1
0
mirror of https://github.com/bdring/Grbl_Esp32.git synced 2025-08-27 16:19:57 +02:00

Merge pull request #342 from bdring/Devt

Devt - Merging recent changes
This commit is contained in:
bdring
2020-02-26 12:34:59 -06:00
committed by GitHub
11 changed files with 325 additions and 145 deletions

View File

@@ -85,6 +85,53 @@ bool COMMANDS::execute_internal_command (int cmd, String cmd_params, level_authe
//manage parameters //manage parameters
String parameter; String parameter;
switch (cmd) { switch (cmd) {
//help
//[ESP] or [ESP0]
case 0:
{
if (espresponse){
espresponse->println ("[List of ESP3D commands]");
espresponse->println ("[ESP] - display this help");
espresponse->println ("[ESP100](SSID) - display/set STA SSID");
espresponse->println ("[ESP101](Password) - set STA password");
espresponse->println ("[ESP102](Mode) - display/set STA IP mode (DHCP/STATIC)");
espresponse->println ("[ESP103](IP=xxxx MSK=xxxx GW=xxxx) - display/set STA IP/Mask/GW");
espresponse->println ("[ESP105](SSID) - display/set AP SSID");
espresponse->println ("[ESP106](Password) - set AP password");
espresponse->println ("[ESP107](IP) - display/set AP IP");
espresponse->println ("[ESP108](Chanel) - display/set AP chanel");
espresponse->println ("[ESP110](State) - display/set radio state which can be STA, AP, BT, OFF");
espresponse->println ("[ESP111]display current IP");
espresponse->println ("[ESP112](Hostname) - display/set Hostname");
espresponse->println ("[ESP115](State) - display/set immediate radio state which can be ON, OFF");
espresponse->println ("[ESP120](State) - display/set HTTP state which can be ON, OFF");
espresponse->println ("[ESP121](Port) - display/set HTTP port ");
espresponse->println ("[ESP130](State) - display/set Telnet state which can be ON, OFF");
espresponse->println ("[ESP131](Port) - display/set Telnet port ");
espresponse->println ("[ESP140](Bluetooth name) - display/set Bluetooth name");
espresponse->println ("[ESP200] - display SD Card Status");
espresponse->println ("[ESP210] - display SD Card content");
espresponse->println ("[ESP215](file/dir name) - delete SD Card file / directory");
espresponse->println ("[ESP220](file name) - run file from SD");
espresponse->println ("[ESP400] - display ESP3D settings in JSON");
espresponse->println ("[ESP401]P=(position) T=(type) V=(value) - Set specific setting");
espresponse->println ("[ESP410] - display available AP list (limited to 30) in JSON");
espresponse->println ("[ESP420] - display ESP3D current status");
espresponse->println ("[ESP444]RESTART - Restart ESP");
#ifdef ENABLE_AUTHENTICATION
espresponse->println ("[ESP555](Password) - set user password");
#endif //ENABLE_AUTHENTICATION
#ifdef ENABLE_NOTIFICATIONS
espresponse->println ("[ESP600](message) - send message");
espresponse->println ("[ESP610]type=(NONE/PUSHOVER/EMAIL/LINE) T1=(token1) T2=(token2) TS=(Settings) - display/set Notification settings");
#endif //ENABLE_NOTIFICATIONS
espresponse->println ("[ESP700](file name) - run macro file from ESP Filesystem");
espresponse->println ("[ESP710]FORMAT - Format ESP Filesystem");
espresponse->println ("[ESP720]display total size and used size of ESP Filesystem");
espresponse->println ("[ESP800] - display FW Informations");
}
}
break;
#ifdef ENABLE_WIFI #ifdef ENABLE_WIFI
//STA SSID //STA SSID
//[ESP100]<SSID>[pwd=<admin password>] //[ESP100]<SSID>[pwd=<admin password>]
@@ -1757,6 +1804,7 @@ bool COMMANDS::execute_internal_command (int cmd, String cmd_params, level_authe
} }
#endif #endif
#ifdef ENABLE_NOTIFICATIONS #ifdef ENABLE_NOTIFICATIONS
//[ESP600]<msg>
case 600: { //Send message case 600: { //Send message
#ifdef ENABLE_AUTHENTICATION #ifdef ENABLE_AUTHENTICATION
@@ -1926,7 +1974,7 @@ bool COMMANDS::execute_internal_command (int cmd, String cmd_params, level_authe
cmd_part2 = currentline.substring (ESPpos2 + 1); cmd_part2 = currentline.substring (ESPpos2 + 1);
} }
//if command is a valid number then execute command //if command is a valid number then execute command
if(cmd_part1.toInt()!=0) { if(cmd_part1.toInt()>=0) {
if (!execute_internal_command(cmd_part1.toInt(),cmd_part2, auth_type, espresponse)) response = false; if (!execute_internal_command(cmd_part1.toInt(),cmd_part2, auth_type, espresponse)) response = false;
} }
//if not is not a valid [ESPXXX] command ignore it //if not is not a valid [ESPXXX] command ignore it
@@ -2188,7 +2236,7 @@ bool COMMANDS::check_command (const char * line, int * cmd, String & cmd_params)
cmd_part2 = buffer.substring (ESPpos2 + 1); cmd_part2 = buffer.substring (ESPpos2 + 1);
} }
//if command is a valid number then execute command //if command is a valid number then execute command
if (cmd_part1.toInt() != 0) { if (cmd_part1.toInt() >= 0) {
*cmd = cmd_part1.toInt(); *cmd = cmd_part1.toInt();
cmd_params = cmd_part2; cmd_params = cmd_part2;
result = true; result = true;

