2024-12-26 11:36:13 +02:00

1274 lines
46 KiB
C++

/*
Derived from lxdream, original copyright notice follows
*/
#include <license/gpl>
/**
* $Id$
*
* PVR2 Tile Accelerator implementation
*
* Copyright (c) 2005 Nathan Keynes.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include <cstdio>
#include <alloca.h>
#include "tacore.h"
#include "refsw/pvr_regs.h"
#include "refsw/pvr_mem.h"
#define PVR2_RAM_SIZE VRAM_SIZE
#define PVR2_RAM_MASK VRAM_MASK
u8* pvr2_main_ram_hidden;
#define PVRRAM(addr) (*(uint32_t *)(pvr2_main_ram_hidden + (pvr_map32(addr))))
/*
#include "lxdream.h"
#include "pvr2/pvr2.h"
#include "pvr2/pvr2mmio.h"
#include "asic.h"
#include "dream.h"
*/
#define CLAMP(v, low, high) (v < low? low : (v > high? high: v))
#define MIN(a, b) (a < b ? a : b)
#define MAX(a, b) (a > b ? a : b)
#define TRUE true
#define FALSE false
#define SEGMENT_END 0x80000000
#define SEGMENT_ZCLEAR 0x40000000
#define SEGMENT_SORT_TRANS 0x20000000
#define SEGMENT_START 0x10000000
#define SEGMENT_X(c) (((c) >> 2) & 0x3F)
#define SEGMENT_Y(c) (((c) >> 8) & 0x3F)
#define NO_POINTER 0x80000000
#define IS_TILE_PTR(p) ( ((p)&NO_POINTER) == 0 )
#define IS_LAST_SEGMENT(s) (((s)->control) & SEGMENT_END)
struct tile_segment {
uint32_t control;
pvraddr_t opaque_ptr;
pvraddr_t opaquemod_ptr;
pvraddr_t trans_ptr;
pvraddr_t transmod_ptr;
pvraddr_t punchout_ptr;
};
struct tile_bounds {
int32_t x1, y1, x2, y2;
};
#define STATE_IDLE 0
#define STATE_IN_LIST 1
#define STATE_IN_POLYGON 2
#define STATE_EXPECT_POLY_BLOCK2 3
#define STATE_EXPECT_VERTEX_BLOCK2 4
#define STATE_ERROR 5
#define STATE_EXPECT_END_VERTEX_BLOCK2 7
#define TA_CMD(i) ( (i) >> 29 )
#define TA_CMD_END_LIST 0
#define TA_CMD_CLIP 1
#define TA_CMD_POLYGON_CONTEXT 4
#define TA_CMD_SPRITE_CONTEXT 5
#define TA_CMD_VERTEX 7
#define TA_LIST_NONE -1
#define TA_LIST_OPAQUE 0
#define TA_LIST_OPAQUE_MOD 1
#define TA_LIST_TRANS 2
#define TA_LIST_TRANS_MOD 3
#define TA_LIST_PUNCH_OUT 4
#define TA_IS_MODIFIER_LIST(list) (list == TA_LIST_OPAQUE_MOD || list == TA_LIST_TRANS_MOD)
#define TA_GROW_UP 0
#define TA_GROW_DOWN 1
#define TA_VERTEX_NONE -1
#define TA_VERTEX_PACKED 0x00
#define TA_VERTEX_TEX_PACKED 0x08
#define TA_VERTEX_TEX_SPEC_PACKED 0x0C
#define TA_VERTEX_TEX_UV16_PACKED 0x09
#define TA_VERTEX_TEX_UV16_SPEC_PACKED 0x0D
#define TA_VERTEX_FLOAT 0x10
#define TA_VERTEX_TEX_FLOAT 0x18
#define TA_VERTEX_TEX_SPEC_FLOAT 0x1C
#define TA_VERTEX_TEX_UV16_FLOAT 0x19
#define TA_VERTEX_TEX_UV16_SPEC_FLOAT 0x1D
#define TA_VERTEX_INTENSITY 0x20
#define TA_VERTEX_TEX_INTENSITY 0x28
#define TA_VERTEX_TEX_SPEC_INTENSITY 0x2C
#define TA_VERTEX_TEX_UV16_INTENSITY 0x29
#define TA_VERTEX_TEX_UV16_SPEC_INTENSITY 0x2D
#define TA_VERTEX_PACKED_MOD 0x40
#define TA_VERTEX_TEX_PACKED_MOD 0x48
#define TA_VERTEX_TEX_SPEC_PACKED_MOD 0x4C
#define TA_VERTEX_TEX_UV16_PACKED_MOD 0x49
#define TA_VERTEX_TEX_UV16_SPEC_PACKED_MOD 0x4D
#define TA_VERTEX_INTENSITY_MOD 0x60
#define TA_VERTEX_TEX_INTENSITY_MOD 0x68
#define TA_VERTEX_TEX_SPEC_INTENSITY_MOD 0x6C
#define TA_VERTEX_TEX_UV16_INTENSITY_MOD 0x69
#define TA_VERTEX_TEX_UV16_SPEC_INTENSITY_MOD 0x6D
#define TA_VERTEX_SPRITE 0x80
#define TA_VERTEX_TEX_SPRITE 0x88
#define TA_VERTEX_MOD_VOLUME 0x81
#define TA_VERTEX_LISTLESS 0xFF
#define TA_IS_NORMAL_POLY() (ta_status.current_vertex_type < TA_VERTEX_SPRITE)
static int strip_lengths[4] = {3,4,6,8}; /* in vertexes */
#define TA_POLYCMD_LISTTYPE(i) ( ((i) >> 24) & 0x0F )
#define TA_POLYCMD_USELENGTH(i) ( i & 0x00800000 )
#define TA_POLYCMD_LENGTH(i) strip_lengths[((i >> 18) & 0x03)]
#define TA_POLYCMD_CLIP(i) ((i>>16)&0x03)
#define TA_POLYCMD_CLIP_NONE 0
#define TA_POLYCMD_CLIP_INSIDE 2
#define TA_POLYCMD_CLIP_OUTSIDE 3
#define TA_POLYCMD_COLOURFMT(i) (i & 0x00000030)
#define TA_POLYCMD_COLOURFMT_ARGB32 0x00000000
#define TA_POLYCMD_COLOURFMT_FLOAT 0x00000010
#define TA_POLYCMD_COLOURFMT_INTENSITY 0x00000020
#define TA_POLYCMD_COLOURFMT_LASTINT 0x00000030
#define TA_POLYCMD_MODIFIED 0x00000080
#define TA_POLYCMD_FULLMOD 0x00000040
#define TA_POLYCMD_TEXTURED 0x00000008
#define TA_POLYCMD_SPECULAR 0x00000004
#define TA_POLYCMD_SHADED 0x00000002
#define TA_POLYCMD_UV16 0x00000001
#define TA_POLYCMD_IS_SPECULAR(i) ((i & 0x0000000C)==0x0000000C) /* Only applies to textured polys */
#define TA_POLYCMD_IS_FULLMOD(i) ((i & 0x000000C0)==0x000000C0)
#define TA_IS_END_VERTEX(i) (i & 0x10000000)
/** Note these are not the IEEE 754 definitions - the TA treats NANs
* as if they were INFs of the appropriate sign.
