// ============================================================== // This file is part of Glest Shared Library (www.glest.org) // // Copyright (C) 2001-2008 MartiƱo Figueroa // // You can redistribute this code and/or modify it under // the terms of the GNU General Public License as published // by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version // ============================================================== #include "model.h" #include #include #include #include "interpolation.h" #include "conversion.h" #include "util.h" #include "platform_common.h" #include "opengl.h" #include "platform_util.h" #include #include #include #include "leak_dumper.h" using namespace Shared::Platform; using namespace Shared::PlatformCommon; using namespace Shared::Graphics::Gl; using namespace std; using namespace Shared::Util; namespace Shared{ namespace Graphics{ using namespace Util; // Utils methods for endianness conversion void toEndianFileHeader(FileHeader &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { for(unsigned int i = 0; i < 3; ++i) { header.id[i] = Shared::PlatformByteOrder::toCommonEndian(header.id[i]); } header.version = Shared::PlatformByteOrder::toCommonEndian(header.version); } } void fromEndianFileHeader(FileHeader &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { for(unsigned int i = 0; i < 3; ++i) { header.id[i] = Shared::PlatformByteOrder::fromCommonEndian(header.id[i]); } header.version = Shared::PlatformByteOrder::fromCommonEndian(header.version); } } void toEndianModelHeader(ModelHeader &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.type = Shared::PlatformByteOrder::toCommonEndian(header.type); header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount); } } void fromEndianModelHeader(ModelHeader &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.type = Shared::PlatformByteOrder::toCommonEndian(header.type); header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount); } } void toEndianMeshHeader(MeshHeader &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { for(unsigned int i = 0; i < meshNameSize; ++i) { header.name[i] = Shared::PlatformByteOrder::toCommonEndian(header.name[i]); } header.frameCount = Shared::PlatformByteOrder::toCommonEndian(header.frameCount); header.vertexCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexCount); header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount); for(unsigned int i = 0; i < 3; ++i) { header.diffuseColor[i] = Shared::PlatformByteOrder::toCommonEndian(header.diffuseColor[i]); header.specularColor[i] = Shared::PlatformByteOrder::toCommonEndian(header.specularColor[i]); } header.specularPower = Shared::PlatformByteOrder::toCommonEndian(header.specularPower); header.opacity = Shared::PlatformByteOrder::toCommonEndian(header.opacity); header.properties = Shared::PlatformByteOrder::toCommonEndian(header.properties); header.textures = Shared::PlatformByteOrder::toCommonEndian(header.textures); } } void fromEndianMeshHeader(MeshHeader &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { for(unsigned int i = 0; i < meshNameSize; ++i) { header.name[i] = Shared::PlatformByteOrder::fromCommonEndian(header.name[i]); } header.frameCount = Shared::PlatformByteOrder::fromCommonEndian(header.frameCount); header.vertexCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexCount); header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount); for(unsigned int i = 0; i < 3; ++i) { header.diffuseColor[i] = Shared::PlatformByteOrder::fromCommonEndian(header.diffuseColor[i]); header.specularColor[i] = Shared::PlatformByteOrder::fromCommonEndian(header.specularColor[i]); } header.specularPower = Shared::PlatformByteOrder::fromCommonEndian(header.specularPower); header.opacity = Shared::PlatformByteOrder::fromCommonEndian(header.opacity); header.properties = Shared::PlatformByteOrder::fromCommonEndian(header.properties); header.textures = Shared::PlatformByteOrder::fromCommonEndian(header.textures); } } void toEndianModelHeaderV3(ModelHeaderV3 &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount); } } void fromEndianModelHeaderV3(ModelHeaderV3 &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.meshCount = Shared::PlatformByteOrder::fromCommonEndian(header.meshCount); } } void toEndianMeshHeaderV3(MeshHeaderV3 &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.vertexFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexFrameCount); header.normalFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.normalFrameCount); header.texCoordFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.texCoordFrameCount); header.colorFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.colorFrameCount); header.pointCount = Shared::PlatformByteOrder::toCommonEndian(header.pointCount); header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount); header.properties = Shared::PlatformByteOrder::toCommonEndian(header.properties); for(unsigned int i = 0; i < 64; ++i) { header.texName[i] = Shared::PlatformByteOrder::toCommonEndian(header.texName[i]); } } } void fromEndianMeshHeaderV3(MeshHeaderV3 &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.vertexFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexFrameCount); header.normalFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.normalFrameCount); header.texCoordFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.texCoordFrameCount); header.colorFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.colorFrameCount); header.pointCount = Shared::PlatformByteOrder::fromCommonEndian(header.pointCount); header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount); header.properties = Shared::PlatformByteOrder::fromCommonEndian(header.properties); for(unsigned int i = 0; i < 64; ++i) { header.texName[i] = Shared::PlatformByteOrder::fromCommonEndian(header.texName[i]); } } } void toEndianMeshHeaderV2(MeshHeaderV2 &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.vertexFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexFrameCount); header.normalFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.normalFrameCount); header.texCoordFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.texCoordFrameCount); header.colorFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.colorFrameCount); header.pointCount = Shared::PlatformByteOrder::toCommonEndian(header.pointCount); header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount); header.hasTexture = Shared::PlatformByteOrder::toCommonEndian(header.hasTexture); header.primitive = Shared::PlatformByteOrder::toCommonEndian(header.primitive); header.cullFace = Shared::PlatformByteOrder::toCommonEndian(header.cullFace); for(unsigned int i = 0; i < 64; ++i) { header.texName[i] = Shared::PlatformByteOrder::toCommonEndian(header.texName[i]); } } } void fromEndianMeshHeaderV2(MeshHeaderV2 &header) { static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian(); if(bigEndianSystem == true) { header.vertexFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexFrameCount); header.normalFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.normalFrameCount); header.texCoordFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.texCoordFrameCount); header.colorFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.colorFrameCount); header.pointCount = Shared::PlatformByteOrder::fromCommonEndian(header.pointCount); header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount); header.hasTexture = Shared::PlatformByteOrder::fromCommonEndian(header.hasTexture); header.primitive = Shared::PlatformByteOrder::fromCommonEndian(header.primitive); header.cullFace = Shared::PlatformByteOrder::fromCommonEndian(header.cullFace); for(unsigned int i = 0; i < 64; ++i) { header.texName[i] = Shared::PlatformByteOrder::fromCommonEndian(header.texName[i]); } } } // ===================================================== // class Mesh // ===================================================== // ==================== constructor & destructor ==================== Mesh::Mesh() { textureManager = NULL; frameCount= 0; vertexCount= 0; indexCount= 0; texCoordFrameCount = 0; opacity = 0.0f; specularPower = 0.0f; vertices= NULL; normals= NULL; texCoords= NULL; tangents= NULL; indices= NULL; interpolationData= NULL; for(int i=0; igetPath().c_str(),i); textureManager->endTexture(textures[i]); textures[i] = NULL; } } } textureManager = NULL; } // ========================== shadows & interpolation ========================= void Mesh::buildInterpolationData(){ if(interpolationData != NULL) { printf("**WARNING possible memory leak [Mesh::buildInterpolationData()]\n"); } interpolationData= new InterpolationData(this); } void Mesh::cleanupInterpolationData() { delete interpolationData; interpolationData=NULL; } void Mesh::updateInterpolationData(float t, bool cycle) { if(interpolationData != NULL) { interpolationData->update(t, cycle); } } void Mesh::updateInterpolationVertices(float t, bool cycle) { if(interpolationData != NULL) { interpolationData->updateVertices(t, cycle); } } void Mesh::BuildVBOs() { if(getVBOSupported() == true) { if(hasBuiltVBOs == false) { //printf("In [%s::%s Line: %d] setting up a VBO...\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__); // Generate And Bind The Vertex Buffer glGenBuffersARB( 1,(GLuint*) &m_nVBOVertices ); // Get A Valid Name glBindBufferARB( GL_ARRAY_BUFFER_ARB, m_nVBOVertices ); // Bind The Buffer // Load The Data glBufferDataARB( GL_ARRAY_BUFFER_ARB, sizeof(Vec3f)*frameCount*vertexCount, getInterpolationData()->getVertices(), GL_STATIC_DRAW_ARB ); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); // Generate And Bind The Texture Coordinate Buffer glGenBuffersARB( 1, (GLuint*)&m_nVBOTexCoords ); // Get A Valid Name glBindBufferARB( GL_ARRAY_BUFFER_ARB, m_nVBOTexCoords ); // Bind The Buffer // Load The Data glBufferDataARB( GL_ARRAY_BUFFER_ARB, sizeof(Vec2f)*vertexCount, texCoords, GL_STATIC_DRAW_ARB ); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); // Generate And Bind The Normal Buffer glGenBuffersARB( 1, (GLuint*)&m_nVBONormals ); // Get A Valid Name glBindBufferARB( GL_ARRAY_BUFFER_ARB, m_nVBONormals ); // Bind The Buffer // Load The Data glBufferDataARB( GL_ARRAY_BUFFER_ARB, sizeof(Vec3f)*frameCount*vertexCount, getInterpolationData()->getNormals(), GL_STATIC_DRAW_ARB ); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); // Generate And Bind The Index Buffer glGenBuffersARB( 1, (GLuint*)&m_nVBOIndexes ); // Get A Valid Name glBindBufferARB( GL_ELEMENT_ARRAY_BUFFER_ARB, m_nVBOIndexes ); // Bind The Buffer // Load The Data glBufferDataARB( GL_ELEMENT_ARRAY_BUFFER_ARB, sizeof(uint32)*indexCount, indices, GL_STATIC_DRAW_ARB ); glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0); // Our Copy Of The Data Is No Longer Necessary, It Is Safe In The Graphics Card delete [] vertices; vertices = NULL; delete [] texCoords; texCoords = NULL; delete [] normals; normals = NULL; delete [] indices; indices = NULL; delete interpolationData; interpolationData = NULL; hasBuiltVBOs = true; } } } void Mesh::ReleaseVBOs() { if(getVBOSupported() == true) { if(hasBuiltVBOs == true) { glDeleteBuffersARB( 1, (GLuint*)&m_nVBOVertices ); // Get A Valid Name glDeleteBuffersARB( 1, (GLuint*)&m_nVBOTexCoords ); // Get A Valid Name glDeleteBuffersARB( 1, (GLuint*)&m_nVBONormals ); // Get A Valid Name glDeleteBuffersARB( 1, (GLuint*)&m_nVBOIndexes ); // Get A Valid Name hasBuiltVBOs = false; } } } // ==================== load ==================== string Mesh::findAlternateTexture(vector conversionList, string textureFile) { string result = textureFile; string fileExt = extractExtension(textureFile); for(unsigned int i = 0; i < conversionList.size(); ++i) { string convertTo = conversionList[i]; if(fileExt != convertTo) { string alternateTexture = textureFile; replaceAll(alternateTexture, "." + fileExt, "." + convertTo); if(fileExists(alternateTexture) == true) { result = alternateTexture; break; } } } return result; } void Mesh::loadV2(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager, bool deletePixMapAfterLoad, std::map > > *loadedFileList, string sourceLoader,string modelFile) { this->textureManager = textureManager; //read header MeshHeaderV2 meshHeader; size_t readBytes = fread(&meshHeader, sizeof(MeshHeaderV2), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianMeshHeaderV2(meshHeader); if(meshHeader.normalFrameCount != meshHeader.vertexFrameCount) { char szBuf[8096]=""; snprintf(szBuf,8096,"Old v2 model: vertex frame count different from normal frame count [v = %d, n = %d] meshIndex = %d modelFile [%s]",meshHeader.vertexFrameCount,meshHeader.normalFrameCount,meshIndex,modelFile.c_str()); throw megaglest_runtime_error(szBuf,true); } if(meshHeader.texCoordFrameCount != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"Old v2 model: texture coord frame count is not 1 [t = %d] meshIndex = %d modelFile [%s]",meshHeader.texCoordFrameCount,meshIndex,modelFile.c_str()); throw megaglest_runtime_error(szBuf,true); } //init frameCount= meshHeader.vertexFrameCount; vertexCount= meshHeader.pointCount; indexCount= meshHeader.indexCount; texCoordFrameCount = meshHeader.texCoordFrameCount; init(); //misc twoSided= false; customColor= false; noSelect= false; if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v2, this = %p Found meshHeader.hasTexture = %d, texName [%s] mtDiffuse = %d meshIndex = %d modelFile [%s]\n",this,meshHeader.hasTexture,toLower(reinterpret_cast(meshHeader.texName)).c_str(),mtDiffuse,meshIndex,modelFile.c_str()); textureFlags= 0; if(meshHeader.hasTexture) { textureFlags= 1; } //texture if(meshHeader.hasTexture && textureManager!=NULL){ texturePaths[mtDiffuse]= toLower(reinterpret_cast(meshHeader.texName)); string texPath= dir; if(texPath != "") { endPathWithSlash(texPath); } texPath += texturePaths[mtDiffuse]; if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v2 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str()); textures[mtDiffuse]= dynamic_cast(textureManager->getTexture(texPath)); if(textures[mtDiffuse] == NULL) { if(fileExists(texPath) == false) { vector conversionList; conversionList.push_back("png"); conversionList.push_back("jpg"); conversionList.push_back("tga"); conversionList.push_back("bmp"); texPath = findAlternateTexture(conversionList, texPath); } if(fileExists(texPath) == true) { if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v2 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str()); textures[mtDiffuse]= textureManager->newTexture2D(); textures[mtDiffuse]->load(texPath); if(loadedFileList) { (*loadedFileList)[texPath].push_back(make_pair(sourceLoader,sourceLoader)); } texturesOwned[mtDiffuse]=true; textures[mtDiffuse]->init(textureManager->getTextureFilter(),textureManager->getMaxAnisotropy()); if(deletePixMapAfterLoad == true) { textures[mtDiffuse]->deletePixels(); } } else { SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error v2 model is missing texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str()); } } } //read data readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f); if(readBytes != 1 && (frameCount * vertexCount) != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(vertices, frameCount*vertexCount); readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f); if(readBytes != 1 && (frameCount * vertexCount) != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(normals, frameCount*vertexCount); if(textures[mtDiffuse] != NULL) { readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f); if(readBytes != 1 && vertexCount != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(texCoords, vertexCount); } readBytes = fread(&diffuseColor, sizeof(Vec3f), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(&diffuseColor, 1); readBytes = fread(&opacity, sizeof(float32), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } opacity = Shared::PlatformByteOrder::fromCommonEndian(opacity); fseek(f, sizeof(Vec4f)*(meshHeader.colorFrameCount-1), SEEK_CUR); readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f); if(readBytes != 1 && indexCount != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,indexCount,__LINE__); throw megaglest_runtime_error(szBuf); } Shared::PlatformByteOrder::fromEndianTypeArray(indices, indexCount); } void Mesh::loadV3(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager,bool deletePixMapAfterLoad, std::map > > *loadedFileList, string sourceLoader,string modelFile) { this->textureManager = textureManager; //read header MeshHeaderV3 meshHeader; size_t readBytes = fread(&meshHeader, sizeof(MeshHeaderV3), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianMeshHeaderV3(meshHeader); if(meshHeader.normalFrameCount != meshHeader.vertexFrameCount) { char szBuf[8096]=""; snprintf(szBuf,8096,"Old v3 model: vertex frame count different from normal frame count [v = %d, n = %d] meshIndex = %d modelFile [%s]",meshHeader.vertexFrameCount,meshHeader.normalFrameCount,meshIndex,modelFile.c_str()); throw megaglest_runtime_error(szBuf,true); } //init frameCount= meshHeader.vertexFrameCount; vertexCount= meshHeader.pointCount; indexCount= meshHeader.indexCount; texCoordFrameCount = meshHeader.texCoordFrameCount; init(); //misc twoSided= (meshHeader.properties & mp3TwoSided) != 0; customColor= (meshHeader.properties & mp3CustomColor) != 0; noSelect = false; textureFlags= 0; if((meshHeader.properties & mp3NoTexture) != mp3NoTexture) { textureFlags= 1; } if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v3, this = %p Found meshHeader.properties = %d, textureFlags = %d, texName [%s] mtDiffuse = %d meshIndex = %d modelFile [%s]\n",this,meshHeader.properties,textureFlags,toLower(reinterpret_cast(meshHeader.texName)).c_str(),mtDiffuse,meshIndex,modelFile.c_str()); //texture if((meshHeader.properties & mp3NoTexture) != mp3NoTexture && textureManager!=NULL){ texturePaths[mtDiffuse]= toLower(reinterpret_cast(meshHeader.texName)); string texPath= dir; if(texPath != "") { endPathWithSlash(texPath); } texPath += texturePaths[mtDiffuse]; if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v3 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str()); textures[mtDiffuse]= dynamic_cast(textureManager->getTexture(texPath)); if(textures[mtDiffuse] == NULL) { if(fileExists(texPath) == false) { vector conversionList; conversionList.push_back("png"); conversionList.push_back("jpg"); conversionList.push_back("tga"); conversionList.push_back("bmp"); texPath = findAlternateTexture(conversionList, texPath); } if(fileExists(texPath) == true) { if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v3 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str()); textures[mtDiffuse]= textureManager->newTexture2D(); textures[mtDiffuse]->load(texPath); if(loadedFileList) { (*loadedFileList)[texPath].push_back(make_pair(sourceLoader,sourceLoader)); } texturesOwned[mtDiffuse]=true; textures[mtDiffuse]->init(textureManager->getTextureFilter(),textureManager->getMaxAnisotropy()); if(deletePixMapAfterLoad == true) { textures[mtDiffuse]->deletePixels(); } } else { SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error v3 model is missing texture [%s] meshHeader.properties = %d meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshHeader.properties,meshIndex,modelFile.c_str()); } } } //read data readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f); if(readBytes != 1 && (frameCount * vertexCount) != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(vertices, frameCount*vertexCount); readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f); if(readBytes != 1 && (frameCount * vertexCount) != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(normals, frameCount*vertexCount); if(textures[mtDiffuse] != NULL) { for(unsigned int i=0; i(texCoords, vertexCount); } } readBytes = fread(&diffuseColor, sizeof(Vec3f), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(&diffuseColor, 1); readBytes = fread(&opacity, sizeof(float32), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } opacity = Shared::PlatformByteOrder::fromCommonEndian(opacity); fseek(f, sizeof(Vec4f)*(meshHeader.colorFrameCount-1), SEEK_CUR); readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f); if(readBytes != 1 && indexCount != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,indexCount,__LINE__); throw megaglest_runtime_error(szBuf); } Shared::PlatformByteOrder::fromEndianTypeArray(indices, indexCount); } Texture2D* Mesh::loadMeshTexture(int meshIndex, int textureIndex, TextureManager *textureManager, string textureFile, int textureChannelCount, bool &textureOwned, bool deletePixMapAfterLoad, std::map > > *loadedFileList, string sourceLoader,string modelFile) { if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #1 load texture [%s] modelFile [%s]\n",__FUNCTION__,textureFile.c_str(),modelFile.c_str()); Texture2D* texture = dynamic_cast(textureManager->getTexture(textureFile)); if(texture == NULL) { if(fileExists(textureFile) == false) { vector conversionList; conversionList.push_back("png"); conversionList.push_back("jpg"); conversionList.push_back("tga"); conversionList.push_back("bmp"); textureFile = findAlternateTexture(conversionList, textureFile); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #2 load texture [%s]\n",__FUNCTION__,textureFile.c_str()); } if(fileExists(textureFile) == true) { if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #3 load texture [%s] modelFile [%s]\n",__FUNCTION__,textureFile.c_str(),modelFile.c_str()); //if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture exists loading [%s]\n",__FUNCTION__,textureFile.c_str()); texture = textureManager->newTexture2D(); if(textureChannelCount != -1) { texture->getPixmap()->init(textureChannelCount); } texture->load(textureFile); if(loadedFileList) { (*loadedFileList)[textureFile].push_back(make_pair(sourceLoader,sourceLoader)); } //if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture loaded [%s]\n",__FUNCTION__,textureFile.c_str()); textureOwned = true; texture->init(textureManager->getTextureFilter(),textureManager->getMaxAnisotropy()); if(deletePixMapAfterLoad == true) { texture->deletePixels(); } //if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture inited [%s]\n",__FUNCTION__,textureFile.c_str()); } else { if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #3 cannot load texture [%s] modelFile [%s]\n",__FUNCTION__,textureFile.c_str(),modelFile.c_str()); SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error v4 model is missing texture [%s] textureFlags = %d meshIndex = %d textureIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,textureFile.c_str(),textureFlags,meshIndex,textureIndex,modelFile.c_str()); } } return texture; } void Mesh::load(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager, bool deletePixMapAfterLoad,std::map > > *loadedFileList, string sourceLoader,string modelFile) { this->textureManager = textureManager; //read header MeshHeader meshHeader; size_t readBytes = fread(&meshHeader, sizeof(MeshHeader), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianMeshHeader(meshHeader); name = reinterpret_cast(meshHeader.name); //printf("Load, Found meshTextureCount = %d, meshHeader.textures = %d\n",meshTextureCount,meshHeader.textures); //init frameCount= meshHeader.frameCount; vertexCount= meshHeader.vertexCount; indexCount= meshHeader.indexCount; init(); //properties customColor= (meshHeader.properties & mpfCustomColor) != 0; twoSided= (meshHeader.properties & mpfTwoSided) != 0; noSelect= (meshHeader.properties & mpfNoSelect) != 0; //material diffuseColor= Vec3f(meshHeader.diffuseColor); specularColor= Vec3f(meshHeader.specularColor); specularPower= meshHeader.specularPower; opacity= meshHeader.opacity; if(opacity==0){ if(SystemFlags::VERBOSE_MODE_ENABLED) printf("found a mesh with opacity=0 in header, using opacity=1 to see it now \n"); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("file: %s\n",modelFile.c_str()); opacity=1.0f; } textureFlags= meshHeader.textures; if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v4, this = %p Found meshHeader.textures = %d meshIndex = %d\n",this,meshHeader.textures,meshIndex); //maps uint32 flag= 1; for(int i = 0; i < meshTextureCount; ++i) { if((meshHeader.textures & flag) && textureManager != NULL) { uint8 cMapPath[mapPathSize]; readBytes = fread(cMapPath, mapPathSize, 1, f); if(readBytes != 1 && mapPathSize != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,mapPathSize,__LINE__); throw megaglest_runtime_error(szBuf); } Shared::PlatformByteOrder::fromEndianTypeArray(cMapPath, mapPathSize); string mapPath= toLower(reinterpret_cast(cMapPath)); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("mapPath [%s] meshHeader.textures = %d flag = %d (meshHeader.textures & flag) = %d meshIndex = %d i = %d\n",mapPath.c_str(),meshHeader.textures,flag,(meshHeader.textures & flag),meshIndex,i); string mapFullPath= dir; if(mapFullPath != "") { endPathWithSlash(mapFullPath); } mapFullPath += mapPath; textures[i] = loadMeshTexture(meshIndex, i, textureManager, mapFullPath, meshTextureChannelCount[i],texturesOwned[i], deletePixMapAfterLoad, loadedFileList, sourceLoader,modelFile); } flag *= 2; } //read data readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f); if(readBytes != 1 && (frameCount * vertexCount) != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(vertices, frameCount*vertexCount); readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f); if(readBytes != 1 && (frameCount * vertexCount) != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(normals, frameCount*vertexCount); if(meshHeader.textures!=0){ readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f); if(readBytes != 1 && vertexCount != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianVecArray(texCoords, vertexCount); } readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f); if(readBytes != 1 && indexCount != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,indexCount,__LINE__); throw megaglest_runtime_error(szBuf); } Shared::PlatformByteOrder::fromEndianTypeArray(indices, indexCount); //tangents if(textures[mtNormal]!=NULL){ computeTangents(); } } void Mesh::save(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager, string convertTextureToFormat, std::map &textureDeleteList, bool keepsmallest,string modelFile) { MeshHeader meshHeader; memset(&meshHeader, 0, sizeof(struct MeshHeader)); strncpy((char*)meshHeader.name, (char*)name.c_str(), name.length()); meshHeader.frameCount= frameCount; meshHeader.vertexCount= vertexCount; meshHeader.indexCount = indexCount; //material memcpy((float32*)meshHeader.diffuseColor, (float32*)diffuseColor.ptr(), sizeof(float32) * 3); memcpy((float32*)meshHeader.specularColor, (float32*)specularColor.ptr(), sizeof(float32) * 3); meshHeader.specularPower = specularPower; meshHeader.opacity = opacity; //properties meshHeader.properties = 0; if(customColor) { meshHeader.properties |= mpfCustomColor; } if(twoSided) { meshHeader.properties |= mpfTwoSided; } if(noSelect) { meshHeader.properties |= mpfNoSelect; } meshHeader.textures = textureFlags; fwrite(&meshHeader, sizeof(MeshHeader), 1, f); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, this = %p, Found meshTextureCount = %d, meshHeader.textures = %d meshIndex = %d\n",this,meshTextureCount,meshHeader.textures,meshIndex); //maps uint32 flag= 1; for(int i = 0; i < meshTextureCount; ++i) { if((meshHeader.textures & flag)) { uint8 cMapPath[mapPathSize]; memset(&cMapPath[0],0,mapPathSize); Texture2D *texture = textures[i]; if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, [%d] mesh texture ptr [%p]\n",i,texture); if(texture != NULL) { string file = toLower(texture->getPath()); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, Found mesh texture [%s]\n",file.c_str()); if(toLower(convertTextureToFormat) != "" && EndsWith(file, "." + convertTextureToFormat) == false) { long originalSize = getFileSize(file); long newSize = originalSize; string fileExt = extractExtension(file); replaceAll(file, "." + fileExt, "." + convertTextureToFormat); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, Convert from [%s] to [%s]\n",texture->getPath().c_str(),file.c_str()); if(convertTextureToFormat == "tga") { texture->getPixmap()->saveTga(file); newSize = getFileSize(file); if(keepsmallest == false || newSize <= originalSize) { textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1; } else { printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str()); textureDeleteList[file] = textureDeleteList[file] + 1; } } else if(convertTextureToFormat == "bmp") { texture->getPixmap()->saveBmp(file); newSize = getFileSize(file); if(keepsmallest == false || newSize <= originalSize) { textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1; } else { printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str()); textureDeleteList[file] = textureDeleteList[file] + 1; } } else if(convertTextureToFormat == "jpg") { texture->getPixmap()->saveJpg(file); newSize = getFileSize(file); if(keepsmallest == false || newSize <= originalSize) { textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1; } else { printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str()); textureDeleteList[file] = textureDeleteList[file] + 1; } } else if(convertTextureToFormat == "png") { texture->getPixmap()->savePng(file); newSize = getFileSize(file); if(keepsmallest == false || newSize <= originalSize) { textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1; } else { printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str()); textureDeleteList[file] = textureDeleteList[file] + 1; } } else { throw megaglest_runtime_error("Unsupported texture format: [" + convertTextureToFormat + "]"); } //textureManager->endTexture(texture); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, load new texture [%s] originalSize [%ld] newSize [%ld]\n",file.c_str(),originalSize,newSize); if(keepsmallest == false || newSize <= originalSize) { texture = loadMeshTexture(meshIndex, i, textureManager,file, meshTextureChannelCount[i], texturesOwned[i], false, NULL, "", modelFile); } } file = extractFileFromDirectoryPath(texture->getPath()); if(file.length() > mapPathSize) { throw megaglest_runtime_error("file.length() > mapPathSize, file.length() = " + intToStr(file.length())); } else if(file.length() == 0) { throw megaglest_runtime_error("file.length() == 0"); } if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, new texture file [%s]\n",file.c_str()); memset(&cMapPath[0],0,mapPathSize); memcpy(&cMapPath[0],file.c_str(),file.length()); } fwrite(cMapPath, mapPathSize, 1, f); } flag*= 2; } //read data fwrite(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f); fwrite(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f); if(meshHeader.textures != 0) { fwrite(texCoords, sizeof(Vec2f)*vertexCount, 1, f); } fwrite(indices, sizeof(uint32)*indexCount, 1, f); } void Mesh::computeTangents(){ delete [] tangents; try { tangents= new Vec3f[vertexCount]; } catch(bad_alloc& ba) { char szBuf[8096]=""; snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,vertexCount,ba.what()); throw megaglest_runtime_error(szBuf); } for(unsigned int i=0; ideletePixels(); } } } // =============================================== // class Model // =============================================== // ==================== constructor & destructor ==================== Model::Model() { if(GlobalStaticFlags::getIsNonGraphicalModeEnabled() == true) { throw megaglest_runtime_error("Loading graphics in headless server mode not allowed!"); } meshCount = 0; meshes = NULL; textureManager = NULL; lastTData = -1; lastCycleData = false; lastTVertex = -1; lastCycleVertex = false; } Model::~Model() { delete [] meshes; meshes = NULL; } // ==================== data ==================== void Model::buildInterpolationData() const{ for(unsigned int i=0; i > > *loadedFileList, string *sourceLoader) { this->sourceLoader = (sourceLoader != NULL ? *sourceLoader : ""); this->fileName = path; if(GlobalStaticFlags::getIsNonGraphicalModeEnabled() == true) { return; } string extension= path.substr(path.find_last_of('.') + 1); if(extension=="g3d" || extension=="G3D") { loadG3d(path,deletePixMapAfterLoad,loadedFileList, this->sourceLoader); } else { throw megaglest_runtime_error("Unknown model format: " + extension); } } void Model::save(const string &path, string convertTextureToFormat, bool keepsmallest) { string extension= path.substr(path.find_last_of('.')+1); if(extension=="g3d" ||extension=="G3D") { saveG3d(path,convertTextureToFormat,keepsmallest); } else { throw megaglest_runtime_error("Unknown model format: " + extension); } } //load a model from a g3d file void Model::loadG3d(const string &path, bool deletePixMapAfterLoad, std::map > > *loadedFileList, string sourceLoader) { try{ #ifdef WIN32 FILE *f= _wfopen(utf8_decode(path).c_str(), L"rb"); #else FILE *f=fopen(path.c_str(),"rb"); #endif if (f == NULL) { printf("In [%s::%s] cannot load file = [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,path.c_str()); throw megaglest_runtime_error("Error opening g3d model file [" + path + "]",true); } if(loadedFileList) { (*loadedFileList)[path].push_back(make_pair(sourceLoader,sourceLoader)); } string dir= extractDirectoryPathFromFile(path); //file header FileHeader fileHeader; size_t readBytes = fread(&fileHeader, sizeof(FileHeader), 1, f); if(readBytes != 1) { fclose(f); char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianFileHeader(fileHeader); if(strncmp(reinterpret_cast(fileHeader.id), "G3D", 3) != 0) { fclose(f); f = NULL; printf("In [%s::%s] file = [%s] fileheader.id = [%s][%c]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,path.c_str(),reinterpret_cast(fileHeader.id),fileHeader.id[0]); throw megaglest_runtime_error("Not a valid G3D model",true); } fileVersion= fileHeader.version; if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load model, fileVersion = %d\n",fileVersion); //version 4 if(fileHeader.version == 4) { //model header ModelHeader modelHeader; readBytes = fread(&modelHeader, sizeof(ModelHeader), 1, f); if(readBytes != 1) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__); throw megaglest_runtime_error(szBuf); } fromEndianModelHeader(modelHeader); meshCount= modelHeader.meshCount; if(SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %d\n",meshCount); if(modelHeader.type != mtMorphMesh) { throw megaglest_runtime_error("Invalid model type"); } //load meshes try { meshes= new Mesh[meshCount]; } catch(bad_alloc& ba) { char szBuf[8096]=""; snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,meshCount,ba.what()); throw megaglest_runtime_error(szBuf); } for(uint32 i = 0; i < meshCount; ++i) { meshes[i].load(i, dir, f, textureManager,deletePixMapAfterLoad, loadedFileList,sourceLoader,path); meshes[i].buildInterpolationData(); } } //version 3 else if(fileHeader.version == 3) { readBytes = fread(&meshCount, sizeof(meshCount), 1, f); if(readBytes != 1 && meshCount != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,meshCount,__LINE__); throw megaglest_runtime_error(szBuf); } meshCount = Shared::PlatformByteOrder::fromCommonEndian(meshCount); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %d\n",meshCount); try { meshes= new Mesh[meshCount]; } catch(bad_alloc& ba) { char szBuf[8096]=""; snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,meshCount,ba.what()); throw megaglest_runtime_error(szBuf); } for(uint32 i = 0; i < meshCount; ++i) { meshes[i].loadV3(i, dir, f, textureManager,deletePixMapAfterLoad, loadedFileList,sourceLoader,path); meshes[i].buildInterpolationData(); } } //version 2 else if(fileHeader.version == 2) { readBytes = fread(&meshCount, sizeof(meshCount), 1, f); if(readBytes != 1 && meshCount != 0) { char szBuf[8096]=""; snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,meshCount,__LINE__); throw megaglest_runtime_error(szBuf); } meshCount = Shared::PlatformByteOrder::fromCommonEndian(meshCount); if(SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %d\n",meshCount); try { meshes= new Mesh[meshCount]; } catch(bad_alloc& ba) { char szBuf[8096]=""; snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,meshCount,ba.what()); throw megaglest_runtime_error(szBuf); } for(uint32 i = 0; i < meshCount; ++i){ meshes[i].loadV2(i,dir, f, textureManager,deletePixMapAfterLoad, loadedFileList,sourceLoader,path); meshes[i].buildInterpolationData(); } } else { throw megaglest_runtime_error("Invalid model version: "+ intToStr(fileHeader.version)); } fclose(f); autoJoinMeshFrames(); } catch(megaglest_runtime_error& ex) { //printf("1111111 