View File

@@ -47,8 +47,8 @@ Some features should not be changed. See notes below.
#define CPU_MAP_TEST_DRIVE // these are defined in cpu_map.h #define CPU_MAP_TEST_DRIVE // these are defined in cpu_map.h
// Number of axes defined (steppers, servos, etc) (valid range: 3 to 6) // Number of axes defined (steppers, servos, etc) (valid range: 3 to 6)
// Even if your machine only uses less than the minimum of 3, you should select 3 // Even if your machine only uses less than the minimum of 3, you should select 3
#define N_AXIS 3 #define N_AXIS 3
#define VERBOSE_HELP // Currently this doesn't do anything #define VERBOSE_HELP // Currently this doesn't do anything
#define GRBL_MSG_LEVEL MSG_LEVEL_INFO // what level of [MSG:....] do you want to see 0=all off #define GRBL_MSG_LEVEL MSG_LEVEL_INFO // what level of [MSG:....] do you want to see 0=all off
@@ -56,7 +56,11 @@ Some features should not be changed. See notes below.
// Serial baud rate // Serial baud rate
// OK to change, but the ESP32 boot text is 115200, so you will not see that is your // OK to change, but the ESP32 boot text is 115200, so you will not see that is your
// serial monitor, sender, etc uses a different value than 115200 // serial monitor, sender, etc uses a different value than 115200
#define BAUD_RATE 115200 #define BAUD_RATE 115200
//Connect to your local AP with these credentials
//#define CONNECT_TO_SSID "your SSID"
//#define SSID_PASSWORD "your SSID password"
#define ENABLE_BLUETOOTH // enable bluetooth #define ENABLE_BLUETOOTH // enable bluetooth
@@ -101,7 +105,11 @@ Some features should not be changed. See notes below.
//Default mode //Default mode
#ifdef ENABLE_WIFI #ifdef ENABLE_WIFI
#ifdef CONNECT_TO_SSID
#define DEFAULT_RADIO_MODE ESP_WIFI_STA
#else
#define DEFAULT_RADIO_MODE ESP_WIFI_AP #define DEFAULT_RADIO_MODE ESP_WIFI_AP
#endif //CONNECT_TO_SSID
#else #else
#undef ENABLE_NOTIFICATIONS #undef ENABLE_NOTIFICATIONS
#ifdef ENABLE_BLUETOOTH #ifdef ENABLE_BLUETOOTH
@@ -288,7 +296,7 @@ Some features should not be changed. See notes below.
#define IGNORE_CONTROL_PINS #define IGNORE_CONTROL_PINS
#define ENABLE_CONTROL_SW_DEBOUNCE // Default disabled. Uncomment to enable. #define ENABLE_CONTROL_SW_DEBOUNCE // Default disabled. Uncomment to enable.
#define CONTROL_SW_DEBOUNCE_PERIOD 32 // in milliseconds default 32 microseconds #define CONTROL_SW_DEBOUNCE_PERIOD 32 // in milliseconds default 32 microseconds
// Inverts select limit pin states based on the following mask. This effects all limit pin functions, // Inverts select limit pin states based on the following mask. This effects all limit pin functions,