*/
#define TA_IS_INF(f) (((*((uint32_t *)&f)) & 0xFF800000) == 0x7F800000)
#define TA_IS_NINF(f) (((*((uint32_t *)&f)) & 0xFF800000) == 0xFF800000)
#define MIN3( x1, x2, x3 ) ( (x1)<(x2)? ((x1)<(x3)?(x1):(x3)) : ((x2)<(x3)?(x2):(x3)) )
#define MAX3( x1, x2, x3 ) ( (x1)>(x2)? ((x1)>(x3)?(x1):(x3)) : ((x2)>(x3)?(x2):(x3)) )
#define TILESLOT( x, y ) (ta_status.current_tile_matrix + (ta_status.current_tile_size * (y * ta_status.width+ x) << 2))
struct pvr2_ta_vertex {
float x,y,z;
uint32_t detail[8]; /* 0-8 detail words */
};
struct pvr2_ta_status {
int32_t state;
int32_t width, height; /* Tile resolution, ie 20x15 */
int32_t tilelist_dir; /* Growth direction of the tilelist, 0 = up, 1 = down */
uint32_t tilelist_size; /* Size of the tilelist segments */
uint32_t tilelist_start; /* Initial address of the tilelist */
uint32_t polybuf_start; /* Initial bank address of the polygon buffer (ie &0x00F00000) */
int32_t current_vertex_type;
uint32_t accept_vertexes; /* 0 = NO, 1 = YES */
int32_t vertex_count; /* index of last start-vertex seen, or -1 if no vertexes
* are present
*/
uint32_t max_vertex; /* Maximum number of vertexes in the current polygon (3/4/6/8) */
uint32_t current_list_type;
uint32_t current_tile_matrix; /* Memory location of the first tile for the current list. */
uint32_t current_tile_size; /* Size of the tile matrix space in 32-bit words (0/8/16/32)*/
uint32_t intensity1, intensity2;
struct tile_bounds clip;
int32_t clip_mode;
/**
* Current working object
*/
int32_t poly_context_size;
int32_t poly_vertex_size;
int32_t poly_parity;
uint32_t poly_context[5];
uint32_t poly_pointer;
struct tile_bounds last_triangle_bounds;
struct pvr2_ta_vertex poly_vertex[8];
uint32_t debug_output;
};
static struct pvr2_ta_status ta_status;
static int tilematrix_sizes[4] = {0,8,16,32};
/**
* Convenience union - ta data is either 32-bit integer or 32-bit float.
*/
union ta_data {
unsigned int i;
float f;
};
void lxd_ta_reset() {
ta_status.state = STATE_ERROR; /* State not valid until initialized */
ta_status.debug_output = 0;
}
void lxd_ta_init(u8* vram) {
pvr2_main_ram_hidden = vram;
ta_status.state = STATE_IDLE;
ta_status.current_list_type = -1;
ta_status.current_vertex_type = -1;
ta_status.poly_parity = 0;
ta_status.vertex_count = 0;
ta_status.max_vertex = 3;
ta_status.current_vertex_type = TA_VERTEX_LISTLESS;
ta_status.poly_vertex_size = 0;
ta_status.poly_context[1] = 0;
ta_status.last_triangle_bounds.x1 = -1;
ta_status.accept_vertexes = TRUE;
ta_status.clip.x1 = 0;
ta_status.clip.y1 = 0;
ta_status.clip_mode = TA_POLYCMD_CLIP_NONE;
uint32_t size = TA_GLOB_TILE_CLIP.full;// MMIO_READ( PVR2, TA_TILESIZE );
ta_status.width = (size & 0xFFFF) + 1;
ta_status.height = (size >> 16) + 1;
ta_status.clip.x2 = ta_status.width-1;
ta_status.clip.y2 = ta_status.height-1;
uint32_t control = TA_ALLOC_CTRL; //MMIO_READ( PVR2, TA_TILECFG );
ta_status.tilelist_dir = (control >> 20) & 0x01;
ta_status.tilelist_size = tilematrix_sizes[ (control & 0x03) ];
TA_ISP_CURRENT = TA_ISP_BASE;
//MMIO_WRITE( PVR2, TA_POLYPOS, MMIO_READ( PVR2, TA_POLYBASE ) );
uint32_t plistpos = TA_NEXT_OPB_INIT >> 2; //MMIO_READ( PVR2, TA_LISTBASE )
if( ta_status.tilelist_dir == TA_GROW_DOWN ) {
plistpos -= ta_status.tilelist_size;
}
TA_NEXT_OPB = plistpos;
//MMIO_WRITE( PVR2, TA_LISTPOS, plistpos );
ta_status.tilelist_start = plistpos;
ta_status.polybuf_start = TA_ISP_BASE & 0x00F00000; // MMIO_READ( PVR2, TA_POLYBASE )
}
static uint32_t parse_float_colour( float a, float r, float g, float b ) {
int ai,ri,gi,bi;
if( TA_IS_INF(a) ) {
ai = 255;
} else {
ai = 256 * CLAMP(a,0.0,1.0) - 1;
if( ai < 0 ) ai = 0;
}
if( TA_IS_INF(r) ) {
ri = 255;
} else {
ri = 256 * CLAMP(r,0.0,1.0) - 1;
if( ri < 0 ) ri = 0;
}
if( TA_IS_INF(g) ) {
gi = 255;
} else {
gi = 256 * CLAMP(g,0.0,1.0) - 1;
if( gi < 0 ) gi = 0;
}
if( TA_IS_INF(b) ) {
bi = 255;
} else {
bi = 256 * CLAMP(b,0.0,1.0) - 1;
if( bi < 0 ) bi = 0;
}
return (ai << 24) | (ri << 16) | (gi << 8) | bi;
}
static uint32_t parse_intensity_colour( uint32_t base, float intensity )
{
unsigned int i = (unsigned int)(256 * CLAMP(intensity, 0.0,1.0));
return
(((((base & 0xFF) * i) & 0xFF00) |
(((base & 0xFF00) * i) & 0xFF0000) |
(((base & 0xFF0000) * i) & 0xFF000000)) >> 8) |
(base & 0xFF000000);
}
/**
* Initialize the specified TA list.
*/
static void ta_init_list( unsigned int listtype ) {
int config = TA_ALLOC_CTRL;//MMIO_READ( PVR2, TA_TILECFG );
int tile_matrix = TA_OL_BASE; //MMIO_READ( PVR2, TA_TILEBASE );
int list_end = TA_OL_LIMIT;//MMIO_READ( PVR2, TA_LISTEND );
ta_status.current_tile_matrix = tile_matrix;
/* If the list grows down, the end must be < tile matrix start.
