Files
glest-source/source/shared_lib/sources/graphics/model.cpp
2018-05-06 00:01:36 +02:00

2255 lines
86 KiB
C++

// ==============================================================
// This file is part of Glest Shared Library (www.glest.org)
//
// Copyright (C) 2001-2008 Martiño Figueroa
//
// You can redistribute this code and/or modify it under
// the terms of the GNU General Public License as published
// by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version
// ==============================================================
#include "model.h"
#include <cstdio>
#include <cassert>
#include <stdexcept>
#include "interpolation.h"
#include "conversion.h"
#include "util.h"
#include "platform_common.h"
#include "opengl.h"
#include "platform_util.h"
//#include <memory>
#include <map>
#include <vector>
#include "leak_dumper.h"
using namespace Shared::Platform;
using namespace Shared::PlatformCommon;
using namespace Shared::Graphics::Gl;
using namespace std;
using namespace Shared::Util;
namespace Shared {
namespace Graphics {
using namespace Util;
// Utils methods for endianness conversion
void toEndianFileHeader(FileHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
for (unsigned int i = 0; i < 3; ++i) {
header.id[i] = Shared::PlatformByteOrder::toCommonEndian(header.id[i]);
}
header.version = Shared::PlatformByteOrder::toCommonEndian(header.version);
}
}
void fromEndianFileHeader(FileHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
for (unsigned int i = 0; i < 3; ++i) {
header.id[i] = Shared::PlatformByteOrder::fromCommonEndian(header.id[i]);
}
header.version = Shared::PlatformByteOrder::fromCommonEndian(header.version);
}
}
void toEndianModelHeader(ModelHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.type = Shared::PlatformByteOrder::toCommonEndian(header.type);
header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount);
}
}
void fromEndianModelHeader(ModelHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.type = Shared::PlatformByteOrder::toCommonEndian(header.type);
header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount);
}
}
void toEndianMeshHeader(MeshHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
for (unsigned int i = 0; i < meshNameSize; ++i) {
header.name[i] = Shared::PlatformByteOrder::toCommonEndian(header.name[i]);
}
header.frameCount = Shared::PlatformByteOrder::toCommonEndian(header.frameCount);
header.vertexCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexCount);
header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount);
for (unsigned int i = 0; i < 3; ++i) {
header.diffuseColor[i] = Shared::PlatformByteOrder::toCommonEndian(header.diffuseColor[i]);
header.specularColor[i] = Shared::PlatformByteOrder::toCommonEndian(header.specularColor[i]);
}
header.specularPower = Shared::PlatformByteOrder::toCommonEndian(header.specularPower);
header.opacity = Shared::PlatformByteOrder::toCommonEndian(header.opacity);
header.properties = Shared::PlatformByteOrder::toCommonEndian(header.properties);
header.textures = Shared::PlatformByteOrder::toCommonEndian(header.textures);
}
}
void fromEndianMeshHeader(MeshHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
for (unsigned int i = 0; i < meshNameSize; ++i) {
header.name[i] = Shared::PlatformByteOrder::fromCommonEndian(header.name[i]);
}
header.frameCount = Shared::PlatformByteOrder::fromCommonEndian(header.frameCount);
header.vertexCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexCount);
header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount);
for (unsigned int i = 0; i < 3; ++i) {
header.diffuseColor[i] = Shared::PlatformByteOrder::fromCommonEndian(header.diffuseColor[i]);
header.specularColor[i] = Shared::PlatformByteOrder::fromCommonEndian(header.specularColor[i]);
}
header.specularPower = Shared::PlatformByteOrder::fromCommonEndian(header.specularPower);
header.opacity = Shared::PlatformByteOrder::fromCommonEndian(header.opacity);
header.properties = Shared::PlatformByteOrder::fromCommonEndian(header.properties);
header.textures = Shared::PlatformByteOrder::fromCommonEndian(header.textures);
}
}
void toEndianModelHeaderV3(ModelHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount);
}
}
void fromEndianModelHeaderV3(ModelHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.meshCount = Shared::PlatformByteOrder::fromCommonEndian(header.meshCount);
}
}
void toEndianMeshHeaderV3(MeshHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::toCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount);
header.properties = Shared::PlatformByteOrder::toCommonEndian(header.properties);
for (unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::toCommonEndian(header.texName[i]);
}
}
}
void fromEndianMeshHeaderV3(MeshHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::fromCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount);
header.properties = Shared::PlatformByteOrder::fromCommonEndian(header.properties);
for (unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::fromCommonEndian(header.texName[i]);
}
}
}
void toEndianMeshHeaderV2(MeshHeaderV2 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::toCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount);
header.hasTexture = Shared::PlatformByteOrder::toCommonEndian(header.hasTexture);
header.primitive = Shared::PlatformByteOrder::toCommonEndian(header.primitive);
header.cullFace = Shared::PlatformByteOrder::toCommonEndian(header.cullFace);
for (unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::toCommonEndian(header.texName[i]);
}
}
}
void fromEndianMeshHeaderV2(MeshHeaderV2 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if (bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::fromCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount);
header.hasTexture = Shared::PlatformByteOrder::fromCommonEndian(header.hasTexture);
header.primitive = Shared::PlatformByteOrder::fromCommonEndian(header.primitive);
header.cullFace = Shared::PlatformByteOrder::fromCommonEndian(header.cullFace);
for (unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::fromCommonEndian(header.texName[i]);
}
}
}
// =====================================================
// class Mesh
// =====================================================
// ==================== constructor & destructor ====================
Mesh::Mesh() {
textureManager = NULL;
frameCount = 0;
vertexCount = 0;
indexCount = 0;
texCoordFrameCount = 0;
opacity = 0.0f;
specularPower = 0.0f;
vertices = NULL;
normals = NULL;
texCoords = NULL;
tangents = NULL;
indices = NULL;
interpolationData = NULL;
for (int i = 0; i < meshTextureCount; ++i) {
textures[i] = NULL;
texturesOwned[i] = false;
}
twoSided = false;
customColor = false;
noSelect = false;
glow = false;
textureFlags = 0;
hasBuiltVBOs = false;
// Vertex Buffer Object Names
m_nVBOVertices = 0;
m_nVBOTexCoords = 0;
m_nVBONormals = 0;
m_nVBOIndexes = 0;
}
Mesh::~Mesh() {
end();
}
void Mesh::init() {
try {
vertices = new Vec3f[frameCount*vertexCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, (frameCount*vertexCount), ba.what());
throw megaglest_runtime_error(szBuf);
}
try {
normals = new Vec3f[frameCount*vertexCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, (frameCount*vertexCount), ba.what());
throw megaglest_runtime_error(szBuf);
}
try {
texCoords = new Vec2f[vertexCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, vertexCount, ba.what());
throw megaglest_runtime_error(szBuf);
}
try {
indices = new uint32[indexCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, indexCount, ba.what());
throw megaglest_runtime_error(szBuf);
}
}
void Mesh::end() {
ReleaseVBOs();
delete[] vertices;
vertices = NULL;
delete[] normals;
normals = NULL;
delete[] texCoords;
texCoords = NULL;
delete[] tangents;
tangents = NULL;
delete[] indices;
indices = NULL;
cleanupInterpolationData();
if (textureManager != NULL) {
for (int i = 0; i < meshTextureCount; ++i) {
if (texturesOwned[i] == true && textures[i] != NULL) {
//printf("Deleting Texture [%s] i = %d\n",textures[i]->getPath().c_str(),i);
textureManager->endTexture(textures[i]);
textures[i] = NULL;
}
}
}
textureManager = NULL;
}
// ========================== shadows & interpolation =========================
void Mesh::buildInterpolationData() {
if (interpolationData != NULL) {
printf("**WARNING possible memory leak [Mesh::buildInterpolationData()]\n");
}
interpolationData = new InterpolationData(this);
}
void Mesh::cleanupInterpolationData() {
delete interpolationData;
interpolationData = NULL;
}
void Mesh::updateInterpolationData(float t, bool cycle) {
if (interpolationData != NULL) {
interpolationData->update(t, cycle);
}
}
void Mesh::updateInterpolationVertices(float t, bool cycle) {
if (interpolationData != NULL) {
interpolationData->updateVertices(t, cycle);
}
}
void Mesh::BuildVBOs() {
if (getVBOSupported() == true) {
if (hasBuiltVBOs == false) {
//printf("In [%s::%s Line: %d] setting up a VBO...\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
// Generate And Bind The Vertex Buffer
glGenBuffersARB(1, (GLuint*) &m_nVBOVertices); // Get A Valid Name