View File

@@ -585,19 +585,20 @@
#endif #endif
#define USE_GANGED_AXES // allow two motors on an axis #define USE_GANGED_AXES // allow two motors on an axis
#define USE_RMT_STEPS
#define X_STEP_PIN GPIO_NUM_12 #define X_STEP_PIN GPIO_NUM_12
#define X_STEP_B_PIN GPIO_NUM_22 // ganged motor #define X2_STEP_PIN GPIO_NUM_22 // ganged motor
#define X_AXIS_SQUARING #define X_AXIS_SQUARING
#define Y_STEP_PIN GPIO_NUM_14 #define Y_STEP_PIN GPIO_NUM_14
#define Y_STEP_B_PIN GPIO_NUM_21 // ganged motor #define Y2_STEP_PIN GPIO_NUM_21 // ganged motor
#define Y_AXIS_SQUARING #define Y_AXIS_SQUARING
#define Z_STEP_PIN GPIO_NUM_27 #define Z_STEP_PIN GPIO_NUM_27
#define X_DIRECTION_PIN GPIO_NUM_26 #define X_DIRECTION_PIN GPIO_NUM_26
#define Y_DIRECTION_PIN GPIO_NUM_25 #define Y_DIRECTION_PIN GPIO_NUM_25
#define Z_DIRECTION_PIN GPIO_NUM_33 #define Z_DIRECTION_PIN GPIO_NUM_33
// OK to comment out to use pin for other features // OK to comment out to use pin for other features
@@ -736,14 +737,14 @@
#define X_DIRECTION_PIN GPIO_NUM_33 // use Z labeled connector #define X_DIRECTION_PIN GPIO_NUM_33 // use Z labeled connector
#define Y_STEP_PIN GPIO_NUM_14 #define Y_STEP_PIN GPIO_NUM_14
#define Y_STEP_B_PIN GPIO_NUM_21 // ganged motor #define Y2_STEP_PIN GPIO_NUM_21 // ganged motor
#define Y_DIRECTION_PIN GPIO_NUM_25 #define Y_DIRECTION_PIN GPIO_NUM_25
#define Y_AXIS_SQUARING #define Y_AXIS_SQUARING
#define Z_STEP_PIN GPIO_NUM_12 // use X labeled connector #define Z_STEP_PIN GPIO_NUM_12 // use X labeled connector
#define Z_STEP_B_PIN GPIO_NUM_22 // use X labeled connector #define Z2_STEP_PIN GPIO_NUM_22 // use X labeled connector
#define Z_DIRECTION_PIN GPIO_NUM_26 // use X labeled connector #define Z_DIRECTION_PIN GPIO_NUM_26 // use X labeled connector
#define Z_AXIS_SQUARING #define Z_AXIS_SQUARING
// OK to comment out to use pin for other features // OK to comment out to use pin for other features
#define STEPPERS_DISABLE_PIN GPIO_NUM_13 #define STEPPERS_DISABLE_PIN GPIO_NUM_13
@@ -1011,20 +1012,27 @@
#ifdef N_AXIS #ifdef N_AXIS
#undef N_AXIS #undef N_AXIS
#endif #endif
#define N_AXIS 4 // can be 3 or 4. (if 3 install bypass jumper next to the A driver) #define N_AXIS 3 // can be 3 or 4. (if 3 install bypass jumper next to the A driver)
#define USE_TRINAMIC #define USE_TRINAMIC
#define TRINAMIC_DAISY_CHAIN #define TRINAMIC_DAISY_CHAIN
// Use SPI enable instead of the enable pin // Use SPI enable instead of the enable pin
// The hardware enable pin is tied to ground // The hardware enable pin is tied to ground
#define USE_TRINAMIC_ENABLE #define USE_TRINAMIC_ENABLE
// The ESP32 RMT feature will generate the step pulse timing
#define USE_RMT_STEPS #define USE_RMT_STEPS
// allow two motors on an axis
#define USE_GANGED_AXES
#define X_DRIVER_TMC2130 // Which Driver Type? #define X_DRIVER_TMC2130 // Which Driver Type?
#define X_RSENSE 0.11f // .11 Ohm...typical of 2130 type 0.075 typical for TMC5160 #define X_RSENSE 0.11f // .11 Ohm...typical of 2130 type 0.075 typical for TMC5160
#define X_STEP_PIN GPIO_NUM_12 #define X_STEP_PIN GPIO_NUM_12
#define X_DIRECTION_PIN GPIO_NUM_14 #define X_DIRECTION_PIN GPIO_NUM_14
#define X2_STEP_PIN GPIO_NUM_33
#define X2_DIRECTION_PIN GPIO_NUM_32
#define X_TRINAMIC // using SPI control #define X_TRINAMIC // using SPI control
#define X_CS_PIN GPIO_NUM_17 // Daisy Chain, all share same CS pin #define X_CS_PIN GPIO_NUM_17 // Daisy Chain, all share same CS pin
@@ -1082,6 +1090,52 @@
#endif #endif
#ifdef EXTERNAL_DRIVER_4X
#define CPU_MAP_NAME "External Driver Board V1.1"
#ifdef N_AXIS
#undef N_AXIS
#endif
#define N_AXIS 4
#define USE_RMT_STEPS
#define X_STEP_PIN GPIO_NUM_0
#define X_DIRECTION_PIN GPIO_NUM_2
#define Y_STEP_PIN GPIO_NUM_26
#define Y_DIRECTION_PIN GPIO_NUM_15
#define Z_STEP_PIN GPIO_NUM_27
#define Z_DIRECTION_PIN GPIO_NUM_33
#define A_STEP_PIN GPIO_NUM_14
#define A_DIRECTION_PIN GPIO_NUM_12
#define STEPPERS_DISABLE_PIN GPIO_NUM_13
#define SPINDLE_PWM_PIN GPIO_NUM_25
#define SPINDLE_PWM_CHANNEL 0
#define SPINDLE_PWM_BIT_PRECISION 8
#define SPINDLE_ENABLE_PIN GPIO_NUM_22
#define MODBUS_TX GPIO_NUM_17
#define MODBUS_RX GPIO_NUM_4
#define MODBUS_CTRL GPIO_NUM_16
#define X_LIMIT_PIN GPIO_NUM_34
#define Y_LIMIT_PIN GPIO_NUM_35
#define Z_LIMIT_PIN GPIO_NUM_36
#if (N_AXIS == 3)
#define LIMIT_MASK B0111
#else
#define A_LIMIT_PIN GPIO_NUM_39
#define LIMIT_MASK B1111
#endif
#define PROBE_PIN GPIO_NUM_32
#define COOLANT_MIST_PIN GPIO_NUM_21
#endif
#ifdef CPU_MAP_ATARI_1020 #ifdef CPU_MAP_ATARI_1020
#include "atari_1020.h" #include "atari_1020.h"
#endif #endif

