1
0
mirror of https://github.com/opsxcq/mirror-textfiles.com.git synced 2025-09-09 00:20:43 +02:00
Files
mirror-textfiles.com/bbs/KEELYNET/ENERGY/reynold2.asc

807 lines
44 KiB
Plaintext

______________________________________________________________________________
| File Name : REYNOLD2.ASC | Online Date : 01/02/95 |
| Contributed by : Glenda Stocks | Dir Category : ENERGY |
| From : KeelyNet BBS | DataLine : (214) 324-3501 |
| KeelyNet * PO BOX 870716 * Mesquite, Texas * USA * 75187 |
| A FREE Alternative Sciences BBS sponsored by Vanguard Sciences |
|----------------------------------------------------------------------------|
The EXCELLENT Reynolds files are listed on KeelyNet as:
REYNOLDS1.ASC - Aether as a crystalline dilatant matrix to help
explain matter, energy, space, time and PSI pheomena
REYNOLDS2.ASC - the dilatant medium hypothesis as a bridge between
classical and modern physics
REYNOLDS3.ASC - envisions dynamic systems of negative dislocations
(holes) through which matter and energy manifest and
moves with tie-ins to explain UFOs
REYNOLDS.ZIP - All of the above files as bundled together
Also, you should download BUBBLE1.ZIP as explaining matter as a bubble in the
aether density.
------------------------------------------------------------------------------
Osborne Reynolds' Submechanics of the Universe:
A Bridge between Classical and Modern Physics
BY
Bruce L. Rosenberg
Submitted for Presentation at the
Joint Anglo-American Conference on the History of Science
held at the University of Manchester
Manchester, England
11th to 14th of July 1988
May 25, 1988
23 North Chelsea Avenue
Atlantic City
New Jersey, 08401 USA
(609) 345-4712
cserve 73547,402
rosenbeb@admin.tc.faa.gov
Copyright (C) 1988 by Bruce L. Rosenberg, All Rights Reserved.
Osborne Reynolds' Submechanics of the Universe:
A Bridge between Classical and Modern Physics
"By this research it is shown that there is one, and only one,
conceivable purely mechanical system capable of accounting for all
the physical evidence, as we know it in the Universe.
The system is neither more nor less than an arrangement, of
indefinite extent, of uniform spherical grains generally in normal
piling so close that the grains cannot change their neighbors,
although continually in relative motion with each other; the
grains being of changeless shape and size; thus constituting, to a
first approximation, an elastic medium with six axes of elasticity
symmetrically placed.", Osborne Reynolds (1, p. 1).
Thus begins one of the most revolutionary achievements in the history of
science. Osborne Reynolds, F.R.S. (1842-1912), a British engineer and
educator, earned the respect of his peers and the devotion of his students.
Today he is recognized mainly for his contributions to the study of fluid
dynamics, turbulence, and tribology (2,3); but Reynolds perceived these as
only preliminaries to his grand synthesis - an axiomatic theory of a
particulate aether. The prevailing view today is that Reynolds'
quasicrystalline medium is an antiquated curiosity, an interesting exercise
which was overtaken by events of the time.
My position is that Reynolds' "Sub-Mechanics of the Universe" (henceforth,
SMU) is a bridge between classical and modern physics; that it is consistent
with relativity and quantum theory; and that it provides a solid foundation
for the Theory Of Everything. I believe that if scientists can shift their
paradigms to incorporate Reynolds' SMU model, a new age of enlightenment in
physics will be upon us. I will elaborate upon my reasons, but first let me
give you some of my background.
In 1968 while employed as a research engineer at the Franklin Institute
Research Laboratories in Philadelphia, Pennsylvania, USA, I invented a device
which consisted of a dilatant fluid enclosed and sealed in a rubber sack. At
the time I had no idea what dilatancy was, so I asked some of my associates in
the physics department, got the basic vocabulary and set off to the Franklin
Institute Library to do some research. This was the beginning of my education
in rheology and the work of Osborne Reynolds. Also in 1968, totally unknown
to me, the Osborne Reynolds Centennial Celebration was being conducted at the
University of Manchester.
Whilst researching the prior art in dilatancy, I was surprised and intrigued
to find, in a book on rheology (4, p. 4), that Osborne Reynolds' had based an
entire theory of the universe on a dilatant medium. I continued to pursue my
applications and subsequently received a patent on a toy (5) and later,
through the US Navy, I was granted a patent on an impact absorber based on the
same principle (6). The rheologically dilatant suspension used in my patents
has a critical shear rate which can be kinaesthetically perceived on handling
it. Below a critical shear rate it behaves as a liquid, above this rate it
behaves as a solid. There seemed to be some analogy between this critical
flow rate and relativistic phenomena at the speed of light.