glBindBufferARB(GL_ARRAY_BUFFER_ARB, m_nVBOVertices); // Bind The Buffer
// Load The Data
glBufferDataARB(GL_ARRAY_BUFFER_ARB, sizeof(Vec3f)*frameCount*vertexCount, vertices, GL_STATIC_DRAW_ARB);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
// Generate And Bind The Texture Coordinate Buffer
glGenBuffersARB(1, (GLuint*) &m_nVBOTexCoords); // Get A Valid Name
glBindBufferARB(GL_ARRAY_BUFFER_ARB, m_nVBOTexCoords); // Bind The Buffer
// Load The Data
glBufferDataARB(GL_ARRAY_BUFFER_ARB, sizeof(Vec2f)*vertexCount, texCoords, GL_STATIC_DRAW_ARB);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
// Generate And Bind The Normal Buffer
glGenBuffersARB(1, (GLuint*) &m_nVBONormals); // Get A Valid Name
glBindBufferARB(GL_ARRAY_BUFFER_ARB, m_nVBONormals); // Bind The Buffer
// Load The Data
glBufferDataARB(GL_ARRAY_BUFFER_ARB, sizeof(Vec3f)*frameCount*vertexCount, normals, GL_STATIC_DRAW_ARB);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
// Generate And Bind The Index Buffer
glGenBuffersARB(1, (GLuint*) &m_nVBOIndexes); // Get A Valid Name
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, m_nVBOIndexes); // Bind The Buffer
// Load The Data
glBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, sizeof(uint32)*indexCount, indices, GL_STATIC_DRAW_ARB);
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
// Our Copy Of The Data Is No Longer Necessary, It Is Safe In The Graphics Card
delete[] vertices; vertices = NULL;
delete[] texCoords; texCoords = NULL;
delete[] normals; normals = NULL;
delete[] indices; indices = NULL;
delete interpolationData;
interpolationData = NULL;
hasBuiltVBOs = true;
}
}
}
void Mesh::ReleaseVBOs() {
if (getVBOSupported() == true) {
if (hasBuiltVBOs == true) {
glDeleteBuffersARB(1, (GLuint*) &m_nVBOVertices); // Get A Valid Name
glDeleteBuffersARB(1, (GLuint*) &m_nVBOTexCoords); // Get A Valid Name
glDeleteBuffersARB(1, (GLuint*) &m_nVBONormals); // Get A Valid Name
glDeleteBuffersARB(1, (GLuint*) &m_nVBOIndexes); // Get A Valid Name
hasBuiltVBOs = false;
}
}
}
// ==================== load ====================
string Mesh::findAlternateTexture(vector<string> conversionList, string textureFile) {
string result = textureFile;
string fileExt = extractExtension(textureFile);
for (unsigned int i = 0; i < conversionList.size(); ++i) {
string convertTo = conversionList[i];
if (fileExt != convertTo) {
string alternateTexture = textureFile;
replaceAll(alternateTexture, "." + fileExt, "." + convertTo);
if (fileExists(alternateTexture) == true) {
result = alternateTexture;
break;
}
}
}
return result;
}
void Mesh::loadV2(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager,
bool deletePixMapAfterLoad, std::map<string, vector<pair<string, string> > > *loadedFileList,
string sourceLoader, string modelFile) {
this->textureManager = textureManager;
//read header
MeshHeaderV2 meshHeader;
size_t readBytes = fread(&meshHeader, sizeof(MeshHeaderV2), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianMeshHeaderV2(meshHeader);
if (meshHeader.normalFrameCount != meshHeader.vertexFrameCount) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Old v2 model: vertex frame count different from normal frame count [v = %d, n = %d] meshIndex = %d modelFile [%s]", meshHeader.vertexFrameCount, meshHeader.normalFrameCount, meshIndex, modelFile.c_str());
throw megaglest_runtime_error(szBuf, true);
}
if (meshHeader.texCoordFrameCount != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Old v2 model: texture coord frame count is not 1 [t = %d] meshIndex = %d modelFile [%s]", meshHeader.texCoordFrameCount, meshIndex, modelFile.c_str());
throw megaglest_runtime_error(szBuf, true);
}
//init
frameCount = meshHeader.vertexFrameCount;
vertexCount = meshHeader.pointCount;
indexCount = meshHeader.indexCount;
texCoordFrameCount = meshHeader.texCoordFrameCount;
init();
//misc
twoSided = false;
customColor = false;
noSelect = false;
glow = false;
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v2, this = %p Found meshHeader.hasTexture = %d, texName [%s] mtDiffuse = %d meshIndex = %d modelFile [%s]\n", this, meshHeader.hasTexture, toLower(reinterpret_cast<char*>(meshHeader.texName)).c_str(), mtDiffuse, meshIndex, modelFile.c_str());
textureFlags = 0;
if (meshHeader.hasTexture) {
textureFlags = 1;
}
//texture
if (meshHeader.hasTexture && textureManager != NULL) {
texturePaths[mtDiffuse] = toLower(reinterpret_cast<char*>(meshHeader.texName));
string texPath = dir;
if (texPath != "") {
endPathWithSlash(texPath);
}
texPath += texturePaths[mtDiffuse];
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v2 model texture [%s] meshIndex = %d modelFile [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, texPath.c_str(), meshIndex, modelFile.c_str());
textures[mtDiffuse] = dynamic_cast<Texture2D*>(textureManager->getTexture(texPath));
if (textures[mtDiffuse] == NULL) {
if (fileExists(texPath) == false) {
vector<string> conversionList;
conversionList.push_back("png");
conversionList.push_back("jpg");
conversionList.push_back("tga");
conversionList.push_back("bmp");
texPath = findAlternateTexture(conversionList, texPath);
}
if (fileExists(texPath) == true) {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v2 model texture [%s] meshIndex = %d modelFile [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, texPath.c_str(), meshIndex, modelFile.c_str());
textures[mtDiffuse] = textureManager->newTexture2D();
textures[mtDiffuse]->load(texPath);
if (loadedFileList) {
(*loadedFileList)[texPath].push_back(make_pair(sourceLoader, sourceLoader));
}
texturesOwned[mtDiffuse] = true;
textures[mtDiffuse]->init(textureManager->getTextureFilter(), textureManager->getMaxAnisotropy());
if (deletePixMapAfterLoad == true) {
textures[mtDiffuse]->deletePixels();
}
} else {
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] Error v2 model is missing texture [%s] meshIndex = %d modelFile [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, texPath.c_str(), meshIndex, modelFile.c_str());
}
}
}
//read data
readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if (readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(vertices, frameCount*vertexCount);
readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if (readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(normals, frameCount*vertexCount);
if (textureFlags & (1 << mtDiffuse)) {
readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
if (readBytes != 1 && vertexCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec2f>(texCoords, vertexCount);
}
readBytes = fread(&diffuseColor, sizeof(Vec3f), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(&diffuseColor, 1);
readBytes = fread(&opacity, sizeof(float32), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
opacity = Shared::PlatformByteOrder::fromCommonEndian(opacity);
int seek_result = fseek(f, sizeof(Vec4f)*(meshHeader.colorFrameCount - 1), SEEK_CUR);
if (seek_result != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fseek returned failure = %d [%u] on line: %d.", seek_result, indexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f);
if (readBytes != 1 && indexCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.", readBytes, indexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint32>(indices, indexCount);
}
void Mesh::loadV3(int meshIndex, const string &dir, FILE *f,
TextureManager *textureManager, bool deletePixMapAfterLoad,
std::map<string, vector<pair<string, string> > > *loadedFileList,
string sourceLoader, string modelFile) {
this->textureManager = textureManager;
//read header
MeshHeaderV3 meshHeader;
size_t readBytes = fread(&meshHeader, sizeof(MeshHeaderV3), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianMeshHeaderV3(meshHeader);
if (meshHeader.normalFrameCount != meshHeader.vertexFrameCount) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Old v3 model: vertex frame count different from normal frame count [v = %d, n = %d] meshIndex = %d modelFile [%s]", meshHeader.vertexFrameCount, meshHeader.normalFrameCount, meshIndex, modelFile.c_str());
throw megaglest_runtime_error(szBuf, true);
}
//init
frameCount = meshHeader.vertexFrameCount;
vertexCount = meshHeader.pointCount;
indexCount = meshHeader.indexCount;
texCoordFrameCount = meshHeader.texCoordFrameCount;
init();
//misc
twoSided = (meshHeader.properties & mp3TwoSided) != 0;
customColor = (meshHeader.properties & mp3CustomColor) != 0;
noSelect = false;
glow = false;
textureFlags = 0;
if ((meshHeader.properties & mp3NoTexture) != mp3NoTexture) {
textureFlags = 1;
}
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v3, this = %p Found meshHeader.properties = %d, textureFlags = %d, texName [%s] mtDiffuse = %d meshIndex = %d modelFile [%s]\n", this, meshHeader.properties, textureFlags, toLower(reinterpret_cast<char*>(meshHeader.texName)).c_str(), mtDiffuse, meshIndex, modelFile.c_str());
//texture
if ((meshHeader.properties & mp3NoTexture) != mp3NoTexture && textureManager != NULL) {
texturePaths[mtDiffuse] = toLower(reinterpret_cast<char*>(meshHeader.texName));
string texPath = dir;
if (texPath != "") {
endPathWithSlash(texPath);
}