* If it grows up, the end must be > tile matrix start.
* Don't ask me why, it just does...
*/
if( ((ta_status.tilelist_dir == TA_GROW_DOWN && list_end <= tile_matrix) ||
(ta_status.tilelist_dir == TA_GROW_UP && list_end >= tile_matrix )) &&
listtype <= TA_LIST_PUNCH_OUT ) {
int i;
for( i=0; i < listtype; i++ ) {
int size = tilematrix_sizes[(config & 0x03)] << 2;
ta_status.current_tile_matrix += ta_status.width * ta_status.height * size;
config >>= 4;
}
ta_status.current_tile_size = tilematrix_sizes[(config & 0x03)];
/* Initialize each tile to 0xF0000000 */
if( ta_status.current_tile_size != 0 ) {
pvraddr_t p = (ta_status.current_tile_matrix);
for( i=0; i< ta_status.width * ta_status.height; i++ ) {
PVRRAM(p) = 0xF0000000;
p += ta_status.current_tile_size * 4;
}
}
} else {
ta_status.current_tile_size = 0;
}
if( tile_matrix == list_end ) {
ta_status.current_tile_size = 0;
}
ta_status.state = STATE_IN_LIST;
ta_status.current_list_type = listtype;
ta_status.last_triangle_bounds.x1 = -1;
}
#include <dc/asic.h>
#include "emu/emu.h"
static int list_events[5] = {ASIC_EVT_PVR_OPAQUEDONE, ASIC_EVT_PVR_OPAQUEMODDONE,
ASIC_EVT_PVR_TRANSDONE, ASIC_EVT_PVR_TRANSMODDONE,
ASIC_EVT_PVR_PTDONE };
/*
static int list_events[5] = {EVENT_PVR_OPAQUE_DONE, EVENT_PVR_OPAQUEMOD_DONE,
EVENT_PVR_TRANS_DONE, EVENT_PVR_TRANSMOD_DONE,
EVENT_PVR_PUNCHOUT_DONE };
*/
// static HollyInterruptID list_events[5] = {holly_OPAQUE, holly_OPAQUEMOD,
// holly_TRANS, holly_TRANSMOD,
// holly_PUNCHTHRU };
static void ta_end_list() {
if( ta_status.current_list_type != TA_LIST_NONE ) {
//asic_event( list_events[ta_status.current_list_type] );
// asic_RaiseInterrupt(list_events[ta_status.current_list_type]);
// printf("asic_RaiseInterrupt(list_events[%d])\n", ta_status.current_list_type);
pvr_queue_interrupt(list_events[ta_status.current_list_type]);
}
ta_status.current_list_type = TA_LIST_NONE;
ta_status.current_vertex_type = TA_VERTEX_LISTLESS;
ta_status.poly_vertex_size = 0;
ta_status.poly_context[1] = 0;
ta_status.state = STATE_IDLE;
}
static void ta_bad_input_error() {
// asic_RaiseInterrupt(holly_ILLEGAL_PARAM);
pvr_queue_interrupt(ASIC_EVT_PVR_TA_INPUT_ERR);
printf("TA error: holly_ILLEGAL_PARAM. Interrupt raised\n");
//asic_event( EVENT_PVR_BAD_INPUT );
}
/**
* Write data out to the polygon buffer.
* If the end-of-buffer is reached, asserts EVENT_PVR_PRIM_ALLOC_FAIL
* @param data to be written
* @param length Number of 32-bit words to write.
* @return number of words actually written
*/
static int ta_write_polygon_buffer( uint32_t *data, int length )
{
int rv;
int posn = TA_ISP_CURRENT;// MMIO_READ( PVR2, TA_POLYPOS );
int end = TA_ISP_LIMIT;// MMIO_READ( PVR2, TA_POLYEND );
for( rv=0; rv < length; rv++ ) {
if( posn == end ) {
// asic_RaiseInterrupt(holly_PRIM_NOMEM);
pvr_queue_interrupt(ASIC_EVT_PVR_PARAM_OUTOFMEM);
printf("TA error: holly_PRIM_NOMEM. Interrupt Raised\n");
//asic_event( EVENT_PVR_PRIM_ALLOC_FAIL );
//// ta_status.state = STATE_ERROR;
break;
}
if( posn < PVR2_RAM_SIZE ) {
PVRRAM(posn) = *data++;
}
posn += 4;
}
TA_ISP_CURRENT = posn;
//MMIO_WRITE( PVR2, TA_POLYPOS, posn );
return rv;
}
#define TA_NO_ALLOC 0xFFFFFFFF
/**
* Allocate a new tile list block from the grow space and update the
* word at reference to be a link to the new block.
*/
static uint32_t ta_alloc_tilelist( uint32_t reference ) {
uint32_t posn = TA_NEXT_OPB;//MMIO_READ( PVR2, TA_LISTPOS );
uint32_t limit = TA_OL_LIMIT >> 2;//MMIO_READ( PVR2, TA_LISTEND ) >> 2;
uint32_t newposn;
if( ta_status.tilelist_dir == TA_GROW_DOWN ) {
newposn = posn - ta_status.tilelist_size;
if( posn == limit ) {
PVRRAM(posn<<2) = 0xF0000000;
PVRRAM(reference) = 0xE0000000 | (posn<<2);
return TA_NO_ALLOC;
} else if( posn < limit ) {
PVRRAM(reference) = 0xE0000000 | (posn<<2);
return TA_NO_ALLOC;
} else if( newposn <= limit ) {
} else if( newposn <= (limit + ta_status.tilelist_size) ) {
// asic_RaiseInterrupt(holly_MATR_NOMEM);
pvr_queue_interrupt(ASIC_EVT_PVR_OPB_OUTOFMEM);
printf("TA error: holly_MATR_NOMEM. Interrupt raised\n");
//asic_event( EVENT_PVR_MATRIX_ALLOC_FAIL );
TA_NEXT_OPB = newposn;
//MMIO_WRITE( PVR2, TA_LISTPOS, newposn );
} else {
TA_NEXT_OPB = newposn;
//MMIO_WRITE( PVR2, TA_LISTPOS, newposn );
}
PVRRAM(reference) = 0xE0000000 | (posn<<2);
return posn << 2;
} else {
newposn = posn + ta_status.tilelist_size;
if( posn == limit ) {
PVRRAM(posn<<2) = 0xF0000000;
PVRRAM(reference) = 0xE0000000 | (posn<<2);
return TA_NO_ALLOC;
} else if ( posn > limit ) {
PVRRAM(reference) = 0xE0000000 | (posn<<2);
return TA_NO_ALLOC;
} else if( newposn >= limit ) {
} else if( newposn >= (limit - ta_status.tilelist_size) ) {
// asic_RaiseInterrupt(holly_MATR_NOMEM);
pvr_queue_interrupt(ASIC_EVT_PVR_OPB_OUTOFMEM);
printf("TA error: holly_MATR_NOMEM. Interrupt raised\n");
//asic_event( EVENT_PVR_MATRIX_ALLOC_FAIL );
TA_NEXT_OPB = newposn;
//MMIO_WRITE( PVR2, TA_LISTPOS, newposn );
} else {
TA_NEXT_OPB = newposn;
//MMIO_WRITE( PVR2, TA_LISTPOS, newposn );
}
PVRRAM(reference) = 0xE0000000 | (posn<<2);
return posn << 2;
}
}
/**
* Write a tile entry out to the matrix.