As an amateur physicist, I was thus fascinated with Reynolds' SMU model and
continued to study it and related topics over the past twenty years.
Throughout my research on Reynolds I could never understand the obscurity into
which his Sub-Mechanics of the Universe sank. I expected it to be treated in
Whittaker's momentous work, "A History of the Theories of Aether and
Electricity" (7) and in Schaffner's book on nineteenth century aether theories
(8). Neither gives it even a passing mention. I saw Whittaker's omission as
particularly curious and, yes, grievous. I was later to find reasons for the
neglect of Reynolds' SMU.
Aside from the reference by Blair (4), I have found only two popular
references to Reynolds SMU: an article in Scientific American (9, pp. 99-100)
which mentions the SMU and also references the work of W. W. Rouse Ball (10).
Ball states (10, pp. 469-470):
"It is alleged that the theory accounts for the known phenomena of
gravity, electricity, and light provided the size of its grains
are properly chosen. ... This theory is in itself more plausible
than the electron hypothesis, but its consequences have not yet
been fully worked out."
John Gardiner's Scientific American article (9) also refers to Reynolds'
popular lecture entitled, "On an Inversion of Ideas as to the Structure of the
Universe" (11). He states, "Reynolds' inverted idea is less crazy than it
sounds." and then mentions the "new ether" theories of P. A. M. Dirac and John
A. Wheeler.
As my research progressed, I uncovered a review of Reynolds' SMU by G. H.
Bryan in Nature (12). Bryan writes:
"... It may safely be described as one of the most remarkable
attempts that have been made of recent years to formulate a
dynamical system capable of accounting for all physical phenomena
at present known. A theory such as here set forth may not
improbably play the same part in modern science that was assumed
by the atomic theory and the kinetic theory of gases in the
science of the time when these theories were propounded. ..."
"... The mathematical reasoning is very difficult, in some places
almost impossible, to follow, owing to the large number of
doubtful points or inaccuracies in the equations. Even if the
fundamental conclusions should prove to be correct, there are many
points in the argument which are at present obscure, and require
to be cleared up. To take a few examples. ... In ordinary
circumstances there is no useful purpose served in filling a
review with a list of errata which any reader could easily correct
for himself. But the present investigation would be difficult to
follow even under the most favourable conditions, and the presence
of so many formulae and statements which cannot possibly be
correct as they stand renders the task well nigh hopeless. ..."
"... An objection of an entirely different character applies to
the sections in which Maxwell's law of distribution of velocity
components and partition of energy is extended to a medium of
closely packed spheres such as that considered by Prof.
Reynolds. ... To assume the law to hold good in the extreme case
of a medium, the ultimate particles of which are permanently
interlocked, must be regarded, failing other evidence than that
given by Maxwell, as a very doubtful step. ..."
"It may be confidently anticipated that Prof. Osborne Reynolds's
granular medium will play an important part in the physics of the
future. It is, however, to be hoped that the subject will receive
careful and critical study in the hands of numerous mathematical
physicists, and that it will not be left for the experimenter and
philosopher blindly to accept Prof. Reynolds's doctrines as the
basis of speculations about things which they do not understand.
The practice of assuming statements to be true because Maxwell
made them has been too prevalent in the past, and there is not
very much difference between those who adopt this attitude and
writers who publish papers at their own expense to show that the
earth is not round or that gravitation does not exist. The
dogmatic attacks of the former class of philosopher often afford
plenty of material for the abusive attacks of the latter."
This review correctly points out some of the problems with the SMU and can
hardly be called an enthusiastic endorsement of it. Reasons for closeting the
SMU skeleton were appearing. At the time Reynolds did his work, the electron
was still just a hypothesis and the structure of the atom was unknown.
Reynolds' obituary (13) devotes only half a page out of six to his aether
theory. The author (H. L.) states a view probably reflecting those of
Reynolds' contemporaries,
"... In spite of the interest of the experiments," (on volumetric
dilatancy, B.R.) "Reynolds was careful to state that the theory
was anterior to them. He had long speculated on the possibility
of a mechanical theory of matter and ether which should, amongst
other things, resolve the riddle of gravitation. He had convinced
himself that a medium composed of smooth rigid grains (e.g.
spheres) in contact was promising, and it was by reflection on the
properties of such a medium that he was led to forsee the somewhat
paradoxical behaviour of sand and other granular aggregations
which was so beautifully confirmed by his experiments."
