Set([4, 2, 3, 5, 1])
+push!(filledSet, 5) # => Set([4, 2, 3, 5, 1])
# Check if the values are in the set
-in(2, filled_set) # => true
-in(10, filled_set) # => false
+in(2, filledSet) # => true
+in(10, filledSet) # => false
# There are functions for set intersection, union, and difference.
-other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
-intersect(filled_set, other_set) # => Set([4, 3, 5])
-union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1])
+otherSet = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
+intersect(filledSet, otherSet) # => Set([4, 3, 5])
+union(filledSet, otherSet) # => Set([4, 2, 3, 5, 6, 1])
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
####################################################
@@ -349,15 +349,15 @@ setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
####################################################
# Let's make a variable
-some_var = 5
+someVar = 5
# Here is an if statement. Indentation is not meaningful in Julia.
-if some_var > 10
- println("some_var is totally bigger than 10.")
-elseif some_var < 10 # This elseif clause is optional.
- println("some_var is smaller than 10.")
+if someVar > 10
+ println("someVar is totally bigger than 10.")
+elseif someVar < 10 # This elseif clause is optional.
+ println("someVar is smaller than 10.")
else # The else clause is optional too.
- println("some_var is indeed 10.")
+ println("someVar is indeed 10.")
end
# => prints "some var is smaller than 10"
@@ -434,8 +434,8 @@ add(5, 6)
# => 11
# Compact assignment of functions
-f_add(x, y) = x + y # => f_add (generic function with 1 method)
-f_add(3, 4) # => 7
+fAdd(x, y) = x + y # => fAdd (generic function with 1 method)
+fAdd(3, 4) # => 7
# Function can also return multiple values as tuple
fn(x, y) = x + y, x - y # => fn (generic function with 1 method)
@@ -478,67 +478,67 @@ catch e
end
# You can define functions that take keyword arguments
-function keyword_args(;k1=4, name2="hello") # note the ;
+function keywordArgs(;k1=4, name2="hello") # note the ;
return Dict("k1" => k1, "name2" => name2)
end
-# => keyword_args (generic function with 1 method)
+# => keywordArgs (generic function with 1 method)
-keyword_args(name2="ness") # => ["name2"=>"ness", "k1"=>4]
-keyword_args(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
-keyword_args() # => ["name2"=>"hello", "k1"=>4]
+keywordArgs(name2="ness") # => ["name2"=>"ness", "k1"=>4]
+keywordArgs(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
+keywordArgs() # => ["name2"=>"hello", "k1"=>4]
# You can combine all kinds of arguments in the same function
-function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
- println("normal arg: $normal_arg")
- println("optional arg: $optional_positional_arg")
- println("keyword arg: $keyword_arg")
+function allTheArgs(normalArg, optionalPositionalArg=2; keywordArg="foo")
+ println("normal arg: $normalArg")
+ println("optional arg: $optionalPositionalArg")
+ println("keyword arg: $keywordArg")
end
-# => all_the_args (generic function with 2 methods)
+# => allTheArgs (generic function with 2 methods)
-all_the_args(1, 3, keyword_arg=4)
+allAheArgs(1, 3, keywordArg=4)
# => normal arg: 1
# => optional arg: 3
# => keyword arg: 4
# Julia has first class functions
-function create_adder(x)
+function createAdder(x)
adder = function (y)
return x + y
end
return adder
end
-# => create_adder (generic function with 1 method)
+# => createAdder (generic function with 1 method)
# This is "stabby lambda syntax" for creating anonymous functions
(x -> x > 2)(3) # => true
-# This function is identical to create_adder implementation above.
-function create_adder(x)
+# This function is identical to createAdder implementation above.