ex.wantStackTrace() = %d\n",ex.wantStackTrace()); SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,ex.what()); //printf("2222222\n"); throw megaglest_runtime_error("Exception caught loading 3d file: " + path +"\n"+ ex.what(),!ex.wantStackTrace()); } catch(exception &e){ //abort(); SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,e.what()); throw megaglest_runtime_error("Exception caught loading 3d file: " + path +"\n"+ e.what()); } } //save a model to a g3d file void Model::saveG3d(const string &path, string convertTextureToFormat, bool keepsmallest) { string tempModelFilename = path + "cvt"; #ifdef WIN32 FILE *f= _wfopen(utf8_decode(tempModelFilename).c_str(), L"wb"); #else FILE *f= fopen(tempModelFilename.c_str(), "wb"); #endif if(f == NULL) { throw megaglest_runtime_error("Cant open file for writing: [" + tempModelFilename + "]"); } convertTextureToFormat = toLower(convertTextureToFormat); //file header FileHeader fileHeader; fileHeader.id[0]= 'G'; fileHeader.id[1]= '3'; fileHeader.id[2]= 'D'; fileHeader.version= 4; fwrite(&fileHeader, sizeof(FileHeader), 1, f); // file versions if(fileHeader.version == 4 || fileHeader.version == 3 || fileHeader.version == 2) { //model header ModelHeader modelHeader; modelHeader.meshCount = meshCount; modelHeader.type = mtMorphMesh; fwrite(&modelHeader, sizeof(ModelHeader), 1, f); std::map textureDeleteList; for(uint32 i = 0; i < meshCount; ++i) { meshes[i].save(i,tempModelFilename, f, textureManager, convertTextureToFormat,textureDeleteList, keepsmallest,path); } removeFile(path); if(renameFile(tempModelFilename,path) == true) { // Now delete old textures since they were converted to a new format for(std::map::iterator iterMap = textureDeleteList.begin(); iterMap != textureDeleteList.end(); ++iterMap) { removeFile(iterMap->first); } } } else { throw megaglest_runtime_error("Invalid model version: "+ intToStr(fileHeader.version)); } fclose(f); } void Model::deletePixels() { for(uint32 i = 0; i < meshCount; ++i) { meshes[i].deletePixels(); } } class MeshContainer { protected: int indexValue; std::vector meshes; public: MeshContainer() { this->indexValue = -1; } void add(int index, Mesh *mesh) { if(this->indexValue < 0) { this->indexValue = index; } meshes.push_back(mesh); } int index() { return indexValue; } int size() { return meshes.size(); } std::vector get() { return meshes; } }; void Mesh::setVertices(Vec3f *data, uint32 count) { delete [] this->vertices; this->vertices = data; this->vertexCount = count; } void Mesh::setNormals(Vec3f *data, uint32 count) { delete [] this->normals; this->normals = data; this->vertexCount = count; } void Mesh::setTexCoords(Vec2f *data, uint32 count) { delete [] this->texCoords; this->texCoords = data; this->vertexCount = count; } void Mesh::setIndices(uint32 *data, uint32 count) { delete [] this->indices; this->indices = data; this->indexCount = count; } void Mesh::copyInto(Mesh *dest, bool ignoreInterpolationData, bool destinationOwnsTextures) { for(int index = 0; index < meshTextureCount; ++index){ dest->textures[index] = this->textures[index]; dest->texturesOwned[index] = this->texturesOwned[index]; dest->texturePaths[index] = this->texturePaths[index]; if(destinationOwnsTextures == true) { this->texturesOwned[index] = false; } } dest->name = this->name; //vertex data counts dest->frameCount = this->frameCount; dest->vertexCount = this->vertexCount; dest->indexCount = this->indexCount; dest->texCoordFrameCount = this->texCoordFrameCount; //vertex data if(dest->vertices != NULL) { delete [] dest->vertices; dest->vertices = NULL; } if(this->vertices != NULL) { dest->vertices = new Vec3f[this->frameCount * this->vertexCount]; memcpy(&dest->vertices[0],&this->vertices[0],this->frameCount * this->vertexCount * sizeof(Vec3f)); } if(dest->normals != NULL) { delete [] dest->normals; dest->normals = NULL; } if(this->normals != NULL) { dest->normals = new Vec3f[this->frameCount * this->vertexCount]; memcpy(&dest->normals[0],&this->normals[0],this->frameCount * this->vertexCount * sizeof(Vec3f)); } if(dest->texCoords != NULL) { delete [] dest->texCoords; dest->texCoords = NULL; } if(this->texCoords != NULL) { dest->texCoords = new Vec2f[this->vertexCount]; memcpy(&dest->texCoords[0],&this->texCoords[0],this->vertexCount * sizeof(Vec2f)); } if(dest->tangents != NULL) { delete [] dest->tangents; dest->tangents = NULL; } if(this->tangents != NULL) { dest->tangents = new Vec3f[this->vertexCount]; memcpy(&dest->tangents[0],&this->tangents[0],this->vertexCount * sizeof(Vec3f)); } if(dest->indices != NULL) { delete [] dest->indices; dest->indices = NULL; } if(this->indices != NULL) { dest->indices = new uint32[this->indexCount]; memcpy(&dest->indices[0],&this->indices[0],this->indexCount * sizeof(uint32)); } //material data dest->diffuseColor = this->diffuseColor; dest->specularColor = this->specularColor; dest->specularPower = this->specularPower; dest->opacity = this->opacity; //properties dest->twoSided = this->twoSided; dest->customColor = this->customColor; dest->noSelect = this->noSelect; dest->textureFlags = this->textureFlags; if(ignoreInterpolationData == false) { dest->interpolationData = this->interpolationData; } dest->textureManager = this->textureManager; // Vertex Buffer Object Names dest->hasBuiltVBOs = this->hasBuiltVBOs; dest->m_nVBOVertices = this-> m_nVBOVertices; dest->m_nVBOTexCoords = this->m_nVBOTexCoords; dest->m_nVBONormals = this->m_nVBONormals; dest->m_nVBOIndexes = this->m_nVBOIndexes; } void Model::autoJoinMeshFrames() { /* print "auto-joining compatible meshes..." meshes = {} for mesh in self.meshes: key = (mesh.texture,mesh.frame_count,mesh.twoSided|mesh.customColour) if key in meshes: meshes[key].append(mesh) else: meshes[key] = [mesh] for joinable in meshes.values(): if len(joinable) < 2: continue base = joinable[0] print "\tjoining to",base for mesh in joinable[1:]: if base.index_count+mesh.index_count > 0xffff: base = mesh print "\tjoining to",base continue print "\t\t",mesh for a,b in zip(base.frames,mesh.frames): a.vertices.extend(b.vertices) a.normals.extend(b.normals) if base.texture: base.textures.extend(mesh.textures) base.indices.extend(index+base.vertex_count for index in mesh.indices) base.vertex_count += mesh.vertex_count base.index_count += mesh.index_count self.meshes.remove(mesh) */ bool haveJoinedMeshes = false; // First looks for meshes with same texture in the same frame std::map joinedMeshes; for(uint32 index = 0; index < meshCount; ++index) { Mesh &mesh = meshes[index]; // Duplicate mesh vertices are considered to be those with the same // 1. texture 2. framecount 3. twosided flag value 4. same custom texture color // It's possible the texture is missing and will be NULL // if(mesh.getTextureFlags() & 1) { // printf("Mesh has textures:\n"); // for(unsigned int meshTexIndex = 0; meshTexIndex < meshTextureCount; ++meshTexIndex) { // printf("Mesh texture index: %d [%p] [%s]\n",meshTexIndex,mesh.getTexture(meshTexIndex),(mesh.getTexture(meshTexIndex) != NULL ? mesh.getTexture(meshTexIndex)->getPath().c_str() : "n/a")); // } // } string mesh_key = ((mesh.getTextureFlags() & 1) && mesh.getTexture(0) ? mesh.getTexture(0)->getPath() : "none"); mesh_key += string("_") + intToStr(mesh.getFrameCount()) + string("_") + intToStr(mesh.getTwoSided()) + string("_") + intToStr(mesh.getCustomTexture()) + string("_") + intToStr(mesh.getNoSelect()) + string("_") + floatToStr(mesh.getOpacity()) + string("_") + mesh.getDiffuseColor().getString() + string("_") + mesh.getSpecularColor().getString() + string("_") + floatToStr(mesh.getSpecularPower()); joinedMeshes[mesh_key].add(index,&mesh); if(haveJoinedMeshes == false && joinedMeshes[mesh_key].size() > 1) { haveJoinedMeshes = true; } } if(haveJoinedMeshes == true) { //printf("*** Detected Joined meshes for model [%s]\n",fileName.c_str()); // We have mesh data to join we now create a list in the same order // as the original meshes but each index will have 1 or more meshes // This is done to maintain original mesh ordering std::map > orderedMeshes; for(std::map::iterator iterMap = joinedMeshes.begin(); iterMap != joinedMeshes.end(); ++iterMap) { orderedMeshes[iterMap->second.index()] = iterMap->second.get(); //if(iterMap->second.size() > 1) { // printf("Key [%s] joined meshes: %d\n",iterMap->first.c_str(),iterMap->second.size()); //} } // Now the real work of creating a new list of joined mesh data Mesh *joinedMeshList = new Mesh[joinedMeshes.size()]; int index = 0; for(std::map >::iterator iterMap = orderedMeshes.begin(); iterMap != orderedMeshes.end(); ++iterMap) { //printf("Join index: %d joincount: %d\n",index,iterMap->second.size()); Mesh *base = &joinedMeshList[index]; // Deep copy mesh data iterMap->second[0]->copyInto(base, true, true); if(iterMap->second.size() > 1) { // Time to join mesh data for this mesh for(unsigned int joinIndex = 1; joinIndex < iterMap->second.size(); ++joinIndex) { Mesh *mesh = iterMap->second[joinIndex]; //if(base->getIndexCount() + mesh->getIndexCount() > 0xffff) { // printf("Not exactly sure what this IF statement is for?\n"); // mesh->copyInto(base, true, true); //} //else { // Need to add verticies for each from from mesh to base uint32 originalBaseVertexCount = base->getVertexCount(); uint32 newVertexCount = base->getVertexCount() + mesh->getVertexCount(); uint32 newVertexFrameCount = (base->getFrameCount() * newVertexCount); Vec3f *joined_vertices = new Vec3f[newVertexFrameCount]; Vec3f *joined_normals = new Vec3f[newVertexFrameCount]; uint32 join_index = 0; // Join mesh vertices and normals for(unsigned int frameIndex = 0; frameIndex < base->getFrameCount(); ++frameIndex) { uint32 baseIndex = frameIndex * originalBaseVertexCount; uint32 meshIndex = frameIndex * mesh->getVertexCount(); //uint32 appendBaseJoinIndex = frameIndex * newVertexCount; // first original mesh values get copied memcpy(&joined_vertices[join_index], &base->getVertices()[baseIndex], originalBaseVertexCount * sizeof(Vec3f)); memcpy(&joined_normals[join_index], &base->getNormals()[baseIndex], originalBaseVertexCount * sizeof(Vec3f)); join_index += originalBaseVertexCount; // second joined mesh values get copied memcpy(&joined_vertices[join_index], &mesh->getVertices()[meshIndex], mesh->getVertexCount() * sizeof(Vec3f)); memcpy(&joined_normals[join_index], &mesh->getNormals()[meshIndex], mesh->getVertexCount() * sizeof(Vec3f)); join_index += mesh->getVertexCount(); } // update vertex and normal buffers with joined mesh data base->setVertices(joined_vertices, newVertexCount); base->setNormals(joined_normals, newVertexCount); // If we have texture coords join them if(base->getTextureFlags() & 1) { Vec2f *joined_texCoords = new Vec2f[newVertexCount]; // update texture coord buffers with joined mesh data memcpy(&joined_texCoords[0], &base->getTexCoords()[0], originalBaseVertexCount * sizeof(Vec2f)); memcpy(&joined_texCoords[originalBaseVertexCount], &mesh->getTexCoords()[0], mesh->getVertexCount() * sizeof(Vec2f)); base->setTexCoords(joined_texCoords, newVertexCount); } // update index buffers with joined mesh data uint32 newindexCount = base->getIndexCount() + mesh->getIndexCount(); uint32 *joined_indexes = new uint32[newindexCount]; uint32 join_index_index = 0; memcpy(&joined_indexes[join_index_index], &base->getIndices()[0], base->getIndexCount() * sizeof(uint32)); join_index_index += base->getIndexCount(); for(unsigned int meshIndex = 0; meshIndex < mesh->getIndexCount(); ++meshIndex) { uint32 index_value = mesh->getIndices()[meshIndex]; // join index values joined_indexes[join_index_index] = index_value + originalBaseVertexCount; join_index_index++; } base->setIndices(joined_indexes, newindexCount); //} } } base->buildInterpolationData(); index++; } delete [] meshes; meshes = joinedMeshList; meshCount = joinedMeshes.size(); } } // ---------------------------------------------------------------------------- bool PixelBufferWrapper::isPBOEnabled = false; int PixelBufferWrapper::index = 0; vector PixelBufferWrapper::pboIds; PixelBufferWrapper::PixelBufferWrapper(int pboCount,int bufferSize) { //if(isGlExtensionSupported("GL_ARB_pixel_buffer_object") == true && if(GLEW_ARB_pixel_buffer_object) { PixelBufferWrapper::isPBOEnabled = true; cleanup(); // For some wacky reason this fails in VC++ 2008 //pboIds.reserve(pboCount); //glGenBuffersARB(pboCount, (GLuint*)&pboIds[0]); // for(int i = 0; i < pboCount; ++i) { pboIds.push_back(0); glGenBuffersARB(1, (GLuint*)&pboIds[i]); // create pixel buffer objects, you need to delete them when program exits. // glBufferDataARB with NULL pointer reserves only memory space. glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[i]); glBufferDataARB(GL_PIXEL_PACK_BUFFER_ARB, bufferSize, 0, GL_STREAM_READ_ARB); } glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0); } } Pixmap2D *PixelBufferWrapper::getPixelBufferFor(int x,int y,int w,int h, int colorComponents) { Pixmap2D *pixmapScreenShot = NULL; if(PixelBufferWrapper::isPBOEnabled == true) { // increment current index first then get the next index // "index" is used to read pixels from a framebuffer to a PBO // "nextIndex" is used to process pixels in the other PBO index = (index + 1) % 2; // pbo index used for next frame //int nextIndex = (index + 1) % 2; // read framebuffer /////////////////////////////// // copy pixels from framebuffer to PBO // Use offset instead of pointer. // OpenGL should perform asynch DMA transfer, so glReadPixels() will return immediately. glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[index]); //glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[nextIndex]); //glPixelStorei(GL_PACK_ALIGNMENT, 1); glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, 0); //glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // measure the time reading framebuffer //t1.stop(); //readTime = t1.getElapsedTimeInMilliSec(); // process pixel data ///////////////////////////// //t1.start(); // map the PBO that contain framebuffer pixels before processing it //glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[nextIndex]); glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[index]); GLubyte* src = (GLubyte*)glMapBufferARB(GL_PIXEL_PACK_BUFFER_ARB, GL_READ_ONLY_ARB); if(src) { pixmapScreenShot = new Pixmap2D(w, h, colorComponents); memcpy(pixmapScreenShot->getPixels(),src,(size_t)pixmapScreenShot->getPixelByteCount()); glUnmapBufferARB(GL_PIXEL_PACK_BUFFER_ARB); // release pointer to the mapped buffer //pixmapScreenShot->save("debugPBO.png"); } // measure the time reading framebuffer //t1.stop(); //processTime = t1.getElapsedTimeInMilliSec(); glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0); } return