"The results of the remarkable physical speculation referred to
are recorded in the long memoir on the "Sub-Mechanics of the
Universe" which marked the close of his scientific career. This
was read before the Royal Society on February 3, 1902, and now
constitutes the third and final volume of his collected papers.
Unfortunately, illness had already begun gravely to impair his
powers of expression, and the memoir as it stands is affected with
omissions and discontinuities which render it unusually difficult
to follow. No one who has studied the work of Reynolds can doubt
that it embodies ideas of great value, as well as of striking
originality; but it is to be feared that their significance will
hardly be appreciated until some future investigator, treading a
parallel path, recognizes them with the true sympathy of genius,
and puts them in their proper light."
His obituary mentions his illness and the decline of his powers of expression.
Subsequent information indicates that Reynolds became mentally ill, perhaps
it was senile dementia or Alzheimer's disease. This illness may explain the
obvious neglect of his greatest work by his contemporaries. Who would take
seriously the product of a sick mind? This is especially so, in view of the
fact that the work contained many errors and required such an inversion of
preconceived ideas, such a shift of paradigm.
Also, Reynolds' SMU was competing for attention with the many major
discoveries which followed one upon the other shortly after turn of the
century. Now, 85 years later, it appears that Reynolds might have a more
sympathetic audience.
Let us now turn to Reynolds' SMU itself. I will first allow Reynolds' speak
for himself. In explaining gravitation with the SMU model, Reynolds writes
(1, p. 3):
"Efforts, proportional to the inverse square of the distance, to
cause two negative inequalities to approach are the result of
those components of the dilatation (taken at first approximation
only) which are caused by the variation of those components of the
inward strain which cause curvature in the normal piling of the
medium. The other components of the strain being parallel,
distortions which satisfy the condition of geometrical similarity
do not affect the effort. If the grains were indefinitely small,
there would be no effort. Thus the diameter of a grain is the
parameter of the effort; and multiplying this diameter by the
curvature of the medium (underlining by B.R.) and again by the
mean pressure of the medium the product measures the intensity of
the effort.
The dilation diminishes as the centers of the negative
inequalities approach, and work is done by the pressure in the
medium, outside the singular surfaces, to bring the negative
inequalities together.
The efforts to cause the negative inequalities to approach
correspond, exactly, to gravitation, if matter represents negative
mass."
Reynolds then shows the calculation which results in the model's correct
prediction of gravitational force at the surface of the earth, concluding:
"The inversion is thus complete. Matter is an absence of mass,
and the effort to bring the negative inequalities together is also
an effort on the mass to recede. And since the actions are those
of positive pressure there is no attraction involved; the efforts
being the result of the virtual diminution of the pressure
inwards."
Not being content to explain gravitation, Reynolds went on to electricity
(1, p. 4):
"Besides the positive and negative inequalities, there is another
inequality which may be easily conceived, and - this is of
fundamental importance - whatever may be the cause, it is possible
to conceive that a number of grains may be removed from some
position in the otherwise uniform medium, to another position.
Thus instituting a complex inequality, as between two
inequalities, one positive and the other negative; the number of
grains in excess in the one being exactly the same as the number
deficient in the other.
The complex inequalities differ fundamentally from the gravitating
inequalities inasmuch as the former involve an absolute
displacement of mass while the latter have no effect on the mean
position of the mass in the medium; and in respect of involving
absolute displacement of mass the complex inequalities correspond
with electricity."
Reynolds' then goes on to some speculations about electricity, which we now
know to be incorrect. We know that an electron has mass and cannot be only
a massless complex inequality; but a complex inequality which has a net
deficiency of aether grains. He then computes the relative intensities of
electric to gravitational forces for a complex inequality and arrives at a
figure of gravity being eighty-one thousand billion times less than the
electric force. If his billion is 10 exp (12), then this figure is, in
scientific notation, 8.1 x 10 exp (16). This figure differs from what is
computed today; but the fact that he was able to compute it from his model
at the turn of the century is testimony of its power.
The problem with an aether based on the solid-elastic continuum model is that
such a medium had to be stiff enough to transmit the extremely high frequency
vibrations of light on the one hand, yet diaphanous enough to permit the
unhindered movement of the heavenly bodies. According to Reynolds' his SMU
model satisfies these paradoxical requirements (1, p. 250):
"The difficulties in conceiving the free motion of the ether
through matter do not present themselves in the analysis of the
properties of the granular medium as now accomplished. This
follows from the analysis which has been effected in this and the
previous section."