*/
static void ta_write_tile_entry( int x, int y, uint32_t tile_entry ) {
uint32_t tile = TILESLOT(x,y);
uint32_t tilestart = tile;
uint32_t value;
uint32_t lasttri = 0;
int i;
if( ta_status.clip_mode == TA_POLYCMD_CLIP_OUTSIDE &&
x >= ta_status.clip.x1 && x <= ta_status.clip.x2 &&
y >= ta_status.clip.y1 && y <= ta_status.clip.y2 ) {
/* Tile clipped out */
return;
}
if( (tile_entry & 0x80000000) &&
ta_status.last_triangle_bounds.x1 != -1 &&
ta_status.last_triangle_bounds.x1 <= x &&
ta_status.last_triangle_bounds.x2 >= x &&
ta_status.last_triangle_bounds.y1 <= y &&
ta_status.last_triangle_bounds.y2 >= y ) {
/* potential for triangle stacking */
lasttri = tile_entry & 0xE1E00000;
}
if( PVRRAM(tile) == 0xF0000000 ) {
PVRRAM(tile) = tile_entry;
PVRRAM(tile+4) = 0xF0000000;
return;
}
while(1) {
value = PVRRAM(tile);
for( i=1; i<ta_status.current_tile_size; i++ ) {
tile += 4;
uint32_t nextval = PVRRAM(tile);
if( nextval == 0xF0000000 ) {
if( lasttri != 0 && lasttri == (value&0xE1E00000) ) {
int count = (value & 0x1E000000) + 0x02000000;
if( count < 0x20000000 ) {
PVRRAM(tile-4) = (value & 0xE1FFFFFF) | count;
return;
}
}
if( i < ta_status.current_tile_size-1 ) {
PVRRAM(tile) = tile_entry;
PVRRAM(tile+4) = 0xF0000000;
return;
}
}
value = nextval;
}
if( value == 0xF0000000 ) {
tile = ta_alloc_tilelist(tile);
if( tile != TA_NO_ALLOC ) {
PVRRAM(tile) = tile_entry;
PVRRAM(tile+4) = 0xF0000000;
}
return;
} else if( (value & 0xFF000000) == 0xE0000000 ) {
value &= 0x00FFFFFF;
if( value == tilestart )
return; /* Loop */
tilestart = tile = value;
} else {
/* This should never happen */
return;
}
}
}
/**
* Write a completed polygon out to the memory buffers
* OPTIMIZEME: This is not terribly efficient at the moment.
*/
static void ta_commit_polygon( ) {
int i, x, y;
int* tx = (int*)alloca(ta_status.vertex_count * sizeof(int));
int* ty = (int*)alloca(ta_status.vertex_count * sizeof(int));
struct tile_bounds* triangle_bound = (struct tile_bounds*)alloca((ta_status.vertex_count - 2) * sizeof(tile_bounds));
struct tile_bounds polygon_bound;
uint32_t poly_context[5];
memcpy( poly_context, ta_status.poly_context, ta_status.poly_context_size * 4 );
/* Compute the tile coordinates for each vertex (need to be careful with
* clamping here)
*/
for( i=0; i<ta_status.vertex_count; i++ ) {
if( ta_status.poly_vertex[i].x < 0.0 || TA_IS_NINF(ta_status.poly_vertex[i].x) ) {
tx[i] = -1;
} else if( ta_status.poly_vertex[i].x > (float)INT_MAX || TA_IS_INF(ta_status.poly_vertex[i].x) ) {
tx[i] = INT_MAX/32;
} else {
tx[i] = (int)(ta_status.poly_vertex[i].x / 32.0);
}
if( ta_status.poly_vertex[i].y < 0.0 || TA_IS_NINF(ta_status.poly_vertex[i].y)) {
ty[i] = -1;
} else if( ta_status.poly_vertex[i].y > (float)INT_MAX || TA_IS_INF(ta_status.poly_vertex[i].y) ) {
ty[i] = INT_MAX/32;
} else {
ty[i] = (int)(ta_status.poly_vertex[i].y / 32.0);
}
}
/* Compute bounding box for each triangle individually, as well
* as the overall polygon.
*/
triangle_bound[0].x1 = MIN3(tx[0],tx[1],tx[2]);
triangle_bound[0].x2 = MAX3(tx[0],tx[1],tx[2]);
triangle_bound[0].y1 = MIN3(ty[0],ty[1],ty[2]);
triangle_bound[0].y2 = MAX3(ty[0],ty[1],ty[2]);
polygon_bound.x1 = triangle_bound[0].x1;
polygon_bound.y1 = triangle_bound[0].y1;
polygon_bound.x2 = triangle_bound[0].x2;
polygon_bound.y2 = triangle_bound[0].y2;
for( i=1; i<ta_status.vertex_count-2; i++ ) {
triangle_bound[i].x1 = MIN3(tx[i],tx[i+1],tx[i+2]);
triangle_bound[i].x2 = MAX3(tx[i],tx[i+1],tx[i+2]);
triangle_bound[i].y1 = MIN3(ty[i],ty[i+1],ty[i+2]);
triangle_bound[i].y2 = MAX3(ty[i],ty[i+1],ty[i+2]);
polygon_bound.x1 = MIN(polygon_bound.x1, triangle_bound[i].x1);
polygon_bound.x2 = MAX(polygon_bound.x2, triangle_bound[i].x2);
polygon_bound.y1 = MIN(polygon_bound.y1, triangle_bound[i].y1);
polygon_bound.y2 = MAX(polygon_bound.y2, triangle_bound[i].y2);
}
/* Clamp the polygon bounds to the frustum */
if( polygon_bound.x1 < 0 ) polygon_bound.x1 = 0;
if( polygon_bound.x2 >= ta_status.width ) polygon_bound.x2 = ta_status.width-1;
if( polygon_bound.y1 < 0 ) polygon_bound.y1 = 0;
if( polygon_bound.y2 >= ta_status.height ) polygon_bound.y2 = ta_status.height-1;
/* Set the "single tile" flag if it's entirely contained in 1 tile */
if( polygon_bound.x1 == polygon_bound.x2 &&
polygon_bound.y1 == polygon_bound.y2 ) {
poly_context[0] |= 0x00200000;
}