texPath += texturePaths[mtDiffuse];
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v3 model texture [%s] meshIndex = %d modelFile [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, texPath.c_str(), meshIndex, modelFile.c_str());
textures[mtDiffuse] = dynamic_cast<Texture2D*>(textureManager->getTexture(texPath));
if (textures[mtDiffuse] == NULL) {
if (fileExists(texPath) == false) {
vector<string> conversionList;
conversionList.push_back("png");
conversionList.push_back("jpg");
conversionList.push_back("tga");
conversionList.push_back("bmp");
texPath = findAlternateTexture(conversionList, texPath);
}
if (fileExists(texPath) == true) {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v3 model texture [%s] meshIndex = %d modelFile [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, texPath.c_str(), meshIndex, modelFile.c_str());
textures[mtDiffuse] = textureManager->newTexture2D();
textures[mtDiffuse]->load(texPath);
if (loadedFileList) {
(*loadedFileList)[texPath].push_back(make_pair(sourceLoader, sourceLoader));
}
texturesOwned[mtDiffuse] = true;
textures[mtDiffuse]->init(textureManager->getTextureFilter(), textureManager->getMaxAnisotropy());
if (deletePixMapAfterLoad == true) {
textures[mtDiffuse]->deletePixels();
}
} else {
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] Error v3 model is missing texture [%s] meshHeader.properties = %d meshIndex = %d modelFile [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, texPath.c_str(), meshHeader.properties, meshIndex, modelFile.c_str());
}
}
}
//read data
readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if (readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(vertices, frameCount*vertexCount);
readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if (readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(normals, frameCount*vertexCount);
if (textureFlags & (1 << mtDiffuse)) {
for (unsigned int i = 0; i < meshHeader.texCoordFrameCount; ++i) {
readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
if (readBytes != 1 && vertexCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec2f>(texCoords, vertexCount);
}
}
readBytes = fread(&diffuseColor, sizeof(Vec3f), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(&diffuseColor, 1);
readBytes = fread(&opacity, sizeof(float32), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
opacity = Shared::PlatformByteOrder::fromCommonEndian(opacity);
int seek_result = fseek(f, sizeof(Vec4f)*(meshHeader.colorFrameCount - 1), SEEK_CUR);
if (seek_result != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fseek returned failure = %d [%u] on line: %d.", seek_result, indexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f);
if (readBytes != 1 && indexCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.", readBytes, indexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint32>(indices, indexCount);
}
Texture2D* Mesh::loadMeshTexture(int meshIndex, int textureIndex,
TextureManager *textureManager, string textureFile,
int textureChannelCount, bool &textureOwned, bool deletePixMapAfterLoad,
std::map<string, vector<pair<string, string> > > *loadedFileList,
string sourceLoader, string modelFile) {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #1 load texture [%s] modelFile [%s]\n", __FUNCTION__, textureFile.c_str(), modelFile.c_str());
Texture2D* texture = dynamic_cast<Texture2D*>(textureManager->getTexture(textureFile));
if (texture == NULL) {
if (fileExists(textureFile) == false) {
vector<string> conversionList;
conversionList.push_back("png");
conversionList.push_back("jpg");
conversionList.push_back("tga");
conversionList.push_back("bmp");
textureFile = findAlternateTexture(conversionList, textureFile);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #2 load texture [%s]\n", __FUNCTION__, textureFile.c_str());
}
if (fileExists(textureFile) == true) {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #3 load texture [%s] modelFile [%s]\n", __FUNCTION__, textureFile.c_str(), modelFile.c_str());
//if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture exists loading [%s]\n",__FUNCTION__,textureFile.c_str());
texture = textureManager->newTexture2D();
if (textureChannelCount != -1) {
texture->getPixmap()->init(textureChannelCount);
}
texture->load(textureFile);
if (loadedFileList) {
(*loadedFileList)[textureFile].push_back(make_pair(sourceLoader, sourceLoader));
}
//if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture loaded [%s]\n",__FUNCTION__,textureFile.c_str());
textureOwned = true;
texture->init(textureManager->getTextureFilter(), textureManager->getMaxAnisotropy());
if (deletePixMapAfterLoad == true) {
texture->deletePixels();
}
//if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture inited [%s]\n",__FUNCTION__,textureFile.c_str());
} else {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #3 cannot load texture [%s] modelFile [%s]\n", __FUNCTION__, textureFile.c_str(), modelFile.c_str());
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] Error v4 model is missing texture [%s] textureFlags = %d meshIndex = %d textureIndex = %d modelFile [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, textureFile.c_str(), textureFlags, meshIndex, textureIndex, modelFile.c_str());
}
}
return texture;
}
void Mesh::load(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager,
bool deletePixMapAfterLoad, std::map<string, vector<pair<string, string> > > *loadedFileList,
string sourceLoader, string modelFile) {
this->textureManager = textureManager;
//read header
MeshHeader meshHeader;
size_t readBytes = fread(&meshHeader, sizeof(MeshHeader), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianMeshHeader(meshHeader);
name = reinterpret_cast<char*>(meshHeader.name);
//printf("Load, Found meshTextureCount = %d, meshHeader.textures = %d\n",meshTextureCount,meshHeader.textures);
//init
frameCount = meshHeader.frameCount;
vertexCount = meshHeader.vertexCount;
indexCount = meshHeader.indexCount;
init();
//properties
customColor = (meshHeader.properties & mpfCustomColor) != 0;
twoSided = (meshHeader.properties & mpfTwoSided) != 0;
noSelect = (meshHeader.properties & mpfNoSelect) != 0;
glow = (meshHeader.properties & mpfGlow) != 0;
//material
diffuseColor = Vec3f(meshHeader.diffuseColor);
specularColor = Vec3f(meshHeader.specularColor);
specularPower = meshHeader.specularPower;
opacity = meshHeader.opacity;
if (opacity == 0) {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("found a mesh with opacity=0 in header, using opacity=1 to see it now \n");
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("file: %s\n", modelFile.c_str());
opacity = 1.0f;
}
textureFlags = meshHeader.textures;
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v4, this = %p Found meshHeader.textures = %d meshIndex = %d\n", this, meshHeader.textures, meshIndex);
//maps
uint32 flag = 1;
for (int i = 0; i < meshTextureCount; ++i) {
if (meshHeader.textures & flag) {
uint8 cMapPath[mapPathSize + 1];
memset(&cMapPath[0], 0, mapPathSize + 1);
readBytes = fread(cMapPath, mapPathSize, 1, f);
cMapPath[mapPathSize] = 0;
if (readBytes != 1 && mapPathSize != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.", readBytes, mapPathSize, __LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint8>(cMapPath, mapPathSize);
char mapPathString[mapPathSize + 1] = "";
memset(&mapPathString[0], 0, mapPathSize + 1);
memcpy(&mapPathString[0], reinterpret_cast<char*>(cMapPath), mapPathSize);
string mapPath = toLower(mapPathString);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("mapPath [%s] meshHeader.textures = %d flag = %d (meshHeader.textures & flag) = %d meshIndex = %d i = %d\n", mapPath.c_str(), meshHeader.textures, flag, (meshHeader.textures & flag), meshIndex, i);
string mapFullPath = dir;
if (mapFullPath != "") {
endPathWithSlash(mapFullPath);
}
mapFullPath += mapPath;
if (textureManager) {
textures[i] = loadMeshTexture(meshIndex, i, textureManager, mapFullPath,
meshTextureChannelCount[i], texturesOwned[i],
deletePixMapAfterLoad, loadedFileList, sourceLoader, modelFile);
}
}
flag *= 2;
}
//read data
readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if (readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(vertices, frameCount*vertexCount);
readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if (readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(normals, frameCount*vertexCount);
if (meshHeader.textures != 0) {
readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
if (readBytes != 1 && vertexCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.", readBytes, frameCount, vertexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec2f>(texCoords, vertexCount);
}
readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f);
if (readBytes != 1 && indexCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.", readBytes, indexCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint32>(indices, indexCount);
//tangents
if (textures[mtNormal] != NULL) {
computeTangents();
}
}
void Mesh::save(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager,