"... Whence it follows that the singular surfaces which correspond
to matter are free to move in any direction through the medium
without resistance, and vice versa the medium is free to move in
any direction through the singular surfaces without resistance.
And that the waves corresponding to those of light are instituted
and absorbed by the singular surfaces only. So that after
institution at the place where the singular surfaces are, the
motion of the waves depends solely on the mean motion of the
medium, and the rate of propagation is equal in all directions
until they again come to singular surfaces. Thus all paradox is
removed and the explanation of aberration is established on the
basis of the absence of any appreciable resistance to the medium
in passing through matter."
Thus besides the explanations by definite analysis of:
the potential energy,
the propagation of transverse waves of light,
the apparent absence of any rate of degradation of light,
the lack of evidence of normal waves,
the gravitation of matter,
electricity,
which explanations render the purely mechanical substructure of
the universe indefinitely probable, we have by further analyses
obtained ..."
With this, followed by a list of fourteen further proofs, Reynolds' finishes
his dramatic contribution to science, a momentous life's work.
Reynolds read the SMU before the Royal Society on February 3, 1902. This was
three years before publication of Albert Einstein's special theory of
relativity and nine years before his general theory of relativity. As quoted
above, Reynolds equated the gravitational field with an inwardly acting strain
gradient surrounding material bodies and derived this from the curvature of
the medium".
This sounds very much like curvature of the space-time continuum; Einstein's
geometricizing of space expressed via general tensor notation. Unfortunately
Reynolds' used clumsy multiple integrals, not the streamlined tensor notation.
Einstein devoted the latter part of his career to the formulation of a theory
which could subsume all physical phenomena under a single rubric. He failed.
It hardly seems possible that Einstein was unaware of Reynolds' theory; but
would he have failed if he had been aware of it?
In his popular lecture, "On an Inversion of Ideas as to the Structure of the
Universe", Reynolds makes his ideas more accessible (11, pp. 21-22):
"It may help in the formation of a conception if we recall Lord
Kelvin's theory of vortex atoms which promised so much, and
afforded the first conception of matter passing through a space
completely occupied by matter without resistance. In that theory
the vortex ring, in which the displacement is from the inside, was
the instrument, so to speak, that was to secure the free motion of
matter through the medium. This theory has been found
intractable, and is now shown to be impossible. But in its place
we have the external propagation, which presents none of the
difficulties of its predecessor.
Nor can we pass this stage without calling attention to the
startling conclusion to which this external propagation leads.
8. Singular surfaces are wave surfaces.
It is shown that the matter of the molecules passes freely through
the medium or vice versa. What does this imply?
That the singular surface has all the characteristics of a wave
boundary.
If the medium is stationary and the molecules are moving with the
earth, the grains within the surfaces do not partake of the mean
motion of these surfaces, being continuously replaced by other
grains by the action of propagation, by which the singular
surfaces in their motion are continually absorbing the grains in
front and leaving those behind without any mean effect on the
motion of the grains. And thus there is perfect freedom of motion
of the molecules or aggregate matter, although the grains which
constitute the nuclei are changing at the rates expressed by 20
miles a second.
To be standing on a floor that is running away at a rate of 20
miles a second without being conscious of any motion, is our
continual experience; but to realize that such is the case is,
certainly, a tax on the imagination.
Such a motion has all the character of a wave in the medium; and
that is what the singular surfaces, which we call matter, are -
waves. We are all waves.
9. The molecules are individuals.
The singular surfaces which we call molecules are individuals,
which although they may cohere, cannot pass through each other;
and thus although the only mass, that of the medium, is changing
every instant, at the extreme rates already mentioned, these
singular surfaces or molecules preserve their individuality, the
realization of which is a further tax on the imagination."
Reynolds' also talks about the existence of positive inequalities or places
where there are excesses of aether grains (11, p. 39):
"The efforts of the positive inequalities are the reverse of the
negative inequalities, tending to separate the positive centres,
and cause the positive inequality to scatter through the medium,
thus dissipating any effects throughout the medium. Then, since
the space occupied by inequalities is almost indefinitely small
compared to the space in normal piling, it appears, even if there
are as many positive inequalities as there are negative
inequalities, the positive will present no evidence, being
scattered, while the negative inequalities, being brought together
by gravitation are in evidence."
One might imagine dislocations with a net excess of aether grains to be
antiparticles. Here Reynolds points to a possible explanation for the
apparent absence of antimatter in our universe.
