Fixed the god-awful indentation

This commit is contained in:
mathusummut
2018-05-06 00:01:36 +02:00
parent 643e3820f5
commit 35b7b1f1a6
459 changed files with 204893 additions and 217545 deletions

View File

@@ -35,52 +35,52 @@
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues, and circular queues.
*
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* A circle queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
*
* For details on the use of these macros, see the queue(3) manual page.
*/
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues, and circular queues.
*
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* A circle queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
*
* For details on the use of these macros, see the queue(3) manual page.
*/
#ifdef QUEUE_MACRO_DEBUG
#define _Q_INVALIDATE(a) (a) = ((void *)-1)
@@ -88,9 +88,9 @@
#define _Q_INVALIDATE(a)
#endif
/*
* Singly-linked List definitions.
*/
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
@@ -108,9 +108,9 @@ struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List access methods.
*/
/*
* Singly-linked List access methods.
*/
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_END(head) NULL
#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
@@ -126,9 +126,9 @@ struct { \
((var) = *(varp)) != SLIST_END(head); \
(varp) = &SLIST_NEXT((var), field))
/*
* Singly-linked List functions.
*/
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) { \
SLIST_FIRST(head) = SLIST_END(head); \
}
@@ -165,9 +165,9 @@ struct { \
} \
} while (0)
/*
* List definitions.
*/
/*
* List definitions.
*/
#define LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
@@ -182,9 +182,9 @@ struct { \
struct type **le_prev; /* address of previous next element */ \
}
/*
* List access methods
*/
/*
* List access methods
*/
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_END(head) NULL
#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
@@ -195,9 +195,9 @@ struct { \
(var)!= LIST_END(head); \
(var) = LIST_NEXT(var, field))
/*
* List functions.
*/
/*
* List functions.
*/
#define LIST_INIT(head) do { \
LIST_FIRST(head) = LIST_END(head); \
} while (0)
@@ -243,9 +243,9 @@ struct { \
_Q_INVALIDATE((elm)->field.le_next); \
} while (0)
/*
* Simple queue definitions.
*/
/*
* Simple queue definitions.
*/
#define SIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqh_first; /* first element */ \
@@ -260,9 +260,9 @@ struct { \
struct type *sqe_next; /* next element */ \
}
/*
* Simple queue access methods.
*/
/*
* Simple queue access methods.
*/
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
#define SIMPLEQ_END(head) NULL
#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
@@ -273,9 +273,9 @@ struct { \
(var) != SIMPLEQ_END(head); \
(var) = SIMPLEQ_NEXT(var, field))
/*
* Simple queue functions.
*/
/*
* Simple queue functions.
*/
#define SIMPLEQ_INIT(head) do { \
(head)->sqh_first = NULL; \
(head)->sqh_last = &(head)->sqh_first; \
@@ -304,9 +304,9 @@ struct { \
(head)->sqh_last = &(head)->sqh_first; \
} while (0)
/*
* Tail queue definitions.
*/
/*
* Tail queue definitions.
*/
#define TAILQ_HEAD(name, type) \
struct name { \
struct type *tqh_first; /* first element */ \
@@ -322,15 +322,15 @@ struct { \
struct type **tqe_prev; /* address of previous next element */ \
}
/*
* tail queue access methods
*/
/*
* tail queue access methods
*/
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_END(head) NULL
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname) \
(*(((struct headname *)((head)->tqh_last))->tqh_last))
/* XXX */
/* XXX */
#define TAILQ_PREV(elm, headname, field) \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
#define TAILQ_EMPTY(head) \
@@ -411,9 +411,9 @@ struct { \
_Q_INVALIDATE((elm)->field.tqe_next); \
} while (0)
/*
* Circular queue definitions.
*/
/*
* Circular queue definitions.
*/
#define CIRCLEQ_HEAD(name, type) \
struct name { \
struct type *cqh_first; /* first element */ \
@@ -429,9 +429,9 @@ struct { \
struct type *cqe_prev; /* previous element */ \
}
/*
* Circular queue access methods
*/
/*
* Circular queue access methods
*/
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
#define CIRCLEQ_END(head) ((void *)(head))
@@ -450,9 +450,9 @@ struct { \
(var) != CIRCLEQ_END(head); \
(var) = CIRCLEQ_PREV(var, field))
/*
* Circular queue functions.
*/
/*
* Circular queue functions.
*/
#define CIRCLEQ_INIT(head) do { \
(head)->cqh_first = CIRCLEQ_END(head); \
(head)->cqh_last = CIRCLEQ_END(head); \