string convertTextureToFormat, std::map<string, int> &textureDeleteList,
bool keepsmallest, string modelFile) {
MeshHeader meshHeader;
memset(&meshHeader, 0, sizeof(struct MeshHeader));
strncpy((char*) meshHeader.name, (char*) name.c_str(), name.length());
meshHeader.frameCount = frameCount;
meshHeader.vertexCount = vertexCount;
meshHeader.indexCount = indexCount;
//material
memcpy((float32*) meshHeader.diffuseColor, (float32*) diffuseColor.ptr(), sizeof(float32) * 3);
memcpy((float32*) meshHeader.specularColor, (float32*) specularColor.ptr(), sizeof(float32) * 3);
meshHeader.specularPower = specularPower;
meshHeader.opacity = opacity;
//properties
meshHeader.properties = 0;
if (customColor) {
meshHeader.properties |= mpfCustomColor;
}
if (twoSided) {
meshHeader.properties |= mpfTwoSided;
}
if (noSelect) {
meshHeader.properties |= mpfNoSelect;
}
if (glow) {
meshHeader.properties |= mpfGlow;
}
meshHeader.textures = textureFlags;
fwrite(&meshHeader, sizeof(MeshHeader), 1, f);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, this = %p, Found meshTextureCount = %d, meshHeader.textures = %d meshIndex = %d\n", this, meshTextureCount, meshHeader.textures, meshIndex);
//maps
uint32 flag = 1;
for (int i = 0; i < meshTextureCount; ++i) {
if ((meshHeader.textures & flag)) {
uint8 cMapPath[mapPathSize];
memset(&cMapPath[0], 0, mapPathSize);
Texture2D *texture = textures[i];
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, [%d] mesh texture ptr [%p]\n", i, texture);
if (texture != NULL) {
string file = toLower(texture->getPath());
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, Found mesh texture [%s]\n", file.c_str());
if (toLower(convertTextureToFormat) != "" &&
EndsWith(file, "." + convertTextureToFormat) == false) {
long originalSize = getFileSize(file);
long newSize = originalSize;
string fileExt = extractExtension(file);
replaceAll(file, "." + fileExt, "." + convertTextureToFormat);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, Convert from [%s] to [%s]\n", texture->getPath().c_str(), file.c_str());
if (convertTextureToFormat == "tga") {
texture->getPixmap()->saveTga(file);
newSize = getFileSize(file);
if (keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
} else {
printf("Texture will not be converted, keeping smallest texture [%s]\n", texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
} else if (convertTextureToFormat == "bmp") {
texture->getPixmap()->saveBmp(file);
newSize = getFileSize(file);
if (keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
} else {
printf("Texture will not be converted, keeping smallest texture [%s]\n", texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
} else if (convertTextureToFormat == "jpg") {
texture->getPixmap()->saveJpg(file);
newSize = getFileSize(file);
if (keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
} else {
printf("Texture will not be converted, keeping smallest texture [%s]\n", texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
} else if (convertTextureToFormat == "png") {
texture->getPixmap()->savePng(file);
newSize = getFileSize(file);
if (keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
} else {
printf("Texture will not be converted, keeping smallest texture [%s]\n", texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
} else {
throw megaglest_runtime_error("Unsupported texture format: [" + convertTextureToFormat + "]");
}
//textureManager->endTexture(texture);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, load new texture [%s] originalSize [%ld] newSize [%ld]\n", file.c_str(), originalSize, newSize);
if (keepsmallest == false || newSize <= originalSize) {
texture = loadMeshTexture(meshIndex, i, textureManager, file,
meshTextureChannelCount[i],
texturesOwned[i],
false,
NULL,
"",
modelFile);
}
}
file = extractFileFromDirectoryPath(texture->getPath());
if (file.length() > mapPathSize) {
throw megaglest_runtime_error("file.length() > mapPathSize, file.length() = " + intToStr(file.length()));
} else if (file.length() == 0) {
throw megaglest_runtime_error("file.length() == 0");
}
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, new texture file [%s]\n", file.c_str());
memset(&cMapPath[0], 0, mapPathSize);
memcpy(&cMapPath[0], file.c_str(), file.length());
}
fwrite(cMapPath, mapPathSize, 1, f);
}
flag *= 2;
}
//read data
fwrite(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
fwrite(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if (meshHeader.textures != 0) {
fwrite(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
}
fwrite(indices, sizeof(uint32)*indexCount, 1, f);
}
void Mesh::computeTangents() {
delete[] tangents;
try {
tangents = new Vec3f[vertexCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, vertexCount, ba.what());
throw megaglest_runtime_error(szBuf);
}
for (unsigned int i = 0; i < vertexCount; ++i) {
tangents[i] = Vec3f(0.f);
}
for (unsigned int i = 0; i < indexCount; i += 3) {
for (int j = 0; j < 3; ++j) {
uint32 i0 = indices[i + j];
uint32 i1 = indices[i + (j + 1) % 3];
uint32 i2 = indices[i + (j + 2) % 3];
Vec3f p0 = vertices[i0];
Vec3f p1 = vertices[i1];
Vec3f p2 = vertices[i2];
float u0 = texCoords[i0].x;
float u1 = texCoords[i1].x;
float u2 = texCoords[i2].x;
float v0 = texCoords[i0].y;
float v1 = texCoords[i1].y;
float v2 = texCoords[i2].y;
tangents[i0] +=
((p2 - p0)*(v1 - v0) - (p1 - p0)*(v2 - v0)) /
((u2 - u0)*(v1 - v0) - (u1 - u0)*(v2 - v0));
}
}
for (unsigned int i = 0; i < vertexCount; ++i) {
/*Vec3f binormal= normals[i].cross(tangents[i]);
tangents[i]+= binormal.cross(normals[i]);*/
tangents[i].normalize();
}
}
void Mesh::deletePixels() {
for (int i = 0; i < meshTextureCount; ++i) {
if (textures[i] != NULL) {
textures[i]->deletePixels();
}
}
}
// ===============================================
// class Model
// ===============================================
// ==================== constructor & destructor ====================
Model::Model() {
if (GlobalStaticFlags::getIsNonGraphicalModeEnabled() == true) {
throw megaglest_runtime_error("Loading graphics in headless server mode not allowed!");
}
meshCount = 0;
meshes = NULL;
fileVersion = 0;
textureManager = NULL;
lastTData = -1;
lastCycleData = false;
lastTVertex = -1;
lastCycleVertex = false;
}
Model::~Model() {
if (meshes) delete[] meshes;
meshes = NULL;
}
// ==================== data ====================
void Model::buildInterpolationData() const {
for (unsigned int i = 0; i < meshCount; ++i) {
meshes[i].buildInterpolationData();
}
}
void Model::updateInterpolationData(float t, bool cycle) {
if (lastTData != t || lastCycleData != cycle) {
for (unsigned int i = 0; i < meshCount; ++i) {
meshes[i].updateInterpolationData(t, cycle);
}
lastTData = t;
lastCycleData = cycle;
}
}
void Model::updateInterpolationVertices(float t, bool cycle) {
if (lastTVertex != t || lastCycleVertex != cycle) {
for (unsigned int i = 0; i < meshCount; ++i) {
meshes[i].updateInterpolationVertices(t, cycle);
}
lastTVertex = t;
lastCycleVertex = cycle;
}
}
// ==================== get ====================
uint32 Model::getTriangleCount() const {
uint32 triangleCount = 0;
for (uint32 i = 0; i < meshCount; ++i) {
triangleCount += meshes[i].getIndexCount() / 3;
}
return triangleCount;
}
uint32 Model::getVertexCount() const {
uint32 vertexCount = 0;
for (uint32 i = 0; i < meshCount; ++i) {
vertexCount += meshes[i].getVertexCount();
}
return vertexCount;
}
// ==================== io ====================
void Model::load(const string &path, bool deletePixMapAfterLoad,
std::map<string, vector<pair<string, string> > > *loadedFileList, string *sourceLoader) {
this->sourceLoader = (sourceLoader != NULL ? *sourceLoader : "");
this->fileName = path;
if (GlobalStaticFlags::getIsNonGraphicalModeEnabled() == true) {
return;
}
size_t pos = path.find_last_of('.');
string extension = toLower(path.empty() == false ? path.substr(pos + 1) : "");
if (extension == "g3d") {
loadG3d(path, deletePixMapAfterLoad, loadedFileList, this->sourceLoader);
} else {
throw megaglest_runtime_error("#1 Unknown model format [" + extension + "] file [" + path + "]");
}
}
void Model::save(const string &path, string convertTextureToFormat,
bool keepsmallest) {
string extension = (path.empty() == false ? path.substr(path.find_last_of('.') + 1) : "");
if (toLower(extension) == "g3d") {
saveG3d(path, convertTextureToFormat, keepsmallest);
} else {
throw megaglest_runtime_error("#2 Unknown model format [" + extension + "] file [" + path + "]");
}
}
//load a model from a g3d file
void Model::loadG3d(const string &path, bool deletePixMapAfterLoad,
std::map<string, vector<pair<string, string> > > *loadedFileList,
string sourceLoader) {
try {
#ifdef WIN32
FILE *f = _wfopen(utf8_decode(path).c_str(), L"rb");
#else
FILE *f = fopen(path.c_str(), "rb");
#endif
if (f == NULL) {
printf("In [%s::%s] cannot load file = [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, path.c_str());
throw megaglest_runtime_error("Error opening g3d model file [" + path + "]", true);
}
if (loadedFileList) {
(*loadedFileList)[path].push_back(make_pair(sourceLoader, sourceLoader));
}
string dir = extractDirectoryPathFromFile(path);
//file header