This concludes this portion of the paper on the background of Reynolds' SMU
theory. I believe that the material thus far presented accounts for the
theory's neglect. The remainder of this paper relates the theory to currently
accepted physical theory and gives reasons for my position that Reynolds' SMU
model should be rehabilitated.
Present day science pictures tiny, 'hard' particles zooming around in a lot
of nothing (space) somehow mysteriously interacting via photons and nuclear,
electric, magnetic, and assorted other forces.
Reynolds' inversion, on the other hand, envisions dynamic systems of negative
dislocations (holes) zooming around in a lot of structured something (a
quasigaseous, quasicrystalline, dilatant medium) interacting with transverse
vibrations (photons) and different types of stresses in the medium
(gravitational, nuclear, electric, magnetic, etc. forces). This theory is
compatible with both relativity and quantum theories. It is an aether which
was not demolished by the Michelson-Morley (M-M) experimental results.
In writing this paper I hesitated to use the term "aether". To use it is to
invite derision or polite sympathy from most physicists, who will say that the
M-M experiment disproved and that relativity theory did away with the need for
an aether.
It is true that M-M results disproved SOME aether theories; but the type of
aether proposed by Reynolds, far from being disproven, actually PERMITS
visualization of the mechanism whereby the speed of light remains a constant.
As Einstein has shown, the observed speed of light is always a constant
because the length of an object contracts in the direction of motion and its
local time rate slows in perfect balance. Reynolds' theory enables me to show
that the mechanism whereby this occurs is inherent in the very structure and
dynamics of Reynolds' medium.
This medium is granular, composed of uniform, spherical grains much smaller
than subatomic particles and filling the entire universe. In fact, it is the
universe. In matter-free space the grains are hexagonally arrayed and almost
close-packed. Because they cannot normally exchange neighbors, they form a
quasicrystalline matrix.
The grains are in relative, vibratory, gas-like motion; but with a mean free
path many orders of magnitude smaller than the diameter of the grains (unlike
a gas). This jostling of the grains against one another produces a very high
pressure in the medium. Because of the gearing of the grains and the
pressure, the medium supports transverse disturbances (EM waves) whose local
propagation rate depends on the local pressure and strains in the medium.
Reynolds says matter is strained regions of misalignment of the grains or
"singular surfaces", "negative inequalities", or simply, "holes".
Matter, then, moves by means of displacement; much as a bubble moves upward by
an equal amount of liquid being displaced downward. For holes to move through
the medium, aether grains must move in the opposite direction.
With this as a background, I will now use Reynolds' SMU model to attempt an
explanation of the theoretical results of special relativity. Here is a
demonstration of my intuitive, analogical reasoning.
Picture a void, hole, or "singular surface" having two plane, parallel faces.
For this hole to move in a direction perpendicular to the faces, aether grains
must leave the forward face and travel to the rear face of the hole. Since
the distance the grains must travel is larger than the normal grain spacing
and since they travel at a limited velocity, the grains spend a certain amount
of time in transit across the singular surface. Their mean free path
increases substantially from that of the medium in normal packing. While in
transit, the grains do not vibrate against other grains and their energy is
momentarily unavailable to the rest of the medium.
As the hole moves faster, the number of grains in transit across it increases.
This causes a local decrease in aether pressure. Also, as more grains leave
the front face, it experiences a loss of pressure and produces an aether
strain tending to cause the front face to approach the rear face.
This results in a contraction of the hole (matter) in the direction of motion.
Here is a mechanical explanation for the Lorentz-Fitzgerald contraction.
The vibration rate of the grains determines the pressure in the medium and
this determines the rate at which light waves are propagated. Thus, as the
speed of matter moving through the medium approaches the speed of light, the
local aether pressure decreases.
This decrease in pressure means a decrease in the local passage of time, it
causes clocks to slow. Here is a mechanical explanation for time expansion.
As the speed of the hole approaches the mean velocity of the grains (which, in
part, determines the speed of light) the local aether pressure approaches a
value close to zero. Reynolds identifies gravitational and inertial effects
with the inward, radially directed aether strain on a volume containing holes
(matter) and the dilatation this strain produces.
As the local aether pressure drops to a low value, the aether strain rises to
a high value. This aether strain increase is synonymous with a mass increase.
Here is a mechanical explanation for the increase of mass with velocity.
The above explanations are, admittedly, intuitive, nonmathematical, and
analogical. But there must surely be some merit in a model which allows
visualizing the way in which motion causes distortion of the space-time
continuum. This is the beauty of Reynolds' SMU theory. It makes possible the
visualization of phenomena, which formerly were grasped mainly by mathematical
relationships.