/* If the polygon is entirely clipped, don't even write the polygon data */
switch( ta_status.clip_mode ) {
case TA_POLYCMD_CLIP_NONE:
if( polygon_bound.x2 < 0 || polygon_bound.x1 >= ta_status.width ||
polygon_bound.y2 < 0 || polygon_bound.y1 >= ta_status.height ) {
return;
}
break;
case TA_POLYCMD_CLIP_INSIDE:
if( polygon_bound.x2 < ta_status.clip.x1 || polygon_bound.x1 > ta_status.clip.x2 ||
polygon_bound.y2 < ta_status.clip.y1 || polygon_bound.y1 > ta_status.clip.y2 ) {
return;
} else {
/* Clamp to clip bounds */
if( polygon_bound.x1 < ta_status.clip.x1 ) polygon_bound.x1 = ta_status.clip.x1;
if( polygon_bound.x2 > ta_status.clip.x2 ) polygon_bound.x2 = ta_status.clip.x2;
if( polygon_bound.y1 < ta_status.clip.y1 ) polygon_bound.y1 = ta_status.clip.y1;
if( polygon_bound.y2 > ta_status.clip.y2 ) polygon_bound.y2 = ta_status.clip.y2;
}
break;
case TA_POLYCMD_CLIP_OUTSIDE:
if( polygon_bound.x1 >= ta_status.clip.x1 && polygon_bound.x2 <= ta_status.clip.x2 &&
polygon_bound.y1 >= ta_status.clip.y1 && polygon_bound.y2 <= ta_status.clip.y2 ) {
return;
}
break;
}
/* Ok, we're good to go - write out the polygon first */
uint32_t tile_entry = (TA_ISP_CURRENT/*MMIO_READ( PVR2, TA_POLYPOS )*/ - ta_status.polybuf_start) >> 2 |
ta_status.poly_pointer;
int status = ta_write_polygon_buffer( poly_context, ta_status.poly_context_size );
if( status == 0 ) {
/* No memory available - abort */
return;
} else {
for( i=0; i<ta_status.vertex_count && status != 0; i++ ) {
status = ta_write_polygon_buffer( (uint32_t *)(&ta_status.poly_vertex[i]), 3 + ta_status.poly_vertex_size );
}
}
if( ta_status.current_tile_size == 0 ) {
/* No memory for tile entry, so don't write anything */
return;
}
/* And now the tile entries. Triangles are different from everything else */
if( ta_status.vertex_count == 3 ) {
tile_entry |= 0x80000000;
for( y=polygon_bound.y1; y<=polygon_bound.y2; y++ ) {
for( x=polygon_bound.x1; x<=polygon_bound.x2; x++ ) {
ta_write_tile_entry( x,y,tile_entry );
}
}
ta_status.last_triangle_bounds.x1 = polygon_bound.x1;
ta_status.last_triangle_bounds.y1 = polygon_bound.y1;
ta_status.last_triangle_bounds.x2 = polygon_bound.x2;
ta_status.last_triangle_bounds.y2 = polygon_bound.y2;
} else if( ta_status.current_vertex_type == TA_VERTEX_SPRITE ||
ta_status.current_vertex_type == TA_VERTEX_TEX_SPRITE ) {
tile_entry |= 0xA0000000;
for( y=polygon_bound.y1; y<=polygon_bound.y2; y++ ) {
for( x=polygon_bound.x1; x<=polygon_bound.x2; x++ ) {
ta_write_tile_entry( x,y,tile_entry );
}
}
ta_status.last_triangle_bounds.x1 = polygon_bound.x1;
ta_status.last_triangle_bounds.y1 = polygon_bound.y1;
ta_status.last_triangle_bounds.x2 = polygon_bound.x2;
ta_status.last_triangle_bounds.y2 = polygon_bound.y2;
} else {
for( y=polygon_bound.y1; y<=polygon_bound.y2; y++ ) {
for( x=polygon_bound.x1; x<=polygon_bound.x2; x++ ) {
uint32_t entry = tile_entry;
for( i=0; i<ta_status.vertex_count-2; i++ ) {
if( triangle_bound[i].x1 <= x && triangle_bound[i].x2 >= x &&
triangle_bound[i].y1 <= y && triangle_bound[i].y2 >= y ) {
entry |= (0x40000000>>i);
}
}
ta_write_tile_entry( x, y, entry );
}
}
ta_status.last_triangle_bounds.x1 = -1;
}
}
/**
* Variant of ta_split_polygon called when vertex_count == max_vertex, but
* the client hasn't sent the LAST VERTEX flag. Commit the poly as normal
* first, then start a new poly with the first 2 vertexes taken from the
* current one.
*/
static void ta_split_polygon() {
ta_commit_polygon();
if( TA_IS_NORMAL_POLY() ) {
/* This only applies to ordinary polys - Sprites + modifier lists are
* handled differently
*/
if( ta_status.vertex_count == 3 ) {
/* Triangles use an odd/even scheme */
if( ta_status.poly_parity == 0 ) {
memcpy( &ta_status.poly_vertex[0], &ta_status.poly_vertex[2],
sizeof(struct pvr2_ta_vertex) );
ta_status.poly_parity = 1;
} else {
memcpy( &ta_status.poly_vertex[1], &ta_status.poly_vertex[2],
sizeof(struct pvr2_ta_vertex) );
ta_status.poly_parity = 0;
}
} else {
/* Everything else just uses the last 2 vertexes in order */
memcpy( &ta_status.poly_vertex[0], &ta_status.poly_vertex[ta_status.vertex_count-2],
sizeof(struct pvr2_ta_vertex)*2 );
ta_status.poly_parity = 0;
}
ta_status.vertex_count = 2;
} else {
ta_status.vertex_count = 0;
}
}
/**
* Parse the polygon context block and setup the internal state to receive
* vertexes.
* @param data 32 bytes of parameter data.