FileHeader fileHeader;
size_t readBytes = fread(&fileHeader, sizeof(FileHeader), 1, f);
if (readBytes != 1) {
fclose(f);
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianFileHeader(fileHeader);
char fileId[4] = "";
memset(&fileId[0], 0, 4);
memcpy(&fileId[0], reinterpret_cast<char*>(fileHeader.id), 3);
if (strncmp(fileId, "G3D", 3) != 0) {
fclose(f);
f = NULL;
printf("In [%s::%s] file = [%s] fileheader.id = [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, path.c_str(), fileId);
throw megaglest_runtime_error("Not a valid G3D model", true);
}
fileVersion = fileHeader.version;
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("Load model, fileVersion = %d\n", fileVersion);
//version 4
if (fileHeader.version == 4) {
//model header
ModelHeader modelHeader;
readBytes = fread(&modelHeader, sizeof(ModelHeader), 1, f);
if (readBytes != 1) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.", readBytes, __LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianModelHeader(modelHeader);
meshCount = modelHeader.meshCount;
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %d\n", meshCount);
if (modelHeader.type != mtMorphMesh) {
throw megaglest_runtime_error("Invalid model type");
}
//load meshes
try {
meshes = new Mesh[meshCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, meshCount, ba.what());
throw megaglest_runtime_error(szBuf);
}
for (uint32 i = 0; i < meshCount; ++i) {
meshes[i].load(i, dir, f, textureManager, deletePixMapAfterLoad,
loadedFileList, sourceLoader, path);
meshes[i].buildInterpolationData();
}
}
//version 3
else if (fileHeader.version == 3) {
readBytes = fread(&meshCount, sizeof(meshCount), 1, f);
if (readBytes != 1 && meshCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.", readBytes, meshCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
meshCount = Shared::PlatformByteOrder::fromCommonEndian(meshCount);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %u\n", meshCount);
try {
meshes = new Mesh[meshCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, meshCount, ba.what());
throw megaglest_runtime_error(szBuf);
}
for (uint32 i = 0; i < meshCount; ++i) {
meshes[i].loadV3(i, dir, f, textureManager, deletePixMapAfterLoad,
loadedFileList, sourceLoader, path);
meshes[i].buildInterpolationData();
}
}
//version 2
else if (fileHeader.version == 2) {
readBytes = fread(&meshCount, sizeof(meshCount), 1, f);
if (readBytes != 1 && meshCount != 0) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.", readBytes, meshCount, __LINE__);
throw megaglest_runtime_error(szBuf);
}
meshCount = Shared::PlatformByteOrder::fromCommonEndian(meshCount);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %d\n", meshCount);
try {
meshes = new Mesh[meshCount];
} catch (bad_alloc& ba) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error on line: %d size: %d msg: %s\n", __LINE__, meshCount, ba.what());
throw megaglest_runtime_error(szBuf);
}
for (uint32 i = 0; i < meshCount; ++i) {
meshes[i].loadV2(i, dir, f, textureManager, deletePixMapAfterLoad,
loadedFileList, sourceLoader, path);
meshes[i].buildInterpolationData();
}
} else {
throw megaglest_runtime_error("Invalid model version: " + intToStr(fileHeader.version));
}
fclose(f);
autoJoinMeshFrames();
} catch (megaglest_runtime_error& ex) {
//printf("1111111 ex.wantStackTrace() = %d\n",ex.wantStackTrace());
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] Error [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, ex.what());
//printf("2222222\n");
throw megaglest_runtime_error("Exception caught loading 3d file: " + path + "\n" + ex.what(), !ex.wantStackTrace());
} catch (exception &e) {
//abort();
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] Error [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, e.what());
throw megaglest_runtime_error("Exception caught loading 3d file: " + path + "\n" + e.what());
}
}
//save a model to a g3d file
void Model::saveG3d(const string &path, string convertTextureToFormat,
bool keepsmallest) {
string tempModelFilename = path + "cvt";
#ifdef WIN32
FILE *f = _wfopen(utf8_decode(tempModelFilename).c_str(), L"wb");
#else
FILE *f = fopen(tempModelFilename.c_str(), "wb");
#endif
if (f == NULL) {
throw megaglest_runtime_error("Cant open file for writing: [" + tempModelFilename + "]");
}
convertTextureToFormat = toLower(convertTextureToFormat);
//file header
FileHeader fileHeader;
fileHeader.id[0] = 'G';
fileHeader.id[1] = '3';
fileHeader.id[2] = 'D';
fileHeader.version = 4;
fwrite(&fileHeader, sizeof(FileHeader), 1, f);
// file versions
if (fileHeader.version == 4 || fileHeader.version == 3 || fileHeader.version == 2) {
//model header
ModelHeader modelHeader;
modelHeader.meshCount = meshCount;
modelHeader.type = mtMorphMesh;
fwrite(&modelHeader, sizeof(ModelHeader), 1, f);
std::map<string, int> textureDeleteList;
for (uint32 i = 0; i < meshCount; ++i) {
meshes[i].save(i, tempModelFilename, f, textureManager,
convertTextureToFormat, textureDeleteList,
keepsmallest, path);
}
removeFile(path);
if (renameFile(tempModelFilename, path) == true) {
// Now delete old textures since they were converted to a new format
for (std::map<string, int>::iterator iterMap = textureDeleteList.begin();
iterMap != textureDeleteList.end(); ++iterMap) {
removeFile(iterMap->first);
}
}
} else {
throw megaglest_runtime_error("Invalid model version: " + intToStr(fileHeader.version));
}
fclose(f);
}
void Model::deletePixels() {
for (uint32 i = 0; i < meshCount; ++i) {
meshes[i].deletePixels();
}
}
class MeshContainer {
protected:
int indexValue;
std::vector<Mesh *> meshes;
public:
MeshContainer() {
this->indexValue = -1;
}
void add(int index, Mesh *mesh) {
if (this->indexValue < 0) {
this->indexValue = index;
}
meshes.push_back(mesh);
}
int index() {
return indexValue;
}
int size() {
return (int) meshes.size();
}
std::vector<Mesh *> get() {
return meshes;
}
};
void Mesh::setVertices(Vec3f *data, uint32 count) {
delete[] this->vertices;
this->vertices = data;
this->vertexCount = count;
}
void Mesh::setNormals(Vec3f *data, uint32 count) {
delete[] this->normals;
this->normals = data;
this->vertexCount = count;
}
void Mesh::setTexCoords(Vec2f *data, uint32 count) {
delete[] this->texCoords;
this->texCoords = data;
this->vertexCount = count;
}
void Mesh::setIndices(uint32 *data, uint32 count) {
delete[] this->indices;
this->indices = data;
this->indexCount = count;
}
void Mesh::copyInto(Mesh *dest, bool ignoreInterpolationData,
bool destinationOwnsTextures) {
for (int index = 0; index < meshTextureCount; ++index) {
dest->textures[index] = this->textures[index];
dest->texturesOwned[index] = this->texturesOwned[index];
dest->texturePaths[index] = this->texturePaths[index];
if (destinationOwnsTextures == true) {
this->texturesOwned[index] = false;
}
}
dest->name = this->name;
//vertex data counts
dest->frameCount = this->frameCount;
dest->vertexCount = this->vertexCount;
dest->indexCount = this->indexCount;
dest->texCoordFrameCount = this->texCoordFrameCount;
//vertex data
if (dest->vertices != NULL) {
delete[] dest->vertices;
dest->vertices = NULL;
}
if (this->vertices != NULL) {
dest->vertices = new Vec3f[this->frameCount * this->vertexCount];
memcpy(&dest->vertices[0], &this->vertices[0], this->frameCount * this->vertexCount * sizeof(Vec3f));
}
if (dest->normals != NULL) {
delete[] dest->normals;
dest->normals = NULL;
}
if (this->normals != NULL) {
dest->normals = new Vec3f[this->frameCount * this->vertexCount];
memcpy(&dest->normals[0], &this->normals[0], this->frameCount * this->vertexCount * sizeof(Vec3f));
}
if (dest->texCoords != NULL) {
delete[] dest->texCoords;
dest->texCoords = NULL;
}
if (this->texCoords != NULL) {
dest->texCoords = new Vec2f[this->vertexCount];
memcpy(&dest->texCoords[0], &this->texCoords[0], this->vertexCount * sizeof(Vec2f));
}
if (dest->tangents != NULL) {
delete[] dest->tangents;
dest->tangents = NULL;
}
if (this->tangents != NULL) {
dest->tangents = new Vec3f[this->vertexCount];
memcpy(&dest->tangents[0], &this->tangents[0], this->vertexCount * sizeof(Vec3f));
}
if (dest->indices != NULL) {
delete[] dest->indices;
dest->indices = NULL;
}
if (this->indices != NULL) {
dest->indices = new uint32[this->indexCount];
memcpy(&dest->indices[0], &this->indices[0], this->indexCount * sizeof(uint32));
}
//material data
dest->diffuseColor = this->diffuseColor;
dest->specularColor = this->specularColor;
dest->specularPower = this->specularPower;
dest->opacity = this->opacity;
//properties
dest->twoSided = this->twoSided;
dest->customColor = this->customColor;
dest->noSelect = this->noSelect;
dest->glow = this->glow;
dest->textureFlags = this->textureFlags;
if (ignoreInterpolationData == false) {
dest->interpolationData = this->interpolationData;
}
dest->textureManager = this->textureManager;
// Vertex Buffer Object Names
dest->hasBuiltVBOs = this->hasBuiltVBOs;
dest->m_nVBOVertices = this->m_nVBOVertices;
dest->m_nVBOTexCoords = this->m_nVBOTexCoords;
dest->m_nVBONormals = this->m_nVBONormals;
dest->m_nVBOIndexes = this->m_nVBOIndexes;
}
void Model::autoJoinMeshFrames() {
/*
print "auto-joining compatible meshes..."
meshes = {}
for mesh in self.meshes:
key = (mesh.texture,mesh.frame_count,mesh.twoSided|mesh.customColour)
if key in meshes:
meshes[key].append(mesh)
else:
meshes[key] = [mesh]
for joinable in meshes.values():
if len(joinable) < 2: continue
base = joinable[0]
print "\tjoining to",base
for mesh in joinable[1:]:
if base.index_count+mesh.index_count > 0xffff:
base = mesh
print "\tjoining to",base
continue
print "\t\t",mesh
for a,b in zip(base.frames,mesh.frames):
a.vertices.extend(b.vertices)
a.normals.extend(b.normals)
if base.texture:
base.textures.extend(mesh.textures)
base.indices.extend(index+base.vertex_count for index in mesh.indices)
base.vertex_count += mesh.vertex_count
base.index_count += mesh.index_count
self.meshes.remove(mesh)
*/
bool haveJoinedMeshes = false;
// First looks for meshes with same texture in the same frame
std::map<std::string, MeshContainer> joinedMeshes;
for (uint32 index = 0; index < meshCount; ++index) {
Mesh &mesh = meshes[index];
// Duplicate mesh vertices are considered to be those with the same
// 1. texture 2. framecount 3. twosided flag value 4. same custom texture color
// It's possible the texture is missing and will be NULL
// if(mesh.getTextureFlags() & 1) {
// printf("Mesh has textures:\n");
// for(unsigned int meshTexIndex = 0; meshTexIndex < meshTextureCount; ++meshTexIndex) {
// printf("Mesh texture index: %d [%p] [%s]\n",meshTexIndex,mesh.getTexture(meshTexIndex),(mesh.getTexture(meshTexIndex) != NULL ? mesh.getTexture(meshTexIndex)->getPath().c_str() : "n/a"));
// }
// }
string mesh_key = ((mesh.getTextureFlags() & 1) && mesh.getTexture(0) ? mesh.getTexture(0)->getPath() : "none");
mesh_key += string("_") + intToStr(mesh.getFrameCount()) +
string("_") + intToStr(mesh.getTwoSided()) +
string("_") + intToStr(mesh.getCustomTexture()) +
string("_") + intToStr(mesh.getNoSelect()) +
string("_") + floatToStr(mesh.getOpacity()) +
string("_") + floatToStr(mesh.getGlow()) +
string("_") + mesh.getDiffuseColor().getString() +
string("_") + mesh.getSpecularColor().getString() +
string("_") + floatToStr(mesh.getSpecularPower());
joinedMeshes[mesh_key].add(index, &mesh);
if (haveJoinedMeshes == false && joinedMeshes[mesh_key].size() > 1) {
haveJoinedMeshes = true;
}
}
if (haveJoinedMeshes == true) {
//printf("*** Detected Joined meshes for model [%s]\n",fileName.c_str());
// We have mesh data to join we now create a list in the same order
// as the original meshes but each index will have 1 or more meshes
// This is done to maintain original mesh ordering
std::map<int, std::vector<Mesh *> > orderedMeshes;
for (std::map<std::string, MeshContainer >::iterator iterMap = joinedMeshes.begin();
iterMap != joinedMeshes.end(); ++iterMap) {
orderedMeshes[iterMap->second.index()] = iterMap->second.get();
//if(iterMap->second.size() > 1) {
// printf("Key [%s] joined meshes: %d\n",iterMap->first.c_str(),iterMap->second.size());
//}
}
// Now the real work of creating a new list of joined mesh data
Mesh *joinedMeshList = new Mesh[joinedMeshes.size()];
int index = 0;
for (std::map<int, std::vector<Mesh *> >::iterator iterMap = orderedMeshes.begin();
iterMap != orderedMeshes.end(); ++iterMap) {
//printf("Join index: %d joincount: %d\n",index,iterMap->second.size());
Mesh *base = &joinedMeshList[index];
// Deep copy mesh data
iterMap->second[0]->copyInto(base, true, true);
if (iterMap->second.size() > 1) {
// Time to join mesh data for this mesh
for (unsigned int joinIndex = 1;
joinIndex < iterMap->second.size(); ++joinIndex) {
Mesh *mesh = iterMap->second[joinIndex];
//if(base->getIndexCount() + mesh->getIndexCount() > 0xffff) {
// printf("Not exactly sure what this IF statement is for?\n");
// mesh->copyInto(base, true, true);
//}
//else {
// Need to add verticies for each from from mesh to base
uint32 originalBaseVertexCount = base->getVertexCount();
uint32 newVertexCount =
base->getVertexCount() + mesh->getVertexCount();
uint32 newVertexFrameCount =
(base->getFrameCount() * newVertexCount);
Vec3f *joined_vertices = new Vec3f[newVertexFrameCount];
Vec3f *joined_normals = new Vec3f[newVertexFrameCount];
uint32 join_index = 0;
// Join mesh vertices and normals
for (unsigned int frameIndex = 0;
frameIndex < base->getFrameCount(); ++frameIndex) {
uint32 baseIndex = frameIndex * originalBaseVertexCount;
uint32 meshIndex = frameIndex * mesh->getVertexCount();
//uint32 appendBaseJoinIndex = frameIndex * newVertexCount;
// first original mesh values get copied
memcpy(&joined_vertices[join_index],
&base->getVertices()[baseIndex],
originalBaseVertexCount * sizeof(Vec3f));
memcpy(&joined_normals[join_index],
&base->getNormals()[baseIndex],
originalBaseVertexCount * sizeof(Vec3f));
join_index += originalBaseVertexCount;
// second joined mesh values get copied
memcpy(&joined_vertices[join_index],
&mesh->getVertices()[meshIndex],
mesh->getVertexCount() * sizeof(Vec3f));
memcpy(&joined_normals[join_index],
&mesh->getNormals()[meshIndex],
mesh->getVertexCount() * sizeof(Vec3f));
join_index += mesh->getVertexCount();
}
// update vertex and normal buffers with joined mesh data
base->setVertices(joined_vertices, newVertexCount);
base->setNormals(joined_normals, newVertexCount);
// If we have texture coords join them
if (base->getTextureFlags() & 1) {
Vec2f *joined_texCoords = new Vec2f[newVertexCount];
// update texture coord buffers with joined mesh data
memcpy(&joined_texCoords[0],
&base->getTexCoords()[0],
originalBaseVertexCount * sizeof(Vec2f));
memcpy(&joined_texCoords[originalBaseVertexCount],
&mesh->getTexCoords()[0],
mesh->getVertexCount() * sizeof(Vec2f));
base->setTexCoords(joined_texCoords, newVertexCount);
}
// update index buffers with joined mesh data
uint32 newindexCount = base->getIndexCount() + mesh->getIndexCount();
uint32 *joined_indexes = new uint32[newindexCount];
uint32 join_index_index = 0;
memcpy(&joined_indexes[join_index_index],
&base->getIndices()[0],
base->getIndexCount() * sizeof(uint32));
join_index_index += base->getIndexCount();
for (unsigned int meshIndex = 0;
meshIndex < mesh->getIndexCount(); ++meshIndex) {
uint32 index_value = mesh->getIndices()[meshIndex];
// join index values
joined_indexes[join_index_index] = index_value + originalBaseVertexCount;
join_index_index++;
}
base->setIndices(joined_indexes, newindexCount);
//}
}
}
base->buildInterpolationData();
index++;
}
delete[] meshes;
meshes = joinedMeshList;
meshCount = (uint32) joinedMeshes.size();
}
}
// ----------------------------------------------------------------------------
bool PixelBufferWrapper::isPBOEnabled = false;
int PixelBufferWrapper::index = 0;
vector<unsigned int> PixelBufferWrapper::pboIds;
PixelBufferWrapper::PixelBufferWrapper(int pboCount, int bufferSize) {
this->bufferSize = bufferSize;
//if(isGlExtensionSupported("GL_ARB_pixel_buffer_object") == true &&
if (GLEW_ARB_pixel_buffer_object) {
PixelBufferWrapper::isPBOEnabled = true;
cleanup();
// For some wacky reason this fails in VC++ 2008
//pboIds.reserve(pboCount);
//glGenBuffersARB(pboCount, (GLuint*)&pboIds[0]);
//
/*
for(int i = 0; i < pboCount; ++i) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("PBO Gen i = %d\n",i);
pboIds.push_back(0);
glGenBuffersARB(1, (GLuint*)&pboIds[i]);
// create pixel buffer objects, you need to delete them when program exits.
// glBufferDataARB with NULL pointer reserves only memory space.
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[i]);
glBufferDataARB(GL_PIXEL_PACK_BUFFER_ARB, bufferSize, 0, GL_STREAM_READ_ARB);
}
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
*/
addBuffersToPixelBuf(pboCount);
}
}
void PixelBufferWrapper::addBuffersToPixelBuf(int pboCount) {
int iStartIndex = pboIds.size();
for (int i = 0; i < pboCount; ++i) {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("PBO Gen i = %d\n", i);
pboIds.push_back(0);
glGenBuffersARB(1, (GLuint*) &pboIds[i + iStartIndex]);
// create pixel buffer objects, you need to delete them when program exits.
// glBufferDataARB with NULL pointer reserves only memory space.
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[i + iStartIndex]);
glBufferDataARB(GL_PIXEL_PACK_BUFFER_ARB, bufferSize, 0, GL_STREAM_READ_ARB);
}
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
}
Pixmap2D *PixelBufferWrapper::getPixelBufferFor(int x, int y, int w, int h, int colorComponents) {
Pixmap2D *pixmapScreenShot = NULL;
if (PixelBufferWrapper::isPBOEnabled == true) {
string codeSection = "A";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
try {
// increment current index first then get the next index
// "index" is used to read pixels from a framebuffer to a PBO
// "nextIndex" is used to process pixels in the other PBO
index = (index + 1) % 2;
codeSection = "B";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
// Check for out of range
if (index >= (int) pboIds.size()) {
char szBuf[8096] = "";
snprintf(szBuf, 8096, "Error / Warning in [%s::%s] on line: %d pixel buffer out of range, index: %d size: %d, attempting to expand buffer...\n", __FILE__, __FUNCTION__, __LINE__, index, (int) pboIds.size());
//throw megaglest_runtime_error(szBuf);
SystemFlags::OutputDebug(SystemFlags::debugError, "%s", szBuf);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] szBuf: %s\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, szBuf);
codeSection = "C";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
addBuffersToPixelBuf((index - pboIds.size()) + 1);
}
// pbo index used for next frame
//int nextIndex = (index + 1) % 2;
codeSection = "D";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
// read framebuffer ///////////////////////////////
// copy pixels from framebuffer to PBO
// Use offset instead of pointer.
// OpenGL should perform asynch DMA transfer, so glReadPixels() will return immediately.
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[index]);
//glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[nextIndex]);
codeSection = "E";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
//glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, 0);
//glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// measure the time reading framebuffer
//t1.stop();
//readTime = t1.getElapsedTimeInMilliSec();
// process pixel data /////////////////////////////
//t1.start();
codeSection = "F";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
// map the PBO that contain framebuffer pixels before processing it
//glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[nextIndex]);
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[index]);
codeSection = "G";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
GLubyte* src = (GLubyte*) glMapBufferARB(GL_PIXEL_PACK_BUFFER_ARB, GL_READ_ONLY_ARB);
if (src) {
codeSection = "H";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
pixmapScreenShot = new Pixmap2D(w, h, colorComponents);
codeSection = "I";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
memcpy(pixmapScreenShot->getPixels(), src, pixmapScreenShot->getPixelByteCount());
codeSection = "J";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
glUnmapBufferARB(GL_PIXEL_PACK_BUFFER_ARB); // release pointer to the mapped buffer
//pixmapScreenShot->save("debugPBO.png");
}
codeSection = "K";
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
// measure the time reading framebuffer
//t1.stop();
//processTime = t1.getElapsedTimeInMilliSec();
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
} catch (megaglest_runtime_error& ex) {
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] codeSection [%s] Error [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, codeSection.c_str(), ex.what());
throw megaglest_runtime_error("Exception caught in getPixelBufferFor codeSection: " + codeSection + "\n" + ex.what(), !ex.wantStackTrace());
} catch (exception &e) {
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] codeSection [%s] Error [%s]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, codeSection.c_str(), e.what());
throw megaglest_runtime_error("Exception caught in getPixelBufferFor codeSection: " + codeSection + "\n" + e.what());
} catch (...) {
SystemFlags::OutputDebug(SystemFlags::debugError, "In [%s::%s Line: %d] codeSection [%s] UNKNOWN Error!", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__, codeSection.c_str());
throw megaglest_runtime_error("UNKNOWN Exception caught in getPixelBufferFor codeSection: " + codeSection + "\n");
}
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n", extractFileFromDirectoryPath(__FILE__).c_str(), __FUNCTION__, __LINE__);
}
return pixmapScreenShot;
}
void PixelBufferWrapper::begin() {
if (PixelBufferWrapper::isPBOEnabled == true) {
// set the framebuffer to read
//glReadBuffer(GL_FRONT);
}
}
void PixelBufferWrapper::end() {
if (PixelBufferWrapper::isPBOEnabled == true) {
// set the framebuffer to read
//glReadBuffer(GL_BACK);
}
}
void PixelBufferWrapper::cleanup() {
if (PixelBufferWrapper::isPBOEnabled == true) {
if (pboIds.empty() == false) {
if (SystemFlags::VERBOSE_MODE_ENABLED) printf("PBO Delete size = %d\n", (int) pboIds.size());
glDeleteBuffersARB((int) pboIds.size(), &pboIds[0]);
pboIds.clear();
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
}
}
}
PixelBufferWrapper::~PixelBufferWrapper() {
cleanup();
}
// ---------------------------------------------------------------------------
int BaseColorPickEntity::bufferSizeRequired = -1;
const unsigned int BaseColorPickEntity::p = 64007;
const unsigned int BaseColorPickEntity::k = 43067;
unsigned int BaseColorPickEntity::nextColorRGB = BaseColorPickEntity::k;
unsigned char BaseColorPickEntity::nextColorID[COLOR_COMPONENTS] = { 1, 1, 1, 0 };
auto_ptr<PixelBufferWrapper> BaseColorPickEntity::pbo;
//auto_ptr<Pixmap2D> BaseColorPickEntity::cachedPixels;
map<string, bool> BaseColorPickEntity::usedColorIDList;
bool BaseColorPickEntity::trackColorUse = true;
vector<vector<unsigned char> > BaseColorPickEntity::nextColorIDReuseList;
bool BaseColorPickEntity::using_loop_method = false;
BaseColorPickEntity::BaseColorPickEntity() {
if (BaseColorPickEntity::bufferSizeRequired != -1) {
BaseColorPickEntity::init(BaseColorPickEntity::bufferSizeRequired);
}
uniqueColorID[0] = 0;
uniqueColorID[1] = 0;
uniqueColorID[2] = 0;
uniqueColorID[3] = 0;
assign_color();
}
bool BaseColorPickEntity::get_next_assign_color(unsigned char *assign_to) {
if (assign_to == NULL) {
throw megaglest_runtime_error("assign_to == NULL");
}
if (BaseColorPickEntity::using_loop_method == true) {
assign_color_using_loop(assign_to);
} else {
assign_color_using_prime(assign_to);
}
bool isDuplicate = false;
if (BaseColorPickEntity::trackColorUse == true) {
string color_key = getColorDescription();
//printf("Assigned color [%s]\n",color_key.c_str());
if (usedColorIDList.find(color_key) == usedColorIDList.end()) {
usedColorIDList[color_key] = true;
//printf("Color added to used list [%s] usedColorIDList = %d nextColorIDReuseList = %d!\n",color_key.c_str(),(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
} else {
isDuplicate = true;
printf("Line ref: %d *WARNING* color [%s] used count: %d using_loop: %d ALREADY in history list!\n", __LINE__, color_key.c_str(), (int) usedColorIDList.size(), BaseColorPickEntity::using_loop_method);
}
}
return isDuplicate;
}
void BaseColorPickEntity::assign_color() {
get_next_assign_color(&uniqueColorID[0]);
}
void BaseColorPickEntity::assign_color_using_prime(unsigned char *assign_to) {
nextColorRGB = (nextColorRGB * k) % p;
// nextColorID is a 16-bit (hi)colour (for players with 16-bit display depths)
// we expand it to true-color for use with OpenGL
const unsigned int
r = (nextColorRGB >> 11) & ((1 << 5) - 1),
g = (nextColorRGB >> 5) & ((1 << 6) - 1),
b = nextColorRGB & ((1 << 5) - 1);
assign_to[0] = r << 3;
assign_to[1] = g << 2;
assign_to[2] = b << 3;
}
void BaseColorPickEntity::assign_color_using_loop(unsigned char *assign_to) {
if (nextColorIDReuseList.empty() == false) {
//printf("Color being reused [%u.%u.%u] usedColorIDList = %d nextColorIDReuseList = %d!\n",nextColorIDReuseList.back()[0],nextColorIDReuseList.back()[1],nextColorIDReuseList.back()[2],(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
assign_to[0] = nextColorIDReuseList.back()[0];
assign_to[1] = nextColorIDReuseList.back()[1];
assign_to[2] = nextColorIDReuseList.back()[2];
nextColorIDReuseList.pop_back();
string color_key = getColorDescription();
if (usedColorIDList.find(color_key) == usedColorIDList.end()) {
//usedColorIDList[color_key] = true;
//printf("Color added to used list [%s] usedColorIDList = %d nextColorIDReuseList = %d!\n",color_key.c_str(),(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
} else {
printf("Line ref: %d *WARNING* color [%s] ALREADY FOUND in history list!\n", __LINE__, color_key.c_str());
assign_color_using_loop(assign_to);
}
} else {
assign_to[0] = nextColorID[0];
assign_to[1] = nextColorID[1];
assign_to[2] = nextColorID[2];
const int colorSpacing = 8;
if ((int) (nextColorID[0] + colorSpacing) <= 255) {
nextColorID[0] += colorSpacing;
} else {
nextColorID[0] = 1;
if ((int) (nextColorID[1] + colorSpacing) <= 255) {
nextColorID[1] += colorSpacing;
} else {
nextColorID[1] = 1;
if ((int) (nextColorID[2] + colorSpacing) <= 255) {
nextColorID[2] += colorSpacing;
} else {
printf("Color rolled over on 3rd level usedColorIDList = %d!\n", (int) usedColorIDList.size());
nextColorID[0] = 1;
nextColorID[1] = 1;
nextColorID[2] = 1;
// nextColorID[2] = 1;
// nextColorID[3]+=colorSpacing;
//
// if(nextColorID[3] > 255) {
// nextColorID[0] = 1;
// nextColorID[1] = 1;
// nextColorID[2] = 1;
// nextColorID[3] = 1;
// }
}
}
}
}
}
void BaseColorPickEntity::recycleUniqueColor() {
vector<unsigned char> reUseColor;
reUseColor.push_back(uniqueColorID[0]);
reUseColor.push_back(uniqueColorID[1]);
reUseColor.push_back(uniqueColorID[2]);
nextColorIDReuseList.push_back(reUseColor);
//printf("RECYCLE Color [%u.%u.%u] usedColorIDList = %d nextColorIDReuseList = %d!\n",reUseColor[0],reUseColor[1],reUseColor[2],(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
if (usedColorIDList.empty() == false) {
string color_key = getColorDescription();
usedColorIDList.erase(color_key);
//printf("REMOVING used Color [%s] usedColorIDList = %d nextColorIDReuseList = %d!\n",color_key.c_str(),(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
//printf("Line ref: %d *WARNING* color [%s] used count: %d NOT FOUND in history list!\n",__LINE__,color_key.c_str(),(int)usedColorIDList.size());
}
}
void BaseColorPickEntity::resetUniqueColors() {
BaseColorPickEntity::nextColorRGB = BaseColorPickEntity::k;
BaseColorPickEntity::nextColorID[0] = 1;
BaseColorPickEntity::nextColorID[1] = 1;
BaseColorPickEntity::nextColorID[2] = 1;
usedColorIDList.clear();
nextColorIDReuseList.clear();
}
void BaseColorPickEntity::init(int bufferSize) {
if (BaseColorPickEntity::pbo.get() == NULL) {
//printf("BaseColorPickEntity::init pbo == null\n");
BaseColorPickEntity::bufferSizeRequired = bufferSize;
BaseColorPickEntity::pbo.reset(new PixelBufferWrapper(2, BaseColorPickEntity::bufferSizeRequired));
} else if (bufferSize != BaseColorPickEntity::bufferSizeRequired) {
//printf("BaseColorPickEntity::init pbo resize\n");
cleanupPBO();
BaseColorPickEntity::bufferSizeRequired = bufferSize;
BaseColorPickEntity::pbo.reset(new PixelBufferWrapper(2, BaseColorPickEntity::bufferSizeRequired));
}
}
void BaseColorPickEntity::cleanupPBO() {
BaseColorPickEntity::pbo.reset(0);
}
string BaseColorPickEntity::getColorDescription() const {
char szBuf[100] = "";
snprintf(szBuf, 100, "%d.%d.%d", uniqueColorID[0], uniqueColorID[1], uniqueColorID[2]);
string result = szBuf;
return result;
}
void BaseColorPickEntity::beginPicking() {
// turn off texturing, lighting and fog
//glClearColor (0.0,0.0,0.0,0.0);
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//reset current background. This is neeeded to get a proper black background!
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClear(GL_COLOR_BUFFER_BIT);
glPushAttrib(GL_ENABLE_BIT);
//glEnable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
glDisable(GL_FOG);
glDisable(GL_LIGHTING);
glDisable(GL_BLEND);
glDisable(GL_MULTISAMPLE);
glDisable(GL_DITHER);
glDisable(GL_POLYGON_OFFSET_FILL);
glDisable(GL_NORMALIZE);
// all off, but we want depth test
glEnable(GL_DEPTH_TEST);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//glPushAttrib(GL_TEXTURE_2D | GL_LIGHTING | GL_BLEND | GL_MULTISAMPLE | GL_DITHER);
//glPushAttrib(GL_ENABLE_BIT | GL_LIGHTING_BIT | GL_POLYGON_BIT | GL_CURRENT_BIT | GL_TEXTURE_BIT | GL_NORMALIZE | GL_BLEND | GL_POLYGON_OFFSET_FILL);
}
void BaseColorPickEntity::endPicking() {
// turn off texturing, lighting and fog
//glEnable(GL_TEXTURE_2D);
//glEnable(GL_FOG);
//glEnable(GL_LIGHTING);
//glEnable(GL_BLEND);
//glEnable(GL_MULTISAMPLE);
//glEnable(GL_DITHER);
glPopAttrib();
}
vector<int> BaseColorPickEntity::getPickedList(int x, int y, int w, int h,
const vector<BaseColorPickEntity *> &rendererModels) {
vector<int> pickedModels;
pickedModels.reserve(rendererModels.size());
//printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
static auto_ptr<Pixmap2D> cachedPixels;
//auto_ptr<Pixmap2D> cachedPixels;
//printf("PixelBufferWrapper::getIsPBOEnable() = %d\n",PixelBufferWrapper::getIsPBOEnable());
if (rendererModels.empty() == false) {
if (PixelBufferWrapper::getIsPBOEnable() == true) {
Pixmap2D *pixmapScreenShot = BaseColorPickEntity::pbo->getPixelBufferFor(x, y, w, h, COLOR_COMPONENTS);
//pixmapScreenShot->saveTga("/tmp/toll.tga"); //### for debugging
cachedPixels.reset(pixmapScreenShot);
} else {
Pixmap2D *pixmapScreenShot = new Pixmap2D(w, h, COLOR_COMPONENTS);
//glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixmapScreenShot->getPixels());
//pixmapScreenShot->saveTga("/tmp/toll.tga");
cachedPixels.reset(pixmapScreenShot);
//glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
}
unsigned char *pixelBuffer = cachedPixels->getPixels();
map<int, bool> modelAlreadyPickedList;
map<unsigned char, map<unsigned char, map<unsigned char, bool> > > colorAlreadyPickedList;
int skipSteps = 4;
//unsigned char *oldpixel = &pixelBuffer[0];
// now we check the screenshot if we find pixels in color of unit identity
// to speedup we only check every "skipSteps" line and pixel in a row if we find such a color.
// this is exact enough for MG purpose
for (int hh = 0; hh < h && pickedModels.size() < rendererModels.size(); hh = hh + skipSteps) {
for (int ww = 0; ww < w && pickedModels.size() < rendererModels.size(); ww = ww + skipSteps) {
int index = (hh*w + ww) * COLOR_COMPONENTS;
unsigned char *pixel = &pixelBuffer[index];
//printf("pixel[0]=%d pixel[1]=%d pixel[2]=%d\n",pixel[0],pixel[1],pixel[2]);
if (pixel[0] == 0 && pixel[1] == 0 && pixel[2] == 0) {
continue;
}
// if(index>0)
// {
// oldpixel = &pixelBuffer[index-1*COLOR_COMPONENTS];
// if(memcmp(pixel,oldpixel,3)) continue;
// }
// Skip duplicate scanned colors
map<unsigned char, map<unsigned char, map<unsigned char, bool> > >::const_iterator iterFind1 = colorAlreadyPickedList.find(pixel[0]);
if (iterFind1 != colorAlreadyPickedList.end()) {
map<unsigned char, map<unsigned char, bool> >::const_iterator iterFind2 = iterFind1->second.find(pixel[1]);
if (iterFind2 != iterFind1->second.end()) {
map<unsigned char, bool>::const_iterator iterFind3 = iterFind2->second.find(pixel[2]);
if (iterFind3 != iterFind2->second.end()) {
continue;
}
}
}
for (unsigned int i = 0; i < rendererModels.size(); ++i) {
// Skip models already selected
if (modelAlreadyPickedList.find(i) != modelAlreadyPickedList.end()) {
continue;
}
const BaseColorPickEntity *model = rendererModels[i];
if (model != NULL && model->isUniquePickingColor(pixel) == true) {
//printf("Found match pixel [%d.%d.%d] for model [%s] ptr [%p][%s]\n",pixel[0],pixel[1],pixel[2],model->getColorDescription().c_str(), model,model->getUniquePickName().c_str());
pickedModels.push_back(i);
modelAlreadyPickedList[i] = true;
colorAlreadyPickedList[pixel[0]][pixel[1]][pixel[2]] = true;
break;
}
}
}
}
//printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
//delete pixmapScreenShot;
}
//printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
return pickedModels;
}
bool BaseColorPickEntity::isUniquePickingColor(unsigned char *pixel) const {
bool result = false;
if (uniqueColorID[0] == pixel[0] &&
uniqueColorID[1] == pixel[1] &&
uniqueColorID[2] == pixel[2]) {
//uniqueColorID[3] == pixel[3]) {
result = true;
}
return result;
}
void BaseColorPickEntity::setUniquePickingColor() const {
glColor3ub(uniqueColorID[0],
uniqueColorID[1],
uniqueColorID[2]);
/*
glColor3f( uniqueColorID[0] / 255.0f,
uniqueColorID[1] / 255.0f,
uniqueColorID[2] / 255.0f);
//uniqueColorID[3] / 255.0f);
*
*/
}
}
}//end namespace