mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-09-25 13:58:59 +02:00
Merge branch 'master' into patch-1
This commit is contained in:
@@ -9,14 +9,18 @@ contributors:
|
||||
- ["Rommel Martinez", "https://ebzzry.io"]
|
||||
- ["Roberto Fernandez Diaz", "https://github.com/robertofd1995"]
|
||||
- ["caminsha", "https://github.com/caminsha"]
|
||||
- ["Stanislav Modrak", "https://stanislav.gq"]
|
||||
- ["John Paul Wohlscheid", "https://gitpi.us"]
|
||||
filename: learnpython.py
|
||||
---
|
||||
|
||||
Python was created by Guido van Rossum in the early 90s. It is now one of the most popular
|
||||
languages in existence. I fell in love with Python for its syntactic clarity. It's basically
|
||||
executable pseudocode.
|
||||
Python was created by Guido van Rossum in the early 90s. It is now one of the
|
||||
most popular languages in existence. I fell in love with Python for its
|
||||
syntactic clarity. It's basically executable pseudocode.
|
||||
|
||||
Note: This article applies to Python 3 specifically. Check out [here](http://learnxinyminutes.com/docs/pythonlegacy/) if you want to learn the old Python 2.7
|
||||
Note: This article applies to Python 3 specifically. Check out
|
||||
[here](http://learnxinyminutes.com/docs/pythonlegacy/) if you want to learn the
|
||||
old Python 2.7
|
||||
|
||||
```python
|
||||
|
||||
@@ -81,16 +85,29 @@ False - 5 # => -5
|
||||
|
||||
# Comparison operators look at the numerical value of True and False
|
||||
0 == False # => True
|
||||
1 == True # => True
|
||||
2 > True # => True
|
||||
2 == True # => False
|
||||
-5 != False # => True
|
||||
|
||||
# Using boolean logical operators on ints casts them to booleans for evaluation, but their non-cast value is returned
|
||||
# Don't mix up with bool(ints) and bitwise and/or (&,|)
|
||||
# None, 0, and empty strings/lists/dicts/tuples/sets all evaluate to False.
|
||||
# All other values are True
|
||||
bool(0) # => False
|
||||
bool("") # => False
|
||||
bool([]) # => False
|
||||
bool({}) # => False
|
||||
bool(()) # => False
|
||||
bool(set()) # => False
|
||||
bool(4) # => True
|
||||
bool(-6) # => True
|
||||
|
||||
# Using boolean logical operators on ints casts them to booleans for evaluation,
|
||||
# but their non-cast value is returned. Don't mix up with bool(ints) and bitwise
|
||||
# and/or (&,|)
|
||||
bool(0) # => False
|
||||
bool(2) # => True
|
||||
0 and 2 # => 0
|
||||
bool(-5) # => True
|
||||
bool(2) # => True
|
||||
-5 or 0 # => -5
|
||||
|
||||
# Equality is ==
|
||||
@@ -139,10 +156,10 @@ b == a # => True, a's and b's objects are equal
|
||||
# You can find the length of a string
|
||||
len("This is a string") # => 16
|
||||
|
||||
# You can also format using f-strings or formatted string literals (in Python 3.6+)
|
||||
# Since Python 3.6, you can use f-strings or formatted string literals.
|
||||
name = "Reiko"
|
||||
f"She said her name is {name}." # => "She said her name is Reiko"
|
||||
# You can basically put any Python expression inside the braces and it will be output in the string.
|
||||
# Any valid Python expression inside these braces is returned to the string.
|
||||
f"{name} is {len(name)} characters long." # => "Reiko is 5 characters long."
|
||||
|
||||
# None is an object
|
||||
@@ -153,14 +170,6 @@ None # => None
|
||||
"etc" is None # => False
|
||||
None is None # => True
|
||||
|
||||
# None, 0, and empty strings/lists/dicts/tuples all evaluate to False.
|
||||
# All other values are True
|
||||
bool(0) # => False
|
||||
bool("") # => False
|
||||
bool([]) # => False
|
||||
bool({}) # => False
|
||||
bool(()) # => False
|
||||
|
||||
####################################################
|
||||
## 2. Variables and Collections
|
||||
####################################################
|
||||
@@ -176,7 +185,7 @@ print("Hello, World", end="!") # => Hello, World!
|
||||
input_string_var = input("Enter some data: ") # Returns the data as a string
|
||||
|
||||
# There are no declarations, only assignments.
|
||||
# Convention is to use lower_case_with_underscores
|
||||
# Convention in naming variables is snake_case style
|
||||
some_var = 5
|
||||
some_var # => 5
|
||||
|
||||
@@ -217,7 +226,7 @@ li[4] # Raises an IndexError
|
||||
li[1:3] # Return list from index 1 to 3 => [2, 4]
|
||||
li[2:] # Return list starting from index 2 => [4, 3]
|
||||
li[:3] # Return list from beginning until index 3 => [1, 2, 4]
|
||||
li[::2] # Return list selecting every second entry => [1, 4]
|
||||
li[::2] # Return list selecting elements with a step size of 2 => [1, 4]
|
||||
li[::-1] # Return list in reverse order => [3, 4, 2, 1]
|
||||
# Use any combination of these to make advanced slices
|
||||
# li[start:end:step]
|
||||
@@ -289,7 +298,7 @@ filled_dict = {"one": 1, "two": 2, "three": 3}
|
||||
# Note keys for dictionaries have to be immutable types. This is to ensure that
|
||||
# the key can be converted to a constant hash value for quick look-ups.
|
||||
# Immutable types include ints, floats, strings, tuples.
|
||||
invalid_dict = {[1,2,3]: "123"} # => Raises a TypeError: unhashable type: 'list'
|
||||
invalid_dict = {[1,2,3]: "123"} # => Yield a TypeError: unhashable type: 'list'
|
||||
valid_dict = {(1,2,3):[1,2,3]} # Values can be of any type, however.
|
||||
|
||||
# Look up values with []
|
||||
@@ -343,7 +352,7 @@ del filled_dict["one"] # Removes the key "one" from filled dict
|
||||
|
||||
# Sets store ... well sets
|
||||
empty_set = set()
|
||||
# Initialize a set with a bunch of values. Yeah, it looks a bit like a dict. Sorry.
|
||||
# Initialize a set with a bunch of values.
|
||||
some_set = {1, 1, 2, 2, 3, 4} # some_set is now {1, 2, 3, 4}
|
||||
|
||||
# Similar to keys of a dictionary, elements of a set have to be immutable.
|
||||
@@ -415,7 +424,7 @@ for animal in ["dog", "cat", "mouse"]:
|
||||
|
||||
"""
|
||||
"range(number)" returns an iterable of numbers
|
||||
from zero to the given number
|
||||
from zero up to (but excluding) the given number
|
||||
prints:
|
||||
0
|
||||
1
|
||||
@@ -449,8 +458,7 @@ for i in range(4, 8, 2):
|
||||
print(i)
|
||||
|
||||
"""
|
||||
To loop over a list, and retrieve both the index and the value of each item in the list
|
||||
prints:
|
||||
Loop over a list to retrieve both the index and the value of each list item:
|
||||
0 dog
|
||||
1 cat
|
||||
2 mouse
|
||||
@@ -477,10 +485,11 @@ try:
|
||||
# Use "raise" to raise an error
|
||||
raise IndexError("This is an index error")
|
||||
except IndexError as e:
|
||||
pass # Pass is just a no-op. Usually you would do recovery here.
|
||||
pass # Refrain from this, provide a recovery (next example).
|
||||
except (TypeError, NameError):
|
||||
pass # Multiple exceptions can be handled together, if required.
|
||||
else: # Optional clause to the try/except block. Must follow all except blocks
|
||||
pass # Multiple exceptions can be processed jointly.
|
||||
else: # Optional clause to the try/except block. Must follow
|
||||
# all except blocks.
|
||||
print("All good!") # Runs only if the code in try raises no exceptions
|
||||
finally: # Execute under all circumstances
|
||||
print("We can clean up resources here")
|
||||
@@ -495,6 +504,7 @@ contents = {"aa": 12, "bb": 21}
|
||||
with open("myfile1.txt", "w") as file:
|
||||
file.write(str(contents)) # writes a string to a file
|
||||
|
||||
import json
|
||||
with open("myfile2.txt", "w") as file:
|
||||
file.write(json.dumps(contents)) # writes an object to a file
|
||||
|
||||
@@ -516,7 +526,8 @@ print(contents)
|
||||
|
||||
filled_dict = {"one": 1, "two": 2, "three": 3}
|
||||
our_iterable = filled_dict.keys()
|
||||
print(our_iterable) # => dict_keys(['one', 'two', 'three']). This is an object that implements our Iterable interface.
|
||||
print(our_iterable) # => dict_keys(['one', 'two', 'three']). This is an object
|
||||
# that implements our Iterable interface.
|
||||
|
||||
# We can loop over it.
|
||||
for i in our_iterable:
|
||||
@@ -528,15 +539,16 @@ our_iterable[1] # Raises a TypeError
|
||||
# An iterable is an object that knows how to create an iterator.
|
||||
our_iterator = iter(our_iterable)
|
||||
|
||||
# Our iterator is an object that can remember the state as we traverse through it.
|
||||
# We get the next object with "next()".
|
||||
# Our iterator is an object that can remember the state as we traverse through
|
||||
# it. We get the next object with "next()".
|
||||
next(our_iterator) # => "one"
|
||||
|
||||
# It maintains state as we iterate.
|
||||
next(our_iterator) # => "two"
|
||||
next(our_iterator) # => "three"
|
||||
|
||||
# After the iterator has returned all of its data, it raises a StopIteration exception
|
||||
# After the iterator has returned all of its data, it raises a
|
||||
# StopIteration exception
|
||||
next(our_iterator) # Raises StopIteration
|
||||
|
||||
# We can also loop over it, in fact, "for" does this implicitly!
|
||||
@@ -544,7 +556,7 @@ our_iterator = iter(our_iterable)
|
||||
for i in our_iterator:
|
||||
print(i) # Prints one, two, three
|
||||
|
||||
# You can grab all the elements of an iterable or iterator by calling list() on it.
|
||||
# You can grab all the elements of an iterable or iterator by call of list().
|
||||
list(our_iterable) # => Returns ["one", "two", "three"]
|
||||
list(our_iterator) # => Returns [] because state is saved
|
||||
|
||||
@@ -591,12 +603,12 @@ all_the_args(1, 2, a=3, b=4) prints:
|
||||
"""
|
||||
|
||||
# When calling functions, you can do the opposite of args/kwargs!
|
||||
# Use * to expand tuples and use ** to expand kwargs.
|
||||
# Use * to expand args (tuples) and use ** to expand kwargs (dictionaries).
|
||||
args = (1, 2, 3, 4)
|
||||
kwargs = {"a": 3, "b": 4}
|
||||
all_the_args(*args) # equivalent to all_the_args(1, 2, 3, 4)
|
||||
all_the_args(**kwargs) # equivalent to all_the_args(a=3, b=4)
|
||||
all_the_args(*args, **kwargs) # equivalent to all_the_args(1, 2, 3, 4, a=3, b=4)
|
||||
all_the_args(*args) # equivalent: all_the_args(1, 2, 3, 4)
|
||||
all_the_args(**kwargs) # equivalent: all_the_args(a=3, b=4)
|
||||
all_the_args(*args, **kwargs) # equivalent: all_the_args(1, 2, 3, 4, a=3, b=4)
|
||||
|
||||
# Returning multiple values (with tuple assignments)
|
||||
def swap(x, y):
|
||||
@@ -606,17 +618,19 @@ def swap(x, y):
|
||||
x = 1
|
||||
y = 2
|
||||
x, y = swap(x, y) # => x = 2, y = 1
|
||||
# (x, y) = swap(x,y) # Again parenthesis have been excluded but can be included.
|
||||
# (x, y) = swap(x,y) # Again the use of parenthesis is optional.
|
||||
|
||||
# Function Scope
|
||||
# global scope
|
||||
x = 5
|
||||
|
||||
def set_x(num):
|
||||
# Local var x not the same as global variable x
|
||||
# local scope begins here
|
||||
# local var x not the same as global var x
|
||||
x = num # => 43
|
||||
print(x) # => 43
|
||||
|
||||
def set_global_x(num):
|
||||
# global indicates that particular var lives in the global scope
|
||||
global x
|
||||
print(x) # => 5
|
||||
x = num # global var x is now set to 6
|
||||
@@ -624,6 +638,12 @@ def set_global_x(num):
|
||||
|
||||
set_x(43)
|
||||
set_global_x(6)
|
||||
"""
|
||||
prints:
|
||||
43
|
||||
5
|
||||
6
|
||||
"""
|
||||
|
||||
|
||||
# Python has first class functions
|
||||
@@ -635,6 +655,22 @@ def create_adder(x):
|
||||
add_10 = create_adder(10)
|
||||
add_10(3) # => 13
|
||||
|
||||
# Closures in nested functions:
|
||||
# We can use the nonlocal keyword to work with variables in nested scope which shouldn't be declared in the inner functions.
|
||||
def create_avg():
|
||||
total = 0
|
||||
count = 0
|
||||
def avg(n):
|
||||
nonlocal total, count
|
||||
total += n
|
||||
count += 1
|
||||
return total/count
|
||||
return avg
|
||||
avg = create_avg()
|
||||
avg(3) # => 3.0
|
||||
avg(5) # (3+5)/2 => 4.0
|
||||
avg(7) # (8+7)/3 => 5.0
|
||||
|
||||
# There are also anonymous functions
|
||||
(lambda x: x > 2)(3) # => True
|
||||
(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
|
||||
@@ -646,7 +682,7 @@ list(map(max, [1, 2, 3], [4, 2, 1])) # => [4, 2, 3]
|
||||
list(filter(lambda x: x > 5, [3, 4, 5, 6, 7])) # => [6, 7]
|
||||
|
||||
# We can use list comprehensions for nice maps and filters
|
||||
# List comprehension stores the output as a list which can itself be a nested list
|
||||
# List comprehension stores the output as a list (which itself may be nested).
|
||||
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
||||
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
|
||||
|
||||
@@ -665,8 +701,8 @@ print(math.sqrt(16)) # => 4.0
|
||||
|
||||
# You can get specific functions from a module
|
||||
from math import ceil, floor
|
||||
print(ceil(3.7)) # => 4.0
|
||||
print(floor(3.7)) # => 3.0
|
||||
print(ceil(3.7)) # => 4
|
||||
print(floor(3.7)) # => 3
|
||||
|
||||
# You can import all functions from a module.
|
||||
# Warning: this is not recommended
|
||||
@@ -706,14 +742,16 @@ class Human:
|
||||
# Note that the double leading and trailing underscores denote objects
|
||||
# or attributes that are used by Python but that live in user-controlled
|
||||
# namespaces. Methods(or objects or attributes) like: __init__, __str__,
|
||||
# __repr__ etc. are called special methods (or sometimes called dunder methods)
|
||||
# You should not invent such names on your own.
|
||||
# __repr__ etc. are called special methods (or sometimes called dunder
|
||||
# methods). You should not invent such names on your own.
|
||||
def __init__(self, name):
|
||||
# Assign the argument to the instance's name attribute
|
||||
self.name = name
|
||||
|
||||
# Initialize property
|
||||
self._age = 0
|
||||
self._age = 0 # the leading underscore indicates the "age" property is
|
||||
# intended to be used internally
|
||||
# do not rely on this to be enforced: it's a hint to other devs
|
||||
|
||||
# An instance method. All methods take "self" as the first argument
|
||||
def say(self, msg):
|
||||
@@ -761,7 +799,7 @@ if __name__ == '__main__':
|
||||
i.say("hi") # "Ian: hi"
|
||||
j = Human("Joel")
|
||||
j.say("hello") # "Joel: hello"
|
||||
# i and j are instances of type Human, or in other words: they are Human objects
|
||||
# i and j are instances of type Human; i.e., they are Human objects.
|
||||
|
||||
# Call our class method
|
||||
i.say(i.get_species()) # "Ian: H. sapiens"
|
||||
@@ -798,8 +836,8 @@ if __name__ == '__main__':
|
||||
# "species", "name", and "age", as well as methods, like "sing" and "grunt"
|
||||
# from the Human class, but can also have its own unique properties.
|
||||
|
||||
# To take advantage of modularization by file you could place the classes above in their own files,
|
||||
# say, human.py
|
||||
# To take advantage of modularization by file you could place the classes above
|
||||
# in their own files, say, human.py
|
||||
|
||||
# To import functions from other files use the following format
|
||||
# from "filename-without-extension" import "function-or-class"
|
||||
@@ -856,7 +894,8 @@ if __name__ == '__main__':
|
||||
if type(sup) is Superhero:
|
||||
print('I am a superhero')
|
||||
|
||||
# Get the Method Resolution search Order used by both getattr() and super()
|
||||
# Get the "Method Resolution Order" used by both getattr() and super()
|
||||
# (the order in which classes are searched for an attribute or method)
|
||||
# This attribute is dynamic and can be updated
|
||||
print(Superhero.__mro__) # => (<class '__main__.Superhero'>,
|
||||
# => <class 'human.Human'>, <class 'object'>)
|
||||
@@ -923,8 +962,8 @@ class Batman(Superhero, Bat):
|
||||
# However we are dealing with multiple inheritance here, and super()
|
||||
# only works with the next base class in the MRO list.
|
||||
# So instead we explicitly call __init__ for all ancestors.
|
||||
# The use of *args and **kwargs allows for a clean way to pass arguments,
|
||||
# with each parent "peeling a layer of the onion".
|
||||
# The use of *args and **kwargs allows for a clean way to pass
|
||||
# arguments, with each parent "peeling a layer of the onion".
|
||||
Superhero.__init__(self, 'anonymous', movie=True,
|
||||
superpowers=['Wealthy'], *args, **kwargs)
|
||||
Bat.__init__(self, *args, can_fly=False, **kwargs)
|
||||
@@ -938,8 +977,7 @@ class Batman(Superhero, Bat):
|
||||
if __name__ == '__main__':
|
||||
sup = Batman()
|
||||
|
||||
# Get the Method Resolution search Order used by both getattr() and super().
|
||||
# This attribute is dynamic and can be updated
|
||||
# The Method Resolution Order
|
||||
print(Batman.__mro__) # => (<class '__main__.Batman'>,
|
||||
# => <class 'superhero.Superhero'>,
|
||||
# => <class 'human.Human'>,
|
||||
@@ -996,39 +1034,72 @@ gen_to_list = list(values)
|
||||
print(gen_to_list) # => [-1, -2, -3, -4, -5]
|
||||
|
||||
|
||||
# Decorators
|
||||
# In this example `beg` wraps `say`. If say_please is True then it
|
||||
# will change the returned message.
|
||||
from functools import wraps
|
||||
# Decorators are a form of syntactic sugar.
|
||||
# They make code easier to read while accomplishing clunky syntax.
|
||||
|
||||
# Wrappers are one type of decorator.
|
||||
# They're really useful for adding logging to existing functions without needing to modify them.
|
||||
|
||||
def beg(target_function):
|
||||
@wraps(target_function)
|
||||
def log_function(func):
|
||||
def wrapper(*args, **kwargs):
|
||||
msg, say_please = target_function(*args, **kwargs)
|
||||
if say_please:
|
||||
return "{} {}".format(msg, "Please! I am poor :(")
|
||||
return msg
|
||||
|
||||
print("Entering function", func.__name__)
|
||||
result = func(*args, **kwargs)
|
||||
print("Exiting function", func.__name__)
|
||||
return result
|
||||
return wrapper
|
||||
|
||||
@log_function # equivalent:
|
||||
def my_function(x,y): # def my_function(x,y):
|
||||
return x+y # return x+y
|
||||
# my_function = log_function(my_function)
|
||||
# The decorator @log_function tells us as we begin reading the function definition
|
||||
# for my_function that this function will be wrapped with log_function.
|
||||
# When function definitions are long, it can be hard to parse the non-decorated
|
||||
# assignment at the end of the definition.
|
||||
|
||||
@beg
|
||||
def say(say_please=False):
|
||||
msg = "Can you buy me a beer?"
|
||||
return msg, say_please
|
||||
my_function(1,2) # => "Entering function my_function"
|
||||
# => "3"
|
||||
# => "Exiting function my_function"
|
||||
|
||||
# But there's a problem.
|
||||
# What happens if we try to get some information about my_function?
|
||||
|
||||
print(my_function.__name__) # => 'wrapper'
|
||||
print(my_function.__code__.co_argcount) # => 0. The argcount is 0 because both arguments in wrapper()'s signature are optional.
|
||||
|
||||
# Because our decorator is equivalent to my_function = log_function(my_function)
|
||||
# we've replaced information about my_function with information from wrapper
|
||||
|
||||
# Fix this using functools
|
||||
|
||||
from functools import wraps
|
||||
|
||||
def log_function(func):
|
||||
@wraps(func) # this ensures docstring, function name, arguments list, etc. are all copied
|
||||
# to the wrapped function - instead of being replaced with wrapper's info
|
||||
def wrapper(*args, **kwargs):
|
||||
print("Entering function", func.__name__)
|
||||
result = func(*args, **kwargs)
|
||||
print("Exiting function", func.__name__)
|
||||
return result
|
||||
return wrapper
|
||||
|
||||
@log_function
|
||||
def my_function(x,y):
|
||||
return x+y
|
||||
|
||||
my_function(1,2) # => "Entering function my_function"
|
||||
# => "3"
|
||||
# => "Exiting function my_function"
|
||||
|
||||
print(my_function.__name__) # => 'my_function'
|
||||
print(my_function.__code__.co_argcount) # => 2
|
||||
|
||||
print(say()) # Can you buy me a beer?
|
||||
print(say(say_please=True)) # Can you buy me a beer? Please! I am poor :(
|
||||
```
|
||||
|
||||
## Ready For More?
|
||||
|
||||
### Free Online
|
||||
|
||||
* [Automate the Boring Stuff with Python](https://automatetheboringstuff.com)
|
||||
* [Ideas for Python Projects](http://pythonpracticeprojects.com)
|
||||
* [The Official Docs](https://docs.python.org/3/)
|
||||
* [Hitchhiker's Guide to Python](https://docs.python-guide.org/en/latest/)
|
||||
* [Python Course](https://www.python-course.eu)
|
||||
|
Reference in New Issue
Block a user