pixmapScreenShot; } void PixelBufferWrapper::begin() { if(PixelBufferWrapper::isPBOEnabled == true) { // set the framebuffer to read //glReadBuffer(GL_FRONT); } } void PixelBufferWrapper::end() { if(PixelBufferWrapper::isPBOEnabled == true) { // set the framebuffer to read //glReadBuffer(GL_BACK); } } void PixelBufferWrapper::cleanup() { if(PixelBufferWrapper::isPBOEnabled == true) { if(pboIds.empty() == false) { glDeleteBuffersARB(pboIds.size(), &pboIds[0]); pboIds.clear(); } } } PixelBufferWrapper::~PixelBufferWrapper() { cleanup(); } //unsigned char BaseColorPickEntity::nextColorID[COLOR_COMPONENTS] = {1, 1, 1, 1}; unsigned char BaseColorPickEntity::nextColorID[COLOR_COMPONENTS] = { 1, 1, 1 }; vector > BaseColorPickEntity::nextColorIDReuseList; Mutex BaseColorPickEntity::mutexNextColorID; auto_ptr BaseColorPickEntity::pbo; void BaseColorPickEntity::recycleUniqueColor() { MutexSafeWrapper safeMutex(&mutexNextColorID); vector reUseColor; reUseColor.push_back(uniqueColorID[0]); reUseColor.push_back(uniqueColorID[1]); reUseColor.push_back(uniqueColorID[2]); nextColorIDReuseList.push_back(reUseColor); } void BaseColorPickEntity::resetUniqueColors() { MutexSafeWrapper safeMutex(&mutexNextColorID); BaseColorPickEntity::nextColorID[0] = 1; BaseColorPickEntity::nextColorID[1] = 1; BaseColorPickEntity::nextColorID[2] = 1; nextColorIDReuseList.clear(); } BaseColorPickEntity::BaseColorPickEntity() { MutexSafeWrapper safeMutex(&mutexNextColorID); if(nextColorIDReuseList.empty() == false) { uniqueColorID[0] = nextColorIDReuseList.back()[0]; uniqueColorID[1] = nextColorIDReuseList.back()[1]; uniqueColorID[2] = nextColorIDReuseList.back()[2]; nextColorIDReuseList.pop_back(); } else { uniqueColorID[0] = nextColorID[0]; uniqueColorID[1] = nextColorID[1]; uniqueColorID[2] = nextColorID[2]; //uniqueColorID[3] = nextColorID[3]; const int colorSpacing = 8; if((int)(nextColorID[0] + colorSpacing) <= 255) { nextColorID[0] += colorSpacing; } else { nextColorID[0] = 1; if((int)(nextColorID[1] + colorSpacing) <= 255) { nextColorID[1] += colorSpacing; } else { nextColorID[1] = 1; if((int)(nextColorID[2] + colorSpacing) <= 255) { nextColorID[2] += colorSpacing; } else { //printf("Color rolled over on 3rd level!\n"); nextColorID[0] = 1; nextColorID[1] = 1; nextColorID[2] = 1; // nextColorID[2] = 1; // nextColorID[3]+=colorSpacing; // // if(nextColorID[3] > 255) { // nextColorID[0] = 1; // nextColorID[1] = 1; // nextColorID[2] = 1; // nextColorID[3] = 1; // } } } } } } void BaseColorPickEntity::init(int bufferSize) { if(BaseColorPickEntity::pbo.get() == NULL) { BaseColorPickEntity::pbo.reset(new PixelBufferWrapper(2,bufferSize)); } } string BaseColorPickEntity::getColorDescription() const { char szBuf[100]=""; snprintf(szBuf,100,"%d.%d.%d",uniqueColorID[0],uniqueColorID[1],uniqueColorID[2]); string result = szBuf; return result; } void BaseColorPickEntity::beginPicking() { // turn off texturing, lighting and fog //glClearColor (0.0,0.0,0.0,0.0); //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //reset current background. This is neeeded to get a proper black background! glClear(GL_COLOR_BUFFER_BIT); glPushAttrib(GL_ENABLE_BIT); glDisable(GL_TEXTURE_2D); glDisable(GL_FOG); glDisable(GL_LIGHTING); glDisable(GL_BLEND); glDisable(GL_MULTISAMPLE); glDisable(GL_DITHER); glDisable(GL_POLYGON_OFFSET_FILL); glDisable(GL_NORMALIZE); //glPushAttrib(GL_TEXTURE_2D | GL_LIGHTING | GL_BLEND | GL_MULTISAMPLE | GL_DITHER); //glPushAttrib(GL_ENABLE_BIT | GL_LIGHTING_BIT | GL_POLYGON_BIT | GL_CURRENT_BIT | GL_TEXTURE_BIT | GL_NORMALIZE | GL_BLEND | GL_POLYGON_OFFSET_FILL); } void BaseColorPickEntity::endPicking() { // turn off texturing, lighting and fog //glEnable(GL_TEXTURE_2D); //glEnable(GL_FOG); //glEnable(GL_LIGHTING); //glEnable(GL_BLEND); //glEnable(GL_MULTISAMPLE); //glEnable(GL_DITHER); glPopAttrib(); } vector BaseColorPickEntity::getPickedList(int x,int y,int w,int h, const vector &rendererModels) { vector pickedModels; pickedModels.reserve(rendererModels.size()); //printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__); static auto_ptr cachedPixels; if(rendererModels.empty() == false) { if(PixelBufferWrapper::getIsPBOEnable() == true) { Pixmap2D *pixmapScreenShot = BaseColorPickEntity::pbo->getPixelBufferFor(x,y,w,h, COLOR_COMPONENTS); //pixmapScreenShot->saveTga("/tmp/toll.tga"); cachedPixels.reset(pixmapScreenShot); } else { Pixmap2D *pixmapScreenShot = new Pixmap2D(w, h, COLOR_COMPONENTS); //glPixelStorei(GL_PACK_ALIGNMENT, 1); glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixmapScreenShot->getPixels()); //pixmapScreenShot->saveTga("/tmp/toll.tga"); cachedPixels.reset(pixmapScreenShot); //glPixelStorei(GL_UNPACK_ALIGNMENT, 1); } unsigned char *pixelBuffer = cachedPixels->getPixels(); map modelAlreadyPickedList; map > > colorAlreadyPickedList; int skipSteps=4; unsigned char *oldpixel = &pixelBuffer[0]; // now we check the screenshot if we find pixels in color of unit identity // to speedup we only check every "skipSteps" line and pixel in a row if we find such a color. // this is exact enough for MG purpose for(int hh = 0; hh < h && pickedModels.size() < rendererModels.size(); hh=hh+skipSteps) { for(int ww=0;ww < w && pickedModels.size() < rendererModels.size(); ww=ww+skipSteps){ int index = (hh*w+ww) * COLOR_COMPONENTS; unsigned char *pixel = &pixelBuffer[index]; //printf("pixel[0]=%d pixel[1]=%d pixel[2]=%d\n",pixel[0],pixel[1],pixel[2]); if(pixel[0]==0 && pixel[1]==0 && pixel[2]==0) { continue; } // if(index>0) // { // oldpixel = &pixelBuffer[index-1*COLOR_COMPONENTS]; // if(memcmp(pixel,oldpixel,3)) continue; // } // Skip duplicate scanned colors map > >::const_iterator iterFind1 = colorAlreadyPickedList.find(pixel[0]); if(iterFind1 != colorAlreadyPickedList.end()) { map >::const_iterator iterFind2 = iterFind1->second.find(pixel[1]); if(iterFind2 != iterFind1->second.end()) { map::const_iterator iterFind3 = iterFind2->second.find(pixel[2]); if(iterFind3 != iterFind2->second.end()) { continue; } } } for(unsigned int i = 0; i < rendererModels.size(); ++i) { // Skip models already selected if(modelAlreadyPickedList.find(i) != modelAlreadyPickedList.end()) { continue; } const BaseColorPickEntity *model = rendererModels[i]; if( model != NULL && model->isUniquePickingColor(pixel) == true) { //printf("Found match pixel [%d.%d.%d] for model [%s] ptr [%p][%s]\n",pixel[0],pixel[1],pixel[2],model->getColorDescription().c_str(), model,model->getUniquePickName().c_str()); pickedModels.push_back(i); modelAlreadyPickedList[i]=true; colorAlreadyPickedList[pixel[0]][pixel[1]][pixel[2]]=true; break; } } } } //printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__); //delete pixmapScreenShot; } //printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__); return pickedModels; } bool BaseColorPickEntity::isUniquePickingColor(unsigned char *pixel) const { bool result = false; if( uniqueColorID[0] == pixel[0] && uniqueColorID[1] == pixel[1] && uniqueColorID[2] == pixel[2]) { //uniqueColorID[3] == pixel[3]) { result = true; } return result; } void BaseColorPickEntity::setUniquePickingColor() const { glColor3ub(uniqueColorID[0], uniqueColorID[1], uniqueColorID[2]); /* glColor3f( uniqueColorID[0] / 255.0f, uniqueColorID[1] / 255.0f, uniqueColorID[2] / 255.0f); //uniqueColorID[3] / 255.0f); * */ } }}//end namespace