View File

@@ -20,7 +20,7 @@
// Grbl versioning system // Grbl versioning system
#define GRBL_VERSION "1.1f" #define GRBL_VERSION "1.1f"
#define GRBL_VERSION_BUILD "20200219" #define GRBL_VERSION_BUILD "20200225"
//#include <sdkconfig.h> //#include <sdkconfig.h>
#include <Arduino.h> #include <Arduino.h>

View File

@@ -271,8 +271,6 @@ void trinamic_stepper_enable(bool enable) {
previous_state = enable; previous_state = enable;
grbl_msg_sendf(CLIENT_SERIAL, MSG_LEVEL_INFO, "Trinamic Enable: %d", enable);
if (enable) if (enable)
toff = TRINAMIC_DEFAULT_TOFF; toff = TRINAMIC_DEFAULT_TOFF;
else else

View File

@@ -152,6 +152,21 @@ typedef struct {
} st_prep_t; } st_prep_t;
static st_prep_t prep; static st_prep_t prep;
// RMT channel numbers. These are assigned dynamically as needed via the CPU MAP
// Only 8 are available (0-7)
// They are Initialized with an invalid number to prevent unitended consequences
uint8_t X_rmt_chan_num = 255;
uint8_t X2_rmt_chan_num = 255; // Ganged axes have the "2"
uint8_t Y_rmt_chan_num = 255;
uint8_t Y2_rmt_chan_num = 255;
uint8_t Z_rmt_chan_num = 255;
uint8_t Z2_rmt_chan_num = 255;
uint8_t A_rmt_chan_num = 255;
uint8_t A2_rmt_chan_num = 255;
uint8_t B_rmt_chan_num = 255;
uint8_t B2_rmt_chan_num = 255;
uint8_t C_rmt_chan_num = 255;
uint8_t C2_rmt_chan_num = 255;
/* "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. Grbl employs /* "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. Grbl employs
the venerable Bresenham line algorithm to manage and exactly synchronize multi-axis moves. the venerable Bresenham line algorithm to manage and exactly synchronize multi-axis moves.
@@ -458,22 +473,22 @@ void stepper_init()
#ifdef X_STEP_PIN #ifdef X_STEP_PIN
pinMode(X_STEP_PIN, OUTPUT); pinMode(X_STEP_PIN, OUTPUT);
#endif #endif
#ifdef X_STEP_B_PIN // ganged motor #ifdef X2_STEP_PIN // ganged motor
pinMode(X_STEP_B_PIN, OUTPUT); pinMode(X2_STEP_PIN, OUTPUT);
#endif #endif
#ifdef Y_STEP_PIN #ifdef Y_STEP_PIN
pinMode(Y_STEP_PIN, OUTPUT); pinMode(Y_STEP_PIN, OUTPUT);
#endif #endif
#ifdef Y_STEP_B_PIN #ifdef Y2_STEP_PIN
pinMode(Y_STEP_B_PIN, OUTPUT); pinMode(Y2_STEP_PIN, OUTPUT);
#endif #endif
#ifdef Z_STEP_PIN #ifdef Z_STEP_PIN
pinMode(Z_STEP_PIN, OUTPUT); pinMode(Z_STEP_PIN, OUTPUT);
#endif #endif
#ifdef Z_STEP_B_PIN #ifdef Z2_STEP_PIN
pinMode(Z_STEP_B_PIN, OUTPUT); pinMode(Z2_STEP_PIN, OUTPUT);
#endif #endif
#ifdef A_STEP_PIN #ifdef A_STEP_PIN
@@ -494,24 +509,44 @@ void stepper_init()
#ifdef X_DIRECTION_PIN #ifdef X_DIRECTION_PIN
pinMode(X_DIRECTION_PIN, OUTPUT); pinMode(X_DIRECTION_PIN, OUTPUT);
#endif #endif
#ifdef X2_DIRECTION_PIN
pinMode(X2_DIRECTION_PIN, OUTPUT);
#endif
#ifdef Y_DIRECTION_PIN #ifdef Y_DIRECTION_PIN
pinMode(Y_DIRECTION_PIN, OUTPUT); pinMode(Y_DIRECTION_PIN, OUTPUT);
#endif #endif
#ifdef Y2_DIRECTION_PIN
pinMode(Y2_DIRECTION_PIN, OUTPUT);
#endif
#ifdef Z_DIRECTION_PIN #ifdef Z_DIRECTION_PIN
pinMode(Z_DIRECTION_PIN, OUTPUT); pinMode(Z_DIRECTION_PIN, OUTPUT);
#endif #endif
#ifdef Z2_DIRECTION_PIN
pinMode(Z2_DIRECTION_PIN, OUTPUT);
#endif
#ifdef A_DIRECTION_PIN #ifdef A_DIRECTION_PIN
pinMode(A_DIRECTION_PIN, OUTPUT); pinMode(A_DIRECTION_PIN, OUTPUT);
#endif #endif
#ifdef A2_DIRECTION_PIN
pinMode(A2_DIRECTION_PIN, OUTPUT);
#endif
#ifdef B_DIRECTION_PIN #ifdef B_DIRECTION_PIN
pinMode(B_DIRECTION_PIN, OUTPUT); pinMode(B_DIRECTION_PIN, OUTPUT);
#endif #endif
#ifdef B2_DIRECTION_PIN
pinMode(B2_DIRECTION_PIN, OUTPUT);
#endif
#ifdef C_DIRECTION_PIN #ifdef C_DIRECTION_PIN
pinMode(C_DIRECTION_PIN, OUTPUT); pinMode(C_DIRECTION_PIN, OUTPUT);
#endif #endif
#ifdef C2_DIRECTION_PIN
pinMode(C2_DIRECTION_PIN, OUTPUT);
#endif
// setup stepper timer interrupt // setup stepper timer interrupt
@@ -536,8 +571,6 @@ void stepper_init()
timer_set_counter_value(STEP_TIMER_GROUP, STEP_TIMER_INDEX, 0x00000000ULL); timer_set_counter_value(STEP_TIMER_GROUP, STEP_TIMER_INDEX, 0x00000000ULL);
timer_enable_intr(STEP_TIMER_GROUP, STEP_TIMER_INDEX); timer_enable_intr(STEP_TIMER_GROUP, STEP_TIMER_INDEX);