*/
static void ta_parse_polygon_context( union ta_data *data ) {
int colourfmt = TA_POLYCMD_COLOURFMT(data[0].i);
if( TA_POLYCMD_USELENGTH(data[0].i) ) {
ta_status.max_vertex = TA_POLYCMD_LENGTH(data[0].i);
}
ta_status.clip_mode = TA_POLYCMD_CLIP(data[0].i);
if( ta_status.clip_mode == 1 ) { /* Reserved - treat as CLIP_INSIDE */
ta_status.clip_mode = TA_POLYCMD_CLIP_INSIDE;
}
ta_status.vertex_count = 0;
ta_status.poly_context[0] =
(data[1].i & 0xFC1FFFFF) | ((data[0].i & 0x0B) << 22);
ta_status.poly_context[1] = data[2].i;
ta_status.poly_context[3] = data[4].i;
ta_status.poly_parity = 0;
if( data[0].i & TA_POLYCMD_TEXTURED ) {
ta_status.current_vertex_type = data[0].i & 0x0D;
ta_status.poly_context[2] = data[3].i;
ta_status.poly_context[4] = data[5].i;
if( data[0].i & TA_POLYCMD_SPECULAR ) {
ta_status.poly_context[0] |= 0x01000000;
ta_status.poly_vertex_size = 4;
} else {
ta_status.poly_vertex_size = 3;
}
if( data[0].i & TA_POLYCMD_UV16 ) {
ta_status.poly_vertex_size--;
}
} else {
ta_status.current_vertex_type = 0;
ta_status.poly_vertex_size = 1;
ta_status.poly_context[2] = 0;
ta_status.poly_context[4] = 0;
}
ta_status.poly_pointer = (ta_status.poly_vertex_size << 21);
ta_status.poly_context_size = 3;
if( data[0].i & TA_POLYCMD_MODIFIED ) {
ta_status.poly_pointer |= 0x01000000;
if( data[0].i & TA_POLYCMD_FULLMOD ) {
ta_status.poly_context_size = 5;
ta_status.poly_vertex_size <<= 1;
ta_status.current_vertex_type |= 0x40;
/* Modified/float not supported - behaves as per last intensity */
if( colourfmt == TA_POLYCMD_COLOURFMT_FLOAT ) {
colourfmt = TA_POLYCMD_COLOURFMT_LASTINT;
}
}
}
if( colourfmt == TA_POLYCMD_COLOURFMT_INTENSITY ) {
if( TA_POLYCMD_IS_FULLMOD(data[0].i) ||
TA_POLYCMD_IS_SPECULAR(data[0].i) ) {
ta_status.state = STATE_EXPECT_POLY_BLOCK2;
} else {
ta_status.intensity1 =
parse_float_colour( data[4].f, data[5].f, data[6].f, data[7].f );
}
} else if( colourfmt == TA_POLYCMD_COLOURFMT_LASTINT ) {
colourfmt = TA_POLYCMD_COLOURFMT_INTENSITY;
}
ta_status.current_vertex_type |= colourfmt;
}
/**
* Parse the modifier volume context block and setup the internal state to
* receive modifier vertexes.
* @param data 32 bytes of parameter data.
*/
static void ta_parse_modifier_context( union ta_data *data ) {
ta_status.current_vertex_type = TA_VERTEX_MOD_VOLUME;
ta_status.poly_vertex_size = 0;
ta_status.clip_mode = TA_POLYCMD_CLIP(data[0].i);
if( ta_status.clip_mode == 1 ) { /* Reserved - treat as CLIP_INSIDE */
ta_status.clip_mode = TA_POLYCMD_CLIP_INSIDE;
}
ta_status.poly_context_size = 3;
ta_status.poly_context[0] = (data[1].i & 0xFC1FFFFF) |
((data[0].i & 0x0B)<<22);
if( TA_POLYCMD_IS_SPECULAR(data[0].i) ) {
ta_status.poly_context[0] |= 0x01000000;
}
ta_status.poly_context[1] = 0;
ta_status.poly_context[2] = 0;
ta_status.vertex_count = 0;
ta_status.max_vertex = 3;
ta_status.poly_pointer = 0;
}
/**
* Parse the sprite context block and setup the internal state to receive
* vertexes.
* @param data 32 bytes of parameter data.
*/
static void ta_parse_sprite_context( union ta_data *data ) {
ta_status.poly_context_size = 3;
ta_status.poly_context[0] = (data[1].i & 0xFC1FFFFF) |
((data[0].i & 0x0B)<<22) | 0x00400000;
ta_status.clip_mode = TA_POLYCMD_CLIP(data[0].i);
if( ta_status.clip_mode == 1 ) { /* Reserved - treat as CLIP_INSIDE */
ta_status.clip_mode = TA_POLYCMD_CLIP_INSIDE;
}
if( TA_POLYCMD_IS_SPECULAR(data[0].i) ) {
ta_status.poly_context[0] |= 0x01000000;
}
ta_status.poly_context[1] = data[2].i;
ta_status.poly_context[2] = data[3].i;
if( data[0].i & TA_POLYCMD_TEXTURED ) {
ta_status.poly_vertex_size = 2;
ta_status.poly_vertex[2].detail[1] = data[4].i;
ta_status.current_vertex_type = TA_VERTEX_TEX_SPRITE;
} else {
ta_status.poly_vertex_size = 1;
ta_status.poly_vertex[2].detail[0] = data[4].i;
ta_status.current_vertex_type = TA_VERTEX_SPRITE;
}
ta_status.vertex_count = 0;
ta_status.max_vertex = 4;
ta_status.poly_pointer = (ta_status.poly_vertex_size << 21);
}
/**
* Copy the last read vertex into all vertexes up to max_vertex. Used for
* Aborted polygons under some circumstances.
*/
static void ta_fill_vertexes( ) {
int i;
for( i=ta_status.vertex_count; i<ta_status.max_vertex; i++ ) {
memcpy( &ta_status.poly_vertex[i], &ta_status.poly_vertex[ta_status.vertex_count-1],
sizeof( struct pvr2_ta_vertex ) );
}
}
static void ta_parse_vertex( union ta_data *data ) {
struct pvr2_ta_vertex *vertex = &ta_status.poly_vertex[ta_status.vertex_count];
vertex->x = data[1].f;
vertex->y = data[2].f;
vertex->z = data[3].f;
switch( ta_status.current_vertex_type ) {
case TA_VERTEX_PACKED:
vertex->detail[0] = data[6].i;
break;
case TA_VERTEX_FLOAT:
vertex->detail[0] = parse_float_colour( data[4].f, data[5].f, data[6].f, data[7].f );
break;
case TA_VERTEX_INTENSITY:
vertex->detail[0] = parse_intensity_colour( ta_status.intensity1, data[6].f );
break;
case TA_VERTEX_TEX_SPEC_PACKED:
vertex->detail[3] = data[7].i; /* ARGB */
/* Fallthrough */
case TA_VERTEX_TEX_PACKED:
vertex->detail[0] = data[4].i; /* U */
vertex->detail[1] = data[5].i; /* V */
vertex->detail[2] = data[6].i; /* ARGB */
break;
case TA_VERTEX_TEX_UV16_SPEC_PACKED:
vertex->detail[2] = data[7].i; /* ARGB */