"Don't try to picture it; the equation is the whole reality", is a point of
view which promulgates mystery in physics. Reynolds' theory can demystify
physics and bring to bear, once again, that powerful human faculty of
visualization to the subject.
In this simple, elegant model, the pressure of the aether, the interlocking
structure of the aether grains, and dilatation attending strains in the medium
are first order effects.
All of the known physical phenomena are higher order effects deriving from
these first order effects. The grains are the only invariant, three
dimensional "objects" in the universe not subject to relativistic effects.
Reynolds' aether theory also works with quantum theory and the theory of
elementary particles as I hope to show in the following paragraphs.
As quoted above, Reynolds explains charge by means of a complex inequality, an
aether grain deficiency-excess pair. His explanation can be adapted to modern
physics as follows.
To be an electron, a paired dislocation would have to have a net excess of
deficiencies for normal mass. An antiparticle (positron) would have negative
mass represented by an excess of aether grains. The annihilation of the
opposing two dislocations would involve a disruptive shift of excesses and
deficiencies to produce normal piling and an accompanying transverse
disturbance in the medium (a photon).
Conversely, a high energy transverse wave traveling close to a heavy nucleus
(region of high strain) can cause a disruption in normal piling and create an
electron-positron pair. Here is an explanation for the creation and
annihilation of matter.
Normal matter with a deficiency of aether grains is gravitative matter.
Reynolds says that there is no evidence of matter with a net excess of aether
grains because these particles tend to repel each other and to disperse
instead of coalescing. Presumably matter with a net excess of aether grains
is antimatter. Here is an explanation for the absence of antimatter in our
universe.
The wave-particle duality of EM radiation, is less of a paradox with Reynolds'
SMU theory because a photon is a transverse wave in a particulate medium. The
medium is discontinuous. It could be called a "discontinuum" or a
"quantinuum".
Reynolds' SMU is a structured medium which provides an explanation for the
existence of long-range order in the universe. Metaphysically, it provides a
matrix within which all interactions take place. Interconnectedness is a
natural consequence of the SMU. Somehow Reynolds' universe seems a cozier
place than a universe with an unstructured emptiness.
The existence of time asymmetry; of time's arrow can be explained by the
existence of the normal wave traveling at 2.4 times the speed of light. It
is a precursor phenomenon which defines the direction of interactions.
In the above paragraphs I have given intuitive explanations based on Reynolds'
SMU theory. His quasigaseous, quasicrystalline, dilatant medium can also
provide mechanical, kinetic, structural, and thermodynamic explanations for:
1. the different ranges of the physical forces,
2. nonradiating orbits of electrons around the nucleus,
3. the strong and weak nuclear forces,
4. the numerical relationships between physical constants, etc.
In his Magnum Opus, Reynolds starts from fundamental axioms and produces many
detailed analytical, mathematical derivations. I have not included any of his
analytical derivations here. However, I do feel that the intuitive,
descriptive material above should be augmented with some of the quantitative
results of the theory.
On the basis of empirical data circa 1900, Reynolds computed values for the
parameters of his model of the aether. These values may lead to conclusions
which disagree with our current knowledge of the universe. It must be
stressed that such disagreement might be eliminated by choice of a different
set of parameter values without invalidating the SMU model, itself. Reynolds'
computed values (in C.G.S. units) are (1, p. 237):
Grain Diameter = 5.534 X 10 exp(-18)
Mean Relative Velocities of the Grains = 6.777 X 10
Mean Path of the Grains = 8.612 X 10 exp(-28)
Mean Density of the Medium = 10 exp(4)
Mean Pressure of the Medium = 1.172 X 10 exp(14)
Coefficient of Transverse Elasticity = 9.03 X 10 exp(24)
Rate of the Transverse (EM Shear) Wave = 3.004 X 10 exp(10)
Rate of the Normal (Compression) Wave = 7.161 X 10 exp(10)
Time to Cut Transverse Wave Energy from 1 to 1/e2 = 1.785 X 10 exp(15)
Time to Reduce Normal Wave Energy from 1 to 1/e2 = 3.923 X 10 exp(-6).
One might wonder how the mean grain velocity of 68 centimeters per second
translates to the velocity of light. This works because the transmission of
momentum across the diameter of the grain itself is assumed to be
instantaneous. Thus the only distance a disturbance need travel from grain to
grain is the mean path of 8.6 X 10 exp (-28) centimeters. Bumping across
about 10 exp(18) of these distances in a centimeter translates to a transverse
velocity of 3 X 10 exp(10) centimeters per second.