timer_isr_register(STEP_TIMER_GROUP, STEP_TIMER_INDEX, onStepperDriverTimer, NULL, 0, NULL); timer_isr_register(STEP_TIMER_GROUP, STEP_TIMER_INDEX, onStepperDriverTimer, NULL, 0, NULL);
} }
#ifdef USE_RMT_STEPS #ifdef USE_RMT_STEPS
@@ -567,8 +600,9 @@ void initRMT()
rmtItem[1].duration1 = 0; rmtItem[1].duration1 = 0;
#ifdef X_STEP_PIN #ifdef X_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)X_RMT_CHANNEL, RMT_BASECLK_APB); X_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)X_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)X_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)X_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, X_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, X_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = X_STEP_PIN; rmtConfig.gpio_num = X_STEP_PIN;
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
@@ -577,11 +611,12 @@ void initRMT()
rmt_fill_tx_items(rmtConfig.channel, &rmtItem[0], rmtConfig.mem_block_num, 0); rmt_fill_tx_items(rmtConfig.channel, &rmtItem[0], rmtConfig.mem_block_num, 0);
#endif #endif
#ifdef X_STEP_B_PIN #ifdef X2_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)X_B_RMT_CHANNEL, RMT_BASECLK_APB); X2_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)X_B_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)X2_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)X2_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, X_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, X_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = X_STEP_B_PIN; rmtConfig.gpio_num = X2_STEP_PIN;
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
rmtItem[0].level1 = !rmtConfig.tx_config.idle_level; rmtItem[0].level1 = !rmtConfig.tx_config.idle_level;
rmt_config(&rmtConfig); rmt_config(&rmtConfig);
@@ -589,8 +624,9 @@ void initRMT()
#endif #endif
#ifdef Y_STEP_PIN #ifdef Y_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)Y_RMT_CHANNEL, RMT_BASECLK_APB); Y_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)Y_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)Y_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)Y_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, Y_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, Y_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = Y_STEP_PIN; rmtConfig.gpio_num = Y_STEP_PIN;
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
@@ -599,11 +635,12 @@ void initRMT()
rmt_fill_tx_items(rmtConfig.channel, &rmtItem[0], rmtConfig.mem_block_num, 0); rmt_fill_tx_items(rmtConfig.channel, &rmtItem[0], rmtConfig.mem_block_num, 0);
#endif #endif
#ifdef Y_STEP_B_PIN #ifdef Y2_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)Y_B_RMT_CHANNEL, RMT_BASECLK_APB); Y2_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)Y_B_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)Y2_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)Y2_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, Y_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, Y_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = Y_STEP_B_PIN; rmtConfig.gpio_num = Y2_STEP_PIN;
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
rmtItem[0].level1 = !rmtConfig.tx_config.idle_level; rmtItem[0].level1 = !rmtConfig.tx_config.idle_level;
rmt_config(&rmtConfig); rmt_config(&rmtConfig);
@@ -611,8 +648,9 @@ void initRMT()
#endif #endif
#ifdef Z_STEP_PIN #ifdef Z_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)Z_RMT_CHANNEL, RMT_BASECLK_APB); Z_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)Z_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)Z_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)Z_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, Z_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, Z_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = Z_STEP_PIN; rmtConfig.gpio_num = Z_STEP_PIN;
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
@@ -622,8 +660,9 @@ void initRMT()
#endif #endif