/* Fallthrough */
case TA_VERTEX_TEX_UV16_PACKED:
vertex->detail[0] = data[4].i; /* UV */
vertex->detail[1] = data[6].i; /* ARGB */
break;
case TA_VERTEX_TEX_FLOAT:
case TA_VERTEX_TEX_SPEC_FLOAT:
vertex->detail[0] = data[4].i; /* U */
vertex->detail[1] = data[5].i; /* UV */
ta_status.state = STATE_EXPECT_VERTEX_BLOCK2;
break;
case TA_VERTEX_TEX_UV16_FLOAT:
case TA_VERTEX_TEX_UV16_SPEC_FLOAT:
vertex->detail[0] = data[4].i; /* UV */
ta_status.state = STATE_EXPECT_VERTEX_BLOCK2;
break;
case TA_VERTEX_TEX_SPEC_INTENSITY:
vertex->detail[3] = parse_intensity_colour( ta_status.intensity2, data[7].f );
/* Fallthrough */
case TA_VERTEX_TEX_INTENSITY:
vertex->detail[0] = data[4].i; /* U */
vertex->detail[1] = data[5].i; /* V */
vertex->detail[2] = parse_intensity_colour( ta_status.intensity1, data[6].f );
break;
case TA_VERTEX_TEX_UV16_SPEC_INTENSITY:
vertex->detail[2] = parse_intensity_colour( ta_status.intensity2, data[7].f );
/* Fallthrough */
case TA_VERTEX_TEX_UV16_INTENSITY:
vertex->detail[0] = data[4].i; /* UV */
vertex->detail[1] = parse_intensity_colour( ta_status.intensity1, data[6].f );
break;
case TA_VERTEX_PACKED_MOD:
vertex->detail[0] = data[4].i; /* ARGB */
vertex->detail[1] = data[5].i; /* ARGB */
break;
case TA_VERTEX_INTENSITY_MOD:
vertex->detail[0] = parse_intensity_colour( ta_status.intensity1, data[4].f );
vertex->detail[1] = parse_intensity_colour( ta_status.intensity2, data[5].f );
break;
case TA_VERTEX_TEX_SPEC_PACKED_MOD:
vertex->detail[3] = data[7].i; /* ARGB0 */
/* Fallthrough */
case TA_VERTEX_TEX_PACKED_MOD:
vertex->detail[0] = data[4].i; /* U0 */
vertex->detail[1] = data[5].i; /* V0 */
vertex->detail[2] = data[6].i; /* ARGB0 */
ta_status.state = STATE_EXPECT_VERTEX_BLOCK2;
break;
case TA_VERTEX_TEX_UV16_SPEC_PACKED_MOD:
vertex->detail[2] = data[7].i; /* ARGB0 */
/* Fallthrough */
case TA_VERTEX_TEX_UV16_PACKED_MOD:
vertex->detail[0] = data[4].i; /* UV0 */
vertex->detail[1] = data[6].i; /* ARGB0 */
ta_status.state = STATE_EXPECT_VERTEX_BLOCK2;
break;
case TA_VERTEX_TEX_SPEC_INTENSITY_MOD:
vertex->detail[3] = parse_intensity_colour( ta_status.intensity1, data[7].f );
/* Fallthrough */
case TA_VERTEX_TEX_INTENSITY_MOD:
vertex->detail[0] = data[4].i; /* U0 */
vertex->detail[1] = data[5].i; /* V0 */
vertex->detail[2] = parse_intensity_colour( ta_status.intensity1, data[6].f );
ta_status.state = STATE_EXPECT_VERTEX_BLOCK2;
break;
case TA_VERTEX_TEX_UV16_SPEC_INTENSITY_MOD:
vertex->detail[2] = parse_intensity_colour( ta_status.intensity1, data[7].f );
/* Fallthrough */
case TA_VERTEX_TEX_UV16_INTENSITY_MOD:
vertex->detail[0] = data[4].i; /* UV0 */
vertex->detail[1] = parse_intensity_colour( ta_status.intensity1, data[6].f );
ta_status.state = STATE_EXPECT_VERTEX_BLOCK2;
break;
case TA_VERTEX_SPRITE:
case TA_VERTEX_TEX_SPRITE:
case TA_VERTEX_MOD_VOLUME:
case TA_VERTEX_LISTLESS:
vertex++;
vertex->x = data[4].f;
vertex->y = data[5].f;
vertex->z = data[6].f;
vertex++;
vertex->x = data[7].f;
ta_status.vertex_count += 2;
ta_status.state = STATE_EXPECT_VERTEX_BLOCK2;
break;
}
ta_status.vertex_count++;
}
static void ta_parse_vertex_block2( union ta_data *data ) {
struct pvr2_ta_vertex *vertex = &ta_status.poly_vertex[ta_status.vertex_count-1];
switch( ta_status.current_vertex_type ) {
case TA_VERTEX_TEX_SPEC_FLOAT:
vertex->detail[3] = parse_float_colour( data[4].f, data[5].f, data[6].f, data[7].f );
/* Fallthrough */
case TA_VERTEX_TEX_FLOAT:
vertex->detail[2] = parse_float_colour( data[0].f, data[1].f, data[2].f, data[3].f );
break;
case TA_VERTEX_TEX_UV16_SPEC_FLOAT:
vertex->detail[2] = parse_float_colour( data[4].f, data[5].f, data[6].f, data[7].f );
/* Fallthrough */
case TA_VERTEX_TEX_UV16_FLOAT:
vertex->detail[1] = parse_float_colour( data[0].f, data[1].f, data[2].f, data[3].f );
break;
case TA_VERTEX_TEX_PACKED_MOD:
vertex->detail[3] = data[0].i; /* U1 */
vertex->detail[4] = data[1].i; /* V1 */
vertex->detail[5] = data[2].i; /* ARGB1 */
break;
case TA_VERTEX_TEX_SPEC_PACKED_MOD:
vertex->detail[4] = data[0].i; /* U1 */
vertex->detail[5] = data[1].i; /* V1 */
vertex->detail[6] = data[2].i; /* ARGB1 */
vertex->detail[7] = data[3].i; /* ARGB1 */
break;
case TA_VERTEX_TEX_UV16_PACKED_MOD:
vertex->detail[2] = data[0].i; /* UV1 */
vertex->detail[3] = data[2].i; /* ARGB1 */
break;
case TA_VERTEX_TEX_UV16_SPEC_PACKED_MOD:
vertex->detail[3] = data[0].i; /* UV1 */
vertex->detail[4] = data[2].i; /* ARGB1 */
vertex->detail[5] = data[3].i; /* ARGB1 */
break;
case TA_VERTEX_TEX_INTENSITY_MOD:
vertex->detail[3] = data[0].i; /* U1 */
vertex->detail[4] = data[1].i; /* V1 */
vertex->detail[5] = parse_intensity_colour( ta_status.intensity2, data[2].f ); /* ARGB1 */
break;
case TA_VERTEX_TEX_SPEC_INTENSITY_MOD:
vertex->detail[4] = data[0].i; /* U1 */
vertex->detail[5] = data[1].i; /* V1 */
vertex->detail[6] = parse_intensity_colour( ta_status.intensity2, data[2].f ); /* ARGB1 */
vertex->detail[7] = parse_intensity_colour( ta_status.intensity2, data[3].f ); /* ARGB1 */
break;
case TA_VERTEX_TEX_UV16_INTENSITY_MOD:
vertex->detail[2] = data[0].i; /* UV1 */
vertex->detail[3] = parse_intensity_colour( ta_status.intensity2, data[2].f ); /* ARGB1 */
break;