Reynolds' grain diameter is about 5 orders of magnitude smaller than current
values of a nucleus (about 10 exp(-13) centimeters). Thus, one might say that
here is a subquantic medium, dislocations in which could correspond to the
elementary particles.
On the basis of the above list of parameter values, I calculated some figures
which agree reasonably well with known physical measures. The diameter for
the smallest sphere of grains which could detach itself from the rest of the
grains in the medium and rotate independently, which I call the 'mean free
sphere', I calculated to be 3.5 X 10 exp(-8) centimeters. This is close to
the measured value for atomic diameters.
The mass of a minimal shell around the mean free sphere came to 4.3 X 10 exp(-
28) grams; again, not too far from the measured electron mass of 9.1 X 10
exp(-28) grams. These rough numerical agreements are not offered as proof of
the theory. However, they are suggestive enough that others might be
motivated to examine Reynolds' aether more closely.
High energy experimental physics has resulted in the production of an ever
increasing catalog of more than 100 "elementary" particles. This diversity
cries for a unifying foundation, for Reynolds' SMU theory. Some theoretical
physicists are moving in this direction. Bohm starts his inaugural lecture
delivered at Birkbeck College, February 1963 as follows (14, p. 279):
"In the past half century or so, there has been a series of far-
reaching changes in the basic concepts of physics, i.e., those
concerned with space, time, movement and the nature of matter.
These changes have not led to a stable set of concepts in recent
times. Rather, it seems that they have given rise to a new set of
problems, centering on the effort to combine relativity, quantum
theory, and the theory of elementary particles into a single self-
consistent whole. The failure of persistent efforts to resolve
these problems has gradually led to a growing conviction among
physicists, that what is probably needed is a set of changes that
may well be even more revolutionary than those which have already
occurred over the past fifty years."
Bohm goes on to discusses the analogy of his new approach to that of
dislocations in a crystalline medium (14, pp. 297-298):
"A dislocation is a break or discontinuity in the crystal
structure. ..."
"Each dislocation, besides being constituted of a
discontinuity, ... which is localized in a particular segment of
the general structure, also produces a distortion of the
surrounding lattice, which actually spreads through the whole
structure, falling off in intensity as the distance from the
discontinuity ... increases. If we compare the particle with the
dislocation, we can compare the field produced by the particle
with the general distortion of the structure of the whole crystal.
It should be noted that in this kind of theory, we do not regard
field and particle as separately existing entities, brought
together in interaction, as is done in current field theories of
physics. Rather, field and dislocation are simply two sides of a
total structure, so that one implies the other in a logically
necessary way. [Indeed using the standard methods of homology
theory in topology, one can show that the typical field equations,
such as those of Maxwell, can be visualized as relating the
distortion of a general background structure of space to the
distribution of dislocations inside the distorted region. In such
a treatment charge is interpreted as a kind of dislocation.]."
"This theory must, of course, be extended to include the three
dimensions of space as well as time. In addition, the notion of a
perfectly regular structure can be replaced along lines that we
have already discussed, by that of a more irregular structure that
is fairly homogeneous. In this case, one finds that the structure
can have a number of different kinds of dislocations. The number
seems large enough to accommodate the known types of "elementary
particles". ..."
"As in crystals, one finds that each pattern has a peculiar
relationship to its mirror image pattern, such that two can
combine to annihilate each other, producing no dislocation at all.
In this way, the particle-antiparticle combinations of modern
physics are explained, as well as the peculiar fact that the
antiparticle obeys equations that are obtained from those of the
corresponding particle by a reflection operation. ..."
"At present, work is proceeding on the problem of trying to relate
the known particles to dislocations in the space-time structure.
It is too early to state the results. However, the problem is to
try to see which dislocations correspond to which particles. ..."
Certainly the crystalline subquantic medium envisioned by Bohm above is
surprisingly similar to the quasicrystalline medium of Reynolds' SMU.
There are other modern scientists who have similar visions of a higher unity.
Dirac has demonstrated analytically that the existence of an aether is not
ruled out by quantum theory (15). de Broglie, and Vigier (16, p. 131) also
postulate the existence of a subquantic medium.
Both Bohm's and Reynolds' aether theories envision a structured matrix with a
graininess much finer than subatomic particles. In Bohm's medium, elementary
particles are analogous to dislocations in a crystalline matrix. He says that
there are enough different types of dislocations in such a cohomological
crystal to account for the number of known elementary particles.