#ifdef A_STEP_PIN #ifdef A_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)A_RMT_CHANNEL, RMT_BASECLK_APB); A_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)A_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)A_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)A_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, A_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, A_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = A_STEP_PIN; // TODO rmtConfig.gpio_num = A_STEP_PIN; // TODO
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
@@ -633,8 +672,9 @@ void initRMT()
#endif #endif
#ifdef B_STEP_PIN #ifdef B_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)B_RMT_CHANNEL, RMT_BASECLK_APB); B_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)B_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)B_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)B_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, B_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, B_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = B_STEP_PIN; // TODO rmtConfig.gpio_num = B_STEP_PIN; // TODO
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
@@ -644,8 +684,9 @@ void initRMT()
#endif #endif
#ifdef C_STEP_PIN #ifdef C_STEP_PIN
rmt_set_source_clk( (rmt_channel_t)C_RMT_CHANNEL, RMT_BASECLK_APB); C_rmt_chan_num = sys_get_next_RMT_chan_num();
rmtConfig.channel = (rmt_channel_t)C_RMT_CHANNEL; rmt_set_source_clk( (rmt_channel_t)C_rmt_chan_num, RMT_BASECLK_APB);
rmtConfig.channel = (rmt_channel_t)C_rmt_chan_num;
rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, C_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW; rmtConfig.tx_config.idle_level = bit_istrue(settings.step_invert_mask, C_AXIS) ? RMT_IDLE_LEVEL_HIGH : RMT_IDLE_LEVEL_LOW;
rmtConfig.gpio_num = C_STEP_PIN; // TODO rmtConfig.gpio_num = C_STEP_PIN; // TODO
rmtItem[0].level0 = rmtConfig.tx_config.idle_level; rmtItem[0].level0 = rmtConfig.tx_config.idle_level;
@@ -725,97 +766,117 @@ void set_direction_pins_on(uint8_t onMask)
#ifdef X_DIRECTION_PIN #ifdef X_DIRECTION_PIN
digitalWrite(X_DIRECTION_PIN, (onMask & (1<<X_AXIS))); digitalWrite(X_DIRECTION_PIN, (onMask & (1<<X_AXIS)));
#endif #endif
#ifdef X2_DIRECTION_PIN // optional ganged axis
digitalWrite(X2_DIRECTION_PIN, (onMask & (1<<X_AXIS)));
#endif
#ifdef Y_DIRECTION_PIN #ifdef Y_DIRECTION_PIN
digitalWrite(Y_DIRECTION_PIN, (onMask & (1<<Y_AXIS))); digitalWrite(Y_DIRECTION_PIN, (onMask & (1<<Y_AXIS)));
#endif #endif
#ifdef Y2_DIRECTION_PIN // optional ganged axis
digitalWrite(Y2_DIRECTION_PIN, (onMask & (1<<Y_AXIS)));
#endif
#ifdef Z_DIRECTION_PIN #ifdef Z_DIRECTION_PIN
digitalWrite(Z_DIRECTION_PIN, (onMask & (1<<Z_AXIS))); digitalWrite(Z_DIRECTION_PIN, (onMask & (1<<Z_AXIS)));
#endif #endif
#ifdef Z2_DIRECTION_PIN // optional ganged axis
digitalWrite(Z2_DIRECTION_PIN, (onMask & (1<<Z_AXIS)));
#endif
#ifdef A_DIRECTION_PIN #ifdef A_DIRECTION_PIN
digitalWrite(A_DIRECTION_PIN, (onMask & (1<<A_AXIS))); digitalWrite(A_DIRECTION_PIN, (onMask & (1<<A_AXIS)));
#endif #endif
#ifdef A2_DIRECTION_PIN // optional ganged axis
digitalWrite(A2_DIRECTION_PIN, (onMask & (1<<A_AXIS)));
#endif
#ifdef B_DIRECTION_PIN #ifdef B_DIRECTION_PIN
digitalWrite(B_DIRECTION_PIN, (onMask & (1<<B_AXIS))); digitalWrite(B_DIRECTION_PIN, (onMask & (1<<B_AXIS)));
#endif #endif
#ifdef B2_DIRECTION_PIN // optional ganged axis
digitalWrite(B2_DIRECTION_PIN, (onMask & (1<<B_AXIS)));
#endif
#ifdef C_DIRECTION_PIN #ifdef C_DIRECTION_PIN
digitalWrite(C_DIRECTION_PIN, (onMask & (1<<C_AXIS))); digitalWrite(C_DIRECTION_PIN, (onMask & (1<<C_AXIS)));
#endif #endif
#ifdef C2_DIRECTION_PIN // optional ganged axis
digitalWrite(C2_DIRECTION_PIN, (onMask & (1<<C_AXIS)));
#endif
} }
#ifndef USE_GANGED_AXES #ifndef USE_GANGED_AXES
// basic one motor per axis // basic one motor per axis
void set_stepper_pins_on(uint8_t onMask) void set_stepper_pins_on(uint8_t onMask)
{ {
onMask ^= settings.step_invert_mask; // invert pins as required by invert mask onMask ^= settings.step_invert_mask; // invert pins as required by invert mask
#ifdef X_STEP_PIN #ifdef X_STEP_PIN
digitalWrite(X_STEP_PIN, (onMask & (1<<X_AXIS)));
#endif