+function createAdder(x)
y -> x + y
end
-# => create_adder (generic function with 1 method)
+# => createAdder (generic function with 1 method)
# You can also name the internal function, if you want
-function create_adder(x)
+function createAdder(x)
function adder(y)
x + y
end
adder
end
-# => create_adder (generic function with 1 method)
+# => createAdder (generic function with 1 method)
-add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
+add10 = createAdder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
# (generic function with 1 method)
-add_10(3) # => 13
+add10(3) # => 13
# There are built-in higher order functions
-map(add_10, [1,2,3]) # => [11, 12, 13]
+map(add10, [1,2,3]) # => [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# We can use list comprehensions
-[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
-[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
+[add10(i) for i = [1, 2, 3]] # => [11, 12, 13]
+[add10(i) for i in [1, 2, 3]] # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
####################################################
@@ -616,7 +616,7 @@ supertype(SubString) # => AbstractString
# <: is the subtyping operator
struct Lion <: Cat # Lion is a subtype of Cat
- mane_color
+ maneColor
roar::AbstractString
end
@@ -627,7 +627,7 @@ Lion(roar::AbstractString) = Lion("green", roar)
# This is an outer constructor because it's outside the type definition
struct Panther <: Cat # Panther is also a subtype of Cat
- eye_color
+ eyeColor
Panther() = new("green")
# Panthers will only have this constructor, and no default constructor.
end
@@ -669,14 +669,14 @@ Lion <: Cat # => true
Panther <: Cat # => true
# Defining a function that takes Cats
-function pet_cat(cat::Cat)
+function petCat(cat::Cat)
println("The cat says $(meow(cat))")
end
-# => pet_cat (generic function with 1 method)
+# => petCat (generic function with 1 method)
-pet_cat(Lion("42")) # => The cat says 42
+petCat(Lion("42")) # => The cat says 42
try
- pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger)
+ petCat(tigger) # => ERROR: MethodError: no method matching petCat(::Tiger)
catch e
println(e)
end
@@ -695,7 +695,7 @@ fight(tigger, Panther()) # => The orange tiger wins!
fight(tigger, Lion("ROAR")) # => The orange tiger wins!
# Let's change the behavior when the Cat is specifically a Lion
-fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!")
+fight(t::Tiger, l::Lion) = println("The $(l.maneColor)-maned lion wins!")
# => fight (generic function with 2 methods)
fight(tigger, Panther()) # => The orange tiger wins!
@@ -744,14 +744,14 @@ fight(Lion("RAR"), Lion("brown", "rarrr")) # => The lions come to a tie
# Under the hood
# You can take a look at the llvm and the assembly code generated.
-square_area(l) = l * l # square_area (generic function with 1 method)
+squareArea(l) = l * l # squareArea (generic function with 1 method)
-square_area(5) # => 25
+squareArea(5) # => 25
-# What happens when we feed square_area an integer?
-code_native(square_area, (Int32,), syntax = :intel)
+# What happens when we feed squareArea an integer?
+codeNative(squareArea, (Int32,), syntax = :intel)
# .text
- # ; Function square_area {
+ # ; Function squareArea {
# ; Location: REPL[116]:1 # Prologue
# push rbp
# mov rbp, rsp
@@ -765,9 +765,9 @@ code_native(square_area, (Int32,), syntax = :intel)
# nop dword ptr [rax + rax]
# ;}
-code_native(square_area, (Float32,), syntax = :intel)
+codeNative(squareArea, (Float32,), syntax = :intel)
# .text
- # ; Function square_area {
+ # ; Function squareArea {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
@@ -780,9 +780,9 @@ code_native(square_area, (Float32,), syntax = :intel)
# nop word ptr [rax + rax]
# ;}
-code_native(square_area, (Float64,), syntax = :intel)
+codeNative(squareArea, (Float64,), syntax = :intel)
# .text
- # ; Function square_area {
+ # ; Function squareArea {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
@@ -798,12 +798,12 @@ code_native(square_area, (Float64,), syntax = :intel)
# Note that julia will use floating point instructions if any of the
# arguments are floats.
# Let's calculate the area of a circle
-circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
-circle_area(5) # 78.53981633974483
+circleArea(r) = pi * r * r # circleArea (generic function with 1 method)
+circleArea(5) # 78.53981633974483
-code_native(circle_area, (Int32,), syntax = :intel)
+codeNative(circleArea, (Int32,), syntax = :intel)
# .text
- # ; Function circle_area {
+ # ; Function circleArea {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp
@@ -832,9 +832,9 @@ code_native(circle_area, (Int32,), syntax = :intel)
# nop dword ptr [rax]
# ;}
-code_native(circle_area, (Float64,), syntax = :intel)
+codeNative(circleArea, (Float64,), syntax = :intel)
# .text
- # ; Function circle_area {
+ # ; Function circleArea {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp