1
0
mirror of https://github.com/bdring/Grbl_Esp32.git synced 2025-09-09 22:01:14 +02:00

Fixing Git Mess

This commit is contained in:
bdring
2020-10-23 15:18:52 -05:00
parent 3acc5c76cf
commit a247f72ae6
2 changed files with 265 additions and 276 deletions

View File

@@ -125,321 +125,321 @@ void machine_init() {
// DXL_CENTER, // DXL_CENTER,
// DXL_COUNT_MAX, // DXL_COUNT_MAX,
// DXL_COUNT_PER_RADIAN); // DXL_COUNT_PER_RADIAN);
}
bool user_defined_homing() { // true = do not continue with normal Grbl homing bool user_defined_homing() { // true = do not continue with normal Grbl homing
#ifdef USE_CUSTOM_HOMING #ifdef USE_CUSTOM_HOMING
return true; return true;
#else #else
return false; return false;
#endif #endif
}
// This function is used by Grbl
void inverse_kinematics(float* position) {
float motor_angles[3];
read_settings();
delta_calcInverse(position, motor_angles);
position[0] = motor_angles[0];
position[1] = motor_angles[1];
position[2] = motor_angles[2];
}
// This function is used by Grbl
void inverse_kinematics(float* target, plan_line_data_t* pl_data, float* position) //The target and position are provided in MPos
{
float dx, dy, dz; // distances in each cartesian axis
float motor_angles[3];
float seg_target[3]; // The target of the current segment
float feed_rate = pl_data->feed_rate; // save original feed rate
bool show_error = true; // shows error once
KinematicError status;
read_settings();
// grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Start %3.3f %3.3f %3.3f", position[0], position[1], position[2]);
// grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Target %3.3f %3.3f %3.3f", target[0], target[1], target[2]);
status = delta_calcInverse(position, motor_angles);
if (status == KinematicError::OUT_OF_RANGE) {
//grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Start position error %3.3f %3.3f %3.3f", position[0], position[1], position[2]);
//start_position_error = true;
} }
// This function is used by Grbl // Check the destination to see if it is in work area
void inverse_kinematics(float* position) { status = delta_calcInverse(target, motor_angles);
float motor_angles[3]; if (status == KinematicError::OUT_OF_RANGE) {
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Target unreachable error %3.3f %3.3f %3.3f", target[0], target[1], target[2]);
read_settings();
delta_calcInverse(position, motor_angles);
position[0] = motor_angles[0];
position[1] = motor_angles[1];
position[2] = motor_angles[2];
} }
// This function is used by Grbl position[X_AXIS] += gc_state.coord_offset[X_AXIS];
void inverse_kinematics(float* target, plan_line_data_t* pl_data, float* position) //The target and position are provided in MPos position[Y_AXIS] += gc_state.coord_offset[Y_AXIS];
{ position[Z_AXIS] += gc_state.coord_offset[Z_AXIS];
float dx, dy, dz; // distances in each cartesian axis
float motor_angles[3];
float seg_target[3]; // The target of the current segment // calculate cartesian move distance for each axis
float feed_rate = pl_data->feed_rate; // save original feed rate dx = target[X_AXIS] - position[X_AXIS];
bool show_error = true; // shows error once dy = target[Y_AXIS] - position[Y_AXIS];
dz = target[Z_AXIS] - position[Z_AXIS];
float dist = sqrt((dx * dx) + (dy * dy) + (dz * dz));
KinematicError status; // determine the number of segments we need ... round up so there is at least 1 (except when dist is 0)
uint32_t segment_count = ceil(dist / KINEMATIC_SEGMENT_LENGTH);
read_settings(); float segment_dist = dist / ((float)segment_count); // distance of each segment...will be used for feedrate conversion
// grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Start %3.3f %3.3f %3.3f", position[0], position[1], position[2]); for (uint32_t segment = 1; segment <= segment_count; segment++) {
// grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Target %3.3f %3.3f %3.3f", target[0], target[1], target[2]); // determine this segment's target
seg_target[X_AXIS] = position[X_AXIS] + (dx / float(segment_count) * segment);
seg_target[Y_AXIS] = position[Y_AXIS] + (dy / float(segment_count) * segment);
seg_target[Z_AXIS] = position[Z_AXIS] + (dz / float(segment_count) * segment);
status = delta_calcInverse(position, motor_angles); // calculate the delta motor angles
if (status == KinematicError::OUT_OF_RANGE) { KinematicError status = delta_calcInverse(seg_target, motor_angles);
//grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Start position error %3.3f %3.3f %3.3f", position[0], position[1], position[2]);
//start_position_error = true;
}
// Check the destination to see if it is in work area if (status == KinematicError ::NONE) {
status = delta_calcInverse(target, motor_angles); float delta_distance = three_axis_dist(motor_angles, last_angle);
if (status == KinematicError::OUT_OF_RANGE) {
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Target unreachable error %3.3f %3.3f %3.3f", target[0], target[1], target[2]);
}
position[X_AXIS] += gc_state.coord_offset[X_AXIS]; // save angles for next distance calc
position[Y_AXIS] += gc_state.coord_offset[Y_AXIS]; memcpy(last_angle, motor_angles, sizeof(motor_angles));
position[Z_AXIS] += gc_state.coord_offset[Z_AXIS];
// calculate cartesian move distance for each axis
dx = target[X_AXIS] - position[X_AXIS];
dy = target[Y_AXIS] - position[Y_AXIS];
dz = target[Z_AXIS] - position[Z_AXIS];
float dist = sqrt((dx * dx) + (dy * dy) + (dz * dz));
// determine the number of segments we need ... round up so there is at least 1 (except when dist is 0)
uint32_t segment_count = ceil(dist / KINEMATIC_SEGMENT_LENGTH);
float segment_dist = dist / ((float)segment_count); // distance of each segment...will be used for feedrate conversion
for (uint32_t segment = 1; segment <= segment_count; segment++) {
// determine this segment's target
seg_target[X_AXIS] = position[X_AXIS] + (dx / float(segment_count) * segment);
seg_target[Y_AXIS] = position[Y_AXIS] + (dy / float(segment_count) * segment);
seg_target[Z_AXIS] = position[Z_AXIS] + (dz / float(segment_count) * segment);
// calculate the delta motor angles
KinematicError status = delta_calcInverse(seg_target, motor_angles);
if (status == KinematicError ::NONE) {
float delta_distance = three_axis_dist(motor_angles, last_angle);
// save angles for next distance calc
memcpy(last_angle, motor_angles, sizeof(motor_angles));
if (pl_data->motion.rapidMotion) {
pl_data->feed_rate = feed_rate;
} else {
pl_data->feed_rate = (feed_rate * delta_distance / segment_dist);
}
mc_line(motor_angles, pl_data);
if (pl_data->motion.rapidMotion) {
pl_data->feed_rate = feed_rate;
} else { } else {
if (show_error) { pl_data->feed_rate = (feed_rate * delta_distance / segment_dist);
// grbl_msg_sendf(CLIENT_SERIAL, }
// MsgLevel::Info,
// "Error:%d, Angs X:%4.3f Y:%4.3f Z:%4.3f", mc_line(motor_angles, pl_data);
// status,
// motor_angles[0], } else {
// motor_angles[1], if (show_error) {
// motor_angles[2]); // grbl_msg_sendf(CLIENT_SERIAL,
show_error = false; // MsgLevel::Info,
} // "Error:%d, Angs X:%4.3f Y:%4.3f Z:%4.3f",
// status,
// motor_angles[0],
// motor_angles[1],
// motor_angles[2]);
show_error = false;
} }
} }
} }
}
// this is used used by Grbl soft limits to see if the range of the machine is exceeded. // this is used used by Grbl soft limits to see if the range of the machine is exceeded.
uint8_t kinematic_limits_check(float* target) { uint8_t kinematic_limits_check(float* target) {
float motor_angles[3]; float motor_angles[3];
read_settings(); read_settings();
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin Soft Check %3.3f, %3.3f, %3.3f", target[0], target[1], target[2]); grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin Soft Check %3.3f, %3.3f, %3.3f", target[0], target[1], target[2]);
KinematicError status = delta_calcInverse(target, motor_angles); KinematicError status = delta_calcInverse(target, motor_angles);
switch (status) { switch (status) {
case KinematicError::OUT_OF_RANGE: case KinematicError::OUT_OF_RANGE:
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin target out of range"); grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin target out of range");
break; break;
case KinematicError::ANGLE_TOO_NEGATIVE: case KinematicError::ANGLE_TOO_NEGATIVE:
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin target max negative"); grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin target max negative");
break; break;
case KinematicError::ANGLE_TOO_POSITIVE: case KinematicError::ANGLE_TOO_POSITIVE:
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin target max positive"); grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "Kin target max positive");
break; break;
case KinematicError::NONE: case KinematicError::NONE:
break; break;
}
return (status == KinematicError::NONE);
} }
// inverse kinematics: cartesian -> angles return (status == KinematicError::NONE);
// returned status: 0=OK, -1=non-existing position }
KinematicError delta_calcInverse(float* cartesian, float* angles) {
angles[0] = angles[1] = angles[2] = 0;
KinematicError status = KinematicError::NONE;
status = delta_calcAngleYZ(cartesian[X_AXIS], cartesian[Y_AXIS], cartesian[Z_AXIS], angles[0]); // inverse kinematics: cartesian -> angles
if (status != KinematicError ::NONE) { // returned status: 0=OK, -1=non-existing position
return status; KinematicError delta_calcInverse(float* cartesian, float* angles) {
} angles[0] = angles[1] = angles[2] = 0;
KinematicError status = KinematicError::NONE;
status = delta_calcAngleYZ(cartesian[X_AXIS] * cos120 + cartesian[Y_AXIS] * sin120, status = delta_calcAngleYZ(cartesian[X_AXIS], cartesian[Y_AXIS], cartesian[Z_AXIS], angles[0]);
cartesian[Y_AXIS] * cos120 - cartesian[X_AXIS] * sin120, if (status != KinematicError ::NONE) {
cartesian[Z_AXIS],
angles[1]); // rotate coords to +120 deg
if (status != KinematicError ::NONE) {
return status;
}
status = delta_calcAngleYZ(cartesian[X_AXIS] * cos120 - cartesian[Y_AXIS] * sin120,
cartesian[Y_AXIS] * cos120 + cartesian[X_AXIS] * sin120,
cartesian[Z_AXIS],
angles[2]); // rotate coords to -120 deg
if (status != KinematicError ::NONE) {
return status;
}
//grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "xyx (%4.3f,%4.3f,%4.3f) ang (%4.3f,%4.3f,%4.3f)", x0, y0, z0, theta1, theta2, theta3);
return status; return status;
} }
// inverse kinematics: angles -> cartesian status = delta_calcAngleYZ(cartesian[X_AXIS] * cos120 + cartesian[Y_AXIS] * sin120,
int calc_forward_kinematics(float* angles, float* catesian) { cartesian[Y_AXIS] * cos120 - cartesian[X_AXIS] * sin120,
float t = (f - e) * tan30 / 2; cartesian[Z_AXIS],
angles[1]); // rotate coords to +120 deg
float y1 = -(t + rf * cos(angles[0])); if (status != KinematicError ::NONE) {
float z1 = -rf * sin(angles[0]); return status;
float y2 = (t + rf * cos(angles[1])) * sin30;
float x2 = y2 * tan60;
float z2 = -rf * sin(angles[1]);
float y3 = (t + rf * cos(angles[2])) * sin30;
float x3 = -y3 * tan60;
float z3 = -rf * sin(angles[2]);
float dnm = (y2 - y1) * x3 - (y3 - y1) * x2;
float w1 = y1 * y1 + z1 * z1;
float w2 = x2 * x2 + y2 * y2 + z2 * z2;
float w3 = x3 * x3 + y3 * y3 + z3 * z3;
// x = (a1*z + b1)/dnm
float a1 = (z2 - z1) * (y3 - y1) - (z3 - z1) * (y2 - y1);
float b1 = -((w2 - w1) * (y3 - y1) - (w3 - w1) * (y2 - y1)) / 2.0;
// y = (a2*z + b2)/dnm;
float a2 = -(z2 - z1) * x3 + (z3 - z1) * x2;
float b2 = ((w2 - w1) * x3 - (w3 - w1) * x2) / 2.0;
// a*z^2 + b*z + c = 0
float a = a1 * a1 + a2 * a2 + dnm * dnm;
float b = 2 * (a1 * b1 + a2 * (b2 - y1 * dnm) - z1 * dnm * dnm);
float c = (b2 - y1 * dnm) * (b2 - y1 * dnm) + b1 * b1 + dnm * dnm * (z1 * z1 - re * re);
// discriminant
float d = b * b - (float)4.0 * a * c;
if (d < 0)
return -1; // non-existing point
catesian[Z_AXIS] = -(float)0.5 * (b + sqrt(d)) / a;
catesian[X_AXIS] = (a1 * catesian[Z_AXIS] + b1) / dnm;
catesian[Y_AXIS] = (a2 * catesian[Z_AXIS] + b2) / dnm;
return 0;
}
// helper functions, calculates angle theta1 (for YZ-pane)
KinematicError delta_calcAngleYZ(float x0, float y0, float z0, float& theta) {
float y1 = -0.5 * 0.57735 * f; // f/2 * tg 30
y0 -= 0.5 * 0.57735 * e; // shift center to edge
// z = a + b*y
float a = (x0 * x0 + y0 * y0 + z0 * z0 + rf * rf - re * re - y1 * y1) / (2 * z0);
float b = (y1 - y0) / z0;
// discriminant
float d = -(a + b * y1) * (a + b * y1) + rf * (b * b * rf + rf);
if (d < 0)
return KinematicError::OUT_OF_RANGE; // non-existing point
float yj = (y1 - a * b - sqrt(d)) / (b * b + 1); // choosing outer point
float zj = a + b * yj;
//theta = 180.0 * atan(-zj / (y1 - yj)) / M_PI + ((yj > y1) ? 180.0 : 0.0);
theta = atan(-zj / (y1 - yj)) + ((yj > y1) ? M_PI : 0.0);
if (theta < MAX_NEGATIVE_ANGLE) {
return KinematicError::ANGLE_TOO_NEGATIVE;
}
if (theta > MAX_POSITIVE_ANGLE) {
return KinematicError::ANGLE_TOO_POSITIVE;
}
return KinematicError::NONE;
} }
// Determine the unit distance between (2) 3D points status = delta_calcAngleYZ(cartesian[X_AXIS] * cos120 - cartesian[Y_AXIS] * sin120,
float three_axis_dist(float* point1, float* point2) { cartesian[Y_AXIS] * cos120 + cartesian[X_AXIS] * sin120,
return sqrt(((point1[0] - point2[0]) * (point1[0] - point2[0])) + ((point1[1] - point2[1]) * (point1[1] - point2[1])) + cartesian[Z_AXIS],
((point1[2] - point2[2]) * (point1[2] - point2[2]))); angles[2]); // rotate coords to -120 deg
} if (status != KinematicError ::NONE) {
// called by reporting for WPos status return status;
void forward_kinematics(float* position) {
float calc_fwd[N_AXIS];
int status;
read_settings();
// convert the system position in steps to radians
float position_radians[N_AXIS];
int32_t position_steps[N_AXIS]; // Copy current state of the system position variable
memcpy(position_steps, sys_position, sizeof(sys_position));
system_convert_array_steps_to_mpos(position_radians, position_steps);
// grbl_msg_sendf(
// CLIENT_SERIAL, MsgLevel::Info, "Fwd Kin Angs %1.3f, %1.3f, %1.3f ", position_radians[0], position_radians[1], position_radians[2]);
// detmine the position of the end effector joint center.
status = calc_forward_kinematics(position_radians, calc_fwd);
if (status == 0) {
// apply offsets and set the returned values
position[X_AXIS] = calc_fwd[X_AXIS] - gc_state.coord_system[X_AXIS] + gc_state.coord_offset[X_AXIS];
position[Y_AXIS] = calc_fwd[Y_AXIS] - gc_state.coord_system[Y_AXIS] + gc_state.coord_offset[Y_AXIS];
position[Z_AXIS] = calc_fwd[Z_AXIS] - gc_state.coord_system[Z_AXIS] + gc_state.coord_offset[Z_AXIS];
} else {
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "MSG:Fwd Kin Error");
}
} }
bool kinematics_pre_homing(uint8_t cycle_mask) { // true = do not continue with normal Grbl homing //grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "xyx (%4.3f,%4.3f,%4.3f) ang (%4.3f,%4.3f,%4.3f)", x0, y0, z0, theta1, theta2, theta3);
return status;
}
// inverse kinematics: angles -> cartesian
int calc_forward_kinematics(float* angles, float* catesian) {
float t = (f - e) * tan30 / 2;
float y1 = -(t + rf * cos(angles[0]));
float z1 = -rf * sin(angles[0]);
float y2 = (t + rf * cos(angles[1])) * sin30;
float x2 = y2 * tan60;
float z2 = -rf * sin(angles[1]);
float y3 = (t + rf * cos(angles[2])) * sin30;
float x3 = -y3 * tan60;
float z3 = -rf * sin(angles[2]);
float dnm = (y2 - y1) * x3 - (y3 - y1) * x2;
float w1 = y1 * y1 + z1 * z1;
float w2 = x2 * x2 + y2 * y2 + z2 * z2;
float w3 = x3 * x3 + y3 * y3 + z3 * z3;
// x = (a1*z + b1)/dnm
float a1 = (z2 - z1) * (y3 - y1) - (z3 - z1) * (y2 - y1);
float b1 = -((w2 - w1) * (y3 - y1) - (w3 - w1) * (y2 - y1)) / 2.0;
// y = (a2*z + b2)/dnm;
float a2 = -(z2 - z1) * x3 + (z3 - z1) * x2;
float b2 = ((w2 - w1) * x3 - (w3 - w1) * x2) / 2.0;
// a*z^2 + b*z + c = 0
float a = a1 * a1 + a2 * a2 + dnm * dnm;
float b = 2 * (a1 * b1 + a2 * (b2 - y1 * dnm) - z1 * dnm * dnm);
float c = (b2 - y1 * dnm) * (b2 - y1 * dnm) + b1 * b1 + dnm * dnm * (z1 * z1 - re * re);
// discriminant
float d = b * b - (float)4.0 * a * c;
if (d < 0)
return -1; // non-existing point
catesian[Z_AXIS] = -(float)0.5 * (b + sqrt(d)) / a;
catesian[X_AXIS] = (a1 * catesian[Z_AXIS] + b1) / dnm;
catesian[Y_AXIS] = (a2 * catesian[Z_AXIS] + b2) / dnm;
return 0;
}
// helper functions, calculates angle theta1 (for YZ-pane)
KinematicError delta_calcAngleYZ(float x0, float y0, float z0, float& theta) {
float y1 = -0.5 * 0.57735 * f; // f/2 * tg 30
y0 -= 0.5 * 0.57735 * e; // shift center to edge
// z = a + b*y
float a = (x0 * x0 + y0 * y0 + z0 * z0 + rf * rf - re * re - y1 * y1) / (2 * z0);
float b = (y1 - y0) / z0;
// discriminant
float d = -(a + b * y1) * (a + b * y1) + rf * (b * b * rf + rf);
if (d < 0)
return KinematicError::OUT_OF_RANGE; // non-existing point
float yj = (y1 - a * b - sqrt(d)) / (b * b + 1); // choosing outer point
float zj = a + b * yj;
//theta = 180.0 * atan(-zj / (y1 - yj)) / M_PI + ((yj > y1) ? 180.0 : 0.0);
theta = atan(-zj / (y1 - yj)) + ((yj > y1) ? M_PI : 0.0);
if (theta < MAX_NEGATIVE_ANGLE) {
return KinematicError::ANGLE_TOO_NEGATIVE;
}
if (theta > MAX_POSITIVE_ANGLE) {
return KinematicError::ANGLE_TOO_POSITIVE;
}
return KinematicError::NONE;
}
// Determine the unit distance between (2) 3D points
float three_axis_dist(float* point1, float* point2) {
return sqrt(((point1[0] - point2[0]) * (point1[0] - point2[0])) + ((point1[1] - point2[1]) * (point1[1] - point2[1])) +
((point1[2] - point2[2]) * (point1[2] - point2[2])));
}
// called by reporting for WPos status
void forward_kinematics(float* position) {
float calc_fwd[N_AXIS];
int status;
read_settings();
// convert the system position in steps to radians
float position_radians[N_AXIS];
int32_t position_steps[N_AXIS]; // Copy current state of the system position variable
memcpy(position_steps, sys_position, sizeof(sys_position));
system_convert_array_steps_to_mpos(position_radians, position_steps);
// grbl_msg_sendf(
// CLIENT_SERIAL, MsgLevel::Info, "Fwd Kin Angs %1.3f, %1.3f, %1.3f ", position_radians[0], position_radians[1], position_radians[2]);
// detmine the position of the end effector joint center.
status = calc_forward_kinematics(position_radians, calc_fwd);
if (status == 0) {
// apply offsets and set the returned values
position[X_AXIS] = calc_fwd[X_AXIS] - gc_state.coord_system[X_AXIS] + gc_state.coord_offset[X_AXIS];
position[Y_AXIS] = calc_fwd[Y_AXIS] - gc_state.coord_system[Y_AXIS] + gc_state.coord_offset[Y_AXIS];
position[Z_AXIS] = calc_fwd[Z_AXIS] - gc_state.coord_system[Z_AXIS] + gc_state.coord_offset[Z_AXIS];
} else {
grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "MSG:Fwd Kin Error");
}
}
bool kinematics_pre_homing(uint8_t cycle_mask) { // true = do not continue with normal Grbl homing
#ifdef USE_CUSTOM_HOMING #ifdef USE_CUSTOM_HOMING
return true; return true;
#else #else
//grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "kinematics_pre_homing"); //grbl_msg_sendf(CLIENT_SERIAL, MsgLevel::Info, "kinematics_pre_homing");
return false; return false;
#endif #endif
} }
void kinematics_post_homing() { void kinematics_post_homing() {
#ifdef USE_CUSTOM_HOMING #ifdef USE_CUSTOM_HOMING
#else #else
last_angle[X_AXIS] = sys_position[X_AXIS] / axis_settings[X_AXIS]->steps_per_mm->get(); last_angle[X_AXIS] = sys_position[X_AXIS] / axis_settings[X_AXIS]->steps_per_mm->get();
last_angle[Y_AXIS] = sys_position[Y_AXIS] / axis_settings[Y_AXIS]->steps_per_mm->get(); last_angle[Y_AXIS] = sys_position[Y_AXIS] / axis_settings[Y_AXIS]->steps_per_mm->get();
last_angle[Z_AXIS] = sys_position[Z_AXIS] / axis_settings[Z_AXIS]->steps_per_mm->get(); last_angle[Z_AXIS] = sys_position[Z_AXIS] / axis_settings[Z_AXIS]->steps_per_mm->get();
read_settings(); read_settings();
calc_forward_kinematics(last_angle, last_cartesian); calc_forward_kinematics(last_angle, last_cartesian);
// grbl_msg_sendf(CLIENT_SERIAL, // grbl_msg_sendf(CLIENT_SERIAL,
// MsgLevel::Info, // MsgLevel::Info,
// "kinematics_post_homing Angles: %3.3f, %3.3f, %3.3f", // "kinematics_post_homing Angles: %3.3f, %3.3f, %3.3f",
// last_angle[X_AXIS], // last_angle[X_AXIS],
// last_angle[Y_AXIS], // last_angle[Y_AXIS],
// last_angle[Z_AXIS]); // last_angle[Z_AXIS]);
// grbl_msg_sendf(CLIENT_SERIAL, // grbl_msg_sendf(CLIENT_SERIAL,
// MsgLevel::Info, // MsgLevel::Info,
// "kinematics_post_homing Cartesian: %3.3f, %3.3f, %3.3f", // "kinematics_post_homing Cartesian: %3.3f, %3.3f, %3.3f",
// last_cartesian[X_AXIS], // last_cartesian[X_AXIS],
// last_cartesian[Y_AXIS], // last_cartesian[Y_AXIS],
// last_cartesian[Z_AXIS]); // last_cartesian[Z_AXIS]);
gc_state.position[X_AXIS] = last_cartesian[X_AXIS]; gc_state.position[X_AXIS] = last_cartesian[X_AXIS];
gc_state.position[Y_AXIS] = last_cartesian[Y_AXIS]; gc_state.position[Y_AXIS] = last_cartesian[Y_AXIS];
gc_state.position[Z_AXIS] = last_cartesian[Z_AXIS]; gc_state.position[Z_AXIS] = last_cartesian[Z_AXIS];
#endif #endif
#ifdef USE_POST_HOMING_DELAY #ifdef USE_POST_HOMING_DELAY
delay(1000); // give time for servo type homing delay(1000); // give time for servo type homing
#endif #endif
} }
void user_m30() {} void user_m30() {}
void read_settings() { void read_settings() {
rf = delta_crank_len->get(); // radius of the fixed side (length of motor cranks) rf = delta_crank_len->get(); // radius of the fixed side (length of motor cranks)
re = delta_link_len->get(); // radius of end effector side (length of linkages) re = delta_link_len->get(); // radius of end effector side (length of linkages)
f = delta_crank_side_len->get(); // sized of fixed side triangel f = delta_crank_side_len->get(); // sized of fixed side triangel
e = delta_effector_side_len->get(); // size of end effector side triangle e = delta_effector_side_len->get(); // size of end effector side triangle
} }

View File

@@ -204,17 +204,6 @@ namespace Motors {
return; return;
} }
float max_travel = axis_settings[_axis_index]->max_travel->get();
float mpos = axis_settings[_axis_index]->home_mpos->get();
if (bit_istrue(homing_dir_mask->get(), bit(_axis_index))) {
_position_min = mpos;
_position_max = mpos + max_travel;
} else {
_position_min = mpos - max_travel;
_position_max = mpos;
}
uint16_t run_i_ma = (uint16_t)(axis_settings[_axis_index]->run_current->get() * 1000.0); uint16_t run_i_ma = (uint16_t)(axis_settings[_axis_index]->run_current->get() * 1000.0);
float hold_i_percent; float hold_i_percent;