#ifdef Y_STEP_PIN
digitalWrite(Y_STEP_PIN, (onMask & (1<<Y_AXIS)));
#endif
#ifdef Z_STEP_PIN
digitalWrite(Z_STEP_PIN, (onMask & (1<<Z_AXIS)));
#endif
#ifdef A_STEP_PIN
digitalWrite(A_STEP_PIN, (onMask & (1<<A_AXIS)));
#endif
}
#else // we use ganged axes
void set_stepper_pins_on(uint8_t onMask)
{
onMask ^= settings.step_invert_mask; // invert pins as required by invert mask
#ifdef X_STEP_PIN
#ifndef X_STEP_B_PIN // if not a ganged axis
digitalWrite(X_STEP_PIN, (onMask & (1<<X_AXIS)));
#else // is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
digitalWrite(X_STEP_PIN, (onMask & (1<<X_AXIS))); digitalWrite(X_STEP_PIN, (onMask & (1<<X_AXIS)));
} #endif
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) { #ifdef Y_STEP_PIN
digitalWrite(X_STEP_B_PIN, (onMask & (1<<X_AXIS)));
}
#endif
#endif
#ifdef Y_STEP_PIN
#ifndef Y_STEP_B_PIN // if not a ganged axis
digitalWrite(Y_STEP_PIN, (onMask & (1<<Y_AXIS)));
#else // is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
digitalWrite(Y_STEP_PIN, (onMask & (1<<Y_AXIS))); digitalWrite(Y_STEP_PIN, (onMask & (1<<Y_AXIS)));
} #endif
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) { #ifdef Z_STEP_PIN
digitalWrite(Y_STEP_B_PIN, (onMask & (1<<Y_AXIS)));
}
#endif
#endif
#ifdef Z_STEP_PIN
#ifndef Z_STEP_B_PIN // if not a ganged axis
digitalWrite(Z_STEP_PIN, (onMask & (1<<Z_AXIS)));
#else // is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
digitalWrite(Z_STEP_PIN, (onMask & (1<<Z_AXIS))); digitalWrite(Z_STEP_PIN, (onMask & (1<<Z_AXIS)));
#endif
#ifdef A_STEP_PIN
digitalWrite(A_STEP_PIN, (onMask & (1<<A_AXIS)));
#endif
} }
#else // we use ganged axes
void set_stepper_pins_on(uint8_t onMask)
{
onMask ^= settings.step_invert_mask; // invert pins as required by invert mask
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) { #ifdef X_STEP_PIN
digitalWrite(Z_STEP_B_PIN, (onMask & (1<<Z_AXIS))); #ifndef X2_STEP_PIN // if not a ganged axis
digitalWrite(X_STEP_PIN, (onMask & (1<<X_AXIS)));
#else // is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
digitalWrite(X_STEP_PIN, (onMask & (1<<X_AXIS)));
}
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) {
digitalWrite(X2_STEP_PIN, (onMask & (1<<X_AXIS)));
}
#endif
#endif
#ifdef Y_STEP_PIN
#ifndef Y2_STEP_PIN // if not a ganged axis
digitalWrite(Y_STEP_PIN, (onMask & (1<<Y_AXIS)));
#else // is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
digitalWrite(Y_STEP_PIN, (onMask & (1<<Y_AXIS)));
}
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) {
digitalWrite(Y2_STEP_PIN, (onMask & (1<<Y_AXIS)));
}
#endif
#endif
#ifdef Z_STEP_PIN
#ifndef Z2_STEP_PIN // if not a ganged axis
digitalWrite(Z_STEP_PIN, (onMask & (1<<Z_AXIS)));
#else // is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
digitalWrite(Z_STEP_PIN, (onMask & (1<<Z_AXIS)));
}
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) {
digitalWrite(Z2_STEP_PIN, (onMask & (1<<Z_AXIS)));
}
#endif
#endif
} }
#endif #endif
#endif
}
#endif
#ifdef USE_RMT_STEPS #ifdef USE_RMT_STEPS
// Set stepper pulse output pins // Set stepper pulse output pins
@@ -824,17 +885,17 @@ inline IRAM_ATTR static void stepperRMT_Outputs()
#ifdef X_STEP_PIN #ifdef X_STEP_PIN
if(st.step_outbits & (1<<X_AXIS)) { if(st.step_outbits & (1<<X_AXIS)) {
#ifndef X_STEP_B_PIN // if not a ganged axis #ifndef X2_STEP_PIN // if not a ganged axis
RMT.conf_ch[X_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[X_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[X_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[X_rmt_chan_num].conf1.tx_start = 1;
#else // it is a ganged axis #else // it is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) { if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
RMT.conf_ch[X_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[X_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[X_RMT_CHANNEL].conf1.tx_start = 1; } RMT.conf_ch[X_rmt_chan_num].conf1.tx_start = 1; }
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) { if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) {