case TA_VERTEX_TEX_UV16_SPEC_INTENSITY_MOD:
vertex->detail[3] = data[0].i; /* UV1 */
vertex->detail[4] = parse_intensity_colour( ta_status.intensity2, data[2].f ); /* ARGB1 */
vertex->detail[5] = parse_intensity_colour( ta_status.intensity2, data[3].f ); /* ARGB1 */
break;
case TA_VERTEX_SPRITE:
vertex->y = data[0].f;
vertex->z = data[1].f;
vertex++;
ta_status.vertex_count++;
vertex->x = data[2].f;
vertex->y = data[3].f;
vertex->z = 0;
vertex->detail[0] = 0;
ta_status.poly_vertex[0].detail[0] = 0;
ta_status.poly_vertex[1].detail[0] = 0;
break;
case TA_VERTEX_TEX_SPRITE:
vertex->y = data[0].f;
vertex->z = data[1].f;
vertex++;
ta_status.vertex_count++;
vertex->x = data[2].f;
vertex->y = data[3].f;
vertex->z = 0;
vertex->detail[0] = 0;
vertex->detail[1] = 0;
ta_status.poly_vertex[0].detail[0] = data[5].i;
ta_status.poly_vertex[0].detail[1] = 0;
ta_status.poly_vertex[1].detail[0] = data[6].i;
ta_status.poly_vertex[1].detail[1] = 0;
ta_status.poly_vertex[2].detail[0] = data[7].i;
break;
case TA_VERTEX_MOD_VOLUME:
case TA_VERTEX_LISTLESS:
vertex->y = data[0].f;
vertex->z = data[1].f;
break;
}
ta_status.state = STATE_IN_POLYGON;
}
/**
* Process 1 32-byte block of ta data
*/
void pvr2_ta_process_block( unsigned char *input ) {
union ta_data *data = (union ta_data *)input;
switch( ta_status.state ) {
case STATE_ERROR:
/* Fatal error raised - stop processing until reset */
return;
case STATE_EXPECT_POLY_BLOCK2:
/* This is always a pair of floating-point colours */
ta_status.intensity1 =
parse_float_colour( data[0].f, data[1].f, data[2].f, data[3].f );
ta_status.intensity2 =
parse_float_colour( data[4].f, data[5].f, data[6].f, data[7].f );
ta_status.state = STATE_IN_LIST;
break;
case STATE_EXPECT_VERTEX_BLOCK2:
ta_parse_vertex_block2( data );
if( ta_status.vertex_count == ta_status.max_vertex ) {
ta_split_polygon();
}
break;
case STATE_EXPECT_END_VERTEX_BLOCK2:
ta_parse_vertex_block2( data );
if( ta_status.vertex_count < 3 ) {
ta_bad_input_error();
} else {
ta_commit_polygon();
}
ta_status.vertex_count = 0;
ta_status.poly_parity = 0;
ta_status.state = STATE_IN_LIST;
break;
case STATE_IN_LIST:
case STATE_IN_POLYGON:
case STATE_IDLE:
switch( TA_CMD( data->i ) ) {
case TA_CMD_END_LIST:
if( ta_status.state == STATE_IN_POLYGON ) {
ta_bad_input_error();
ta_end_list();
ta_status.state = STATE_ERROR; /* Abort further processing */
} else {
ta_end_list();
}
break;
case TA_CMD_CLIP:
if( ta_status.state == STATE_IN_POLYGON ) {
ta_bad_input_error();
ta_status.accept_vertexes = FALSE;
/* Enter stuffed up mode */
}
ta_status.clip.x1 = data[4].i & 0x3F;
ta_status.clip.y1 = data[5].i & 0x0F;
ta_status.clip.x2 = data[6].i & 0x3F;
ta_status.clip.y2 = data[7].i & 0x0F;
if( ta_status.clip.x2 >= ta_status.width )
ta_status.clip.x2 = ta_status.width - 1;
if( ta_status.clip.y2 >= ta_status.height )
ta_status.clip.y2 = ta_status.height - 1;
break;
case TA_CMD_POLYGON_CONTEXT:
if( ta_status.state == STATE_IDLE ) {
ta_init_list( TA_POLYCMD_LISTTYPE( data->i ) );
}
if( ta_status.vertex_count != 0 ) {
/* Error, and not a very well handled one either */
ta_bad_input_error();
ta_status.accept_vertexes = FALSE;
} else {
if( TA_IS_MODIFIER_LIST( ta_status.current_list_type ) ) {
ta_parse_modifier_context(data);
} else {
ta_parse_polygon_context(data);
}
}
break;
case TA_CMD_SPRITE_CONTEXT:
if( ta_status.state == STATE_IDLE ) {
ta_init_list( TA_POLYCMD_LISTTYPE( data->i ) );
}
if( ta_status.vertex_count != 0 ) {
ta_fill_vertexes();
ta_commit_polygon();
}
ta_parse_sprite_context(data);
break;
case TA_CMD_VERTEX:
ta_status.state = STATE_IN_POLYGON;
ta_parse_vertex(data);
if( ta_status.state == STATE_EXPECT_VERTEX_BLOCK2 ) {
if( TA_IS_END_VERTEX(data[0].i) ) {
ta_status.state = STATE_EXPECT_END_VERTEX_BLOCK2;
}
} else if( TA_IS_END_VERTEX(data->i) ) {
if( ta_status.vertex_count < 3 ) {
ta_bad_input_error();
} else {
ta_commit_polygon();
}
ta_status.vertex_count = 0;
ta_status.poly_parity = 0;
ta_status.state = STATE_IN_LIST;
} else if( ta_status.vertex_count == ta_status.max_vertex ) {
ta_split_polygon();
}
break;
default:
if( ta_status.state == STATE_IN_POLYGON ) {
ta_bad_input_error();
}
}
break;
}
}
/**
* Find the first polygon or sprite context in the supplied buffer of TA
* data.
* @return A pointer to the context, or NULL if it cannot be found
*/
uint32_t *pvr2_ta_find_polygon_context( uint32_t *buf, uint32_t length )
{
uint32_t *poly;
for( poly = buf; poly < buf+(length>>2); poly += 8 ) {
if( TA_CMD(*poly) == TA_CMD_POLYGON_CONTEXT ||
TA_CMD(*poly) == TA_CMD_SPRITE_CONTEXT ) {
return poly;
}
}
return NULL;
}
/**
* Write a block of data to the tile accelerator, adding the data to the
* current scene. We don't make any particular attempt to interpret the data
* at this stage, deferring that until render time.
*
* Currently copies the data verbatim to the vertex buffer, processing only
* far enough to generate the correct end-of-list events. Tile buffer is
* entirely ignored.
*/
void lxd_ta_write( unsigned char *buf, uint32_t length )
{
for( ; length >=32; length -= 32 ) {
pvr2_ta_process_block( buf );
buf += 32;
}
}
void lxd_ta_write_burst( sh4addr_t addr, unsigned char *data )
{
pvr2_ta_process_block( data );
}