The stress fields in the crystal are analogous to the various physical forces
exerted by the particle. The particle cannot exist without the stress fields,
nor the stress fields without the particle. Hiley (17), continuing the work
on cohomology theory, refers to Bohm's work (14) and echoes much of what I
quoted above. Hiley (17, p. 188) also references Frank (18, pp. 131-134) who
has shown in a theoretical analysis that a Burgers screw dislocation moving
through a crystal experiences relativistic effects, which can be determined by
substituting the transverse velocity of sound in the crystal for the speed of
light. The Zeitgeist is moving in the direction of Reynolds.
Given the obscurity into which Reynolds' SMU theory fell, it is not surprising
that Bohm and his modern-day friends of the aether seem not to have known
about Reynolds. At least I found no reference to Reynolds' work in any of
their papers. Would it not be tragic for them to be reinventing Reynolds' SMU
wheel?
The first half of the twentieth century was rich with theoretical advances in
physics. Since that time, technology has developed practical applications of
these new theories. It seems that the new lands charted by these theories are
well explored and cultivated. There remain few new vistas. The time has come
for a new perspective; for a revitalized vision of the physical world.
Reynolds' quasicrystalline subquantic medium, with its potential to unite
general relativity, quantum theory and elementary particle theory, is a
paradigm upon which a new physics for the third millennium might be built.
REFERENCES
1. Reynolds, 0., Papers on Mechanical and Physical Subjects, Vol. III, The
Sub-Mechanics of the Universe, Cambridge: at the University Press, 1903.
2. Reynolds, 0., Papers on Mechanical and Physical Subjects, Reprinted from
Various Transactions and Journals, Vol. I: 1869 - 1882, Cambridge: at
the University Press, 1900.
3. Reynolds, 0., Papers on Mechanical and Physical Subjects, Reprinted from
Various Transactions and Journals, Vol. II: 1881 - 1900, Cambridge:
at the University Press, 1901.
4. Blair, G. W. S., A Survey of General and Applied Rheology, Pitman
Publishing Corp, 1944.
5. Rosenberg, B. L., Amusement Device Employing Dilatant Suspension Filler,
U.S. Patent 3,601,923 granted 31 Aug. 1971, filed 7 Oct. 1968.
6. Rosenberg, B. L., Non Linear Energy Absorption System U.S. Patent No.
3,833,952, Granted 10 Sept 1974, filed 18 Jan 1973, assigned to the
U.S.A. as represented by the Secretary of the Navy.
7. Whittaker, E., A History of the Theories of Aether and Electricity,
Vol. I: The Classical Theories and Vol. II: The Modern Theories,
Humanities Press Inc. by arrangement with T. Nelson and Sons Ltd., 1973.
8. Schaffner, K. F., Nineteenth-Century Aether Theories, Pergamon Press,
1972.
9. Gardiner, J., "Mathematical Games: How the Absence of Anything Leads to
Thoughts of Nothing", Scientific American, Feb. 1978.
10. Rouse Ball, W. W., Mathematical Recreations and Essays, Ninth Ed.,
Macmillan and Co. Ltd., London, 1920.
11. Reynolds, 0., On an Inversion of Ideas as to the Structure of the
Universe (The Rede Lecture, June 10, 1902), Cambridge: at the University
Press, 1903.
12. Bryan, G. H., "A New Mechanical Theory of the Aether", a review of
Reynolds' theory which appeared in Nature, No. 1773, Vol. 68, 22 Oct.
1903, p 600.
13. Obituary Notices of Fellows Deceased, Proceedings of the Royal Society
of London, Series A, Vol. LXXXVIII, July 1913, pp xv - xix.
14. Bohm, D. J., "Problems in the Basic Concepts of Physics", Satyendranath
Bose 70th Birthday Commemoration Volume, Part II, Kalipada Mukherjee at
Eka Press, Calcutta, 1966.
15. Dirac, P. A. M., "Is there an Aether?" a Letter to the Editor, Nature,
Vol. 168, No. 4282, 24 Nov. 1951, p 906.
16. de Broglie, L. and Vigier, J. P., Introduction to the Vigier Theory of
Elementary Particles, Elsevier Publishing Co., 1963.
17. Hiley, B. J., "A Note on Discreteness, Phase Space and Cohomology
Theory", in Quantum Theory and Beyond: Essays and Discussions Arising
from a Colloquium, Ted Bastian, Ed., Cambridge: at the University Press,
1971.
18. Frank, F. C., "On the Equations of Motion of Crystal Dislocations", in
The Proceedings of the Physical Society, Sec. A, from Jan. 1949 to Dec.
1949, Vol. 62.
------------------------------------------------------------------------------