RMT.conf_ch[X_B_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[X2_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[X_B_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[X2_rmt_chan_num].conf1.tx_start = 1;
} }
#endif #endif
} }
@@ -843,17 +904,17 @@ inline IRAM_ATTR static void stepperRMT_Outputs()
#ifdef Y_STEP_PIN #ifdef Y_STEP_PIN
if(st.step_outbits & (1<<Y_AXIS)) { if(st.step_outbits & (1<<Y_AXIS)) {
#ifndef Y_STEP_B_PIN // if not a ganged axis #ifndef Y2_STEP_PIN // if not a ganged axis
RMT.conf_ch[Y_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[Y_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[Y_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[Y_rmt_chan_num].conf1.tx_start = 1;
#else // it is a ganged axis #else // it is a ganged axis
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) { if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_A) ) {
RMT.conf_ch[Y_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[Y_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[Y_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[Y_rmt_chan_num].conf1.tx_start = 1;
} }
if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) { if ( (ganged_mode == SQUARING_MODE_DUAL) || (ganged_mode == SQUARING_MODE_B) ) {
RMT.conf_ch[Y_B_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[Y2_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[Y_B_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[Y2_rmt_chan_num].conf1.tx_start = 1;
} }
#endif #endif
} }
@@ -861,32 +922,32 @@ inline IRAM_ATTR static void stepperRMT_Outputs()
#ifdef Z_STEP_PIN #ifdef Z_STEP_PIN
if(st.step_outbits & (1<<Z_AXIS)) { if(st.step_outbits & (1<<Z_AXIS)) {
RMT.conf_ch[Z_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[Z_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[Z_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[Z_rmt_chan_num].conf1.tx_start = 1;
} }
#endif #endif
#ifdef A_STEP_PIN #ifdef A_STEP_PIN
if(st.step_outbits & (1<<A_AXIS)) { if(st.step_outbits & (1<<A_AXIS)) {
RMT.conf_ch[A_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[A_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[A_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[A_rmt_chan_num].conf1.tx_start = 1;
} }
#endif #endif
#ifdef B_STEP_PIN #ifdef B_STEP_PIN
if(st.step_outbits & (1<<B_AXIS)) { if(st.step_outbits & (1<<B_AXIS)) {
RMT.conf_ch[B_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[B_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[B_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[B_rmt_chan_num].conf1.tx_start = 1;
} }
#endif #endif
#ifdef C_STEP_PIN #ifdef C_STEP_PIN
if(st.step_outbits & (1<<C_AXIS)) { if(st.step_outbits & (1<<C_AXIS)) {
RMT.conf_ch[C_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[C_rmt_chan_num].conf1.mem_rd_rst = 1;
RMT.conf_ch[C_RMT_CHANNEL].conf1.tx_start = 1; RMT.conf_ch[C_rmt_chan_num].conf1.tx_start = 1;
} }
#endif #endif
@@ -1535,7 +1596,4 @@ bool get_stepper_disable() // returns true if steppers are disabled
return disabled; return disabled;
} }

View File

@@ -47,14 +47,6 @@
#define PREP_FLAG_PARKING bit(2) #define PREP_FLAG_PARKING bit(2)
#define PREP_FLAG_DECEL_OVERRIDE bit(3) #define PREP_FLAG_DECEL_OVERRIDE bit(3)
// which RMT channels to use with the axes
#define X_RMT_CHANNEL 0
#define Y_RMT_CHANNEL 1
#define Z_RMT_CHANNEL 2
#define A_RMT_CHANNEL 3
#define B_RMT_CHANNEL 4
#define C_RMT_CHANNEL 5
// Define Adaptive Multi-Axis Step-Smoothing(AMASS) levels and cutoff frequencies. The highest level // Define Adaptive Multi-Axis Step-Smoothing(AMASS) levels and cutoff frequencies. The highest level
// frequency bin starts at 0Hz and ends at its cutoff frequency. The next lower level frequency bin // frequency bin starts at 0Hz and ends at its cutoff frequency. The next lower level frequency bin
// starts at the next higher cutoff frequency, and so on. The cutoff frequencies for each level must // starts at the next higher cutoff frequency, and so on. The cutoff frequencies for each level must

View File

@@ -623,4 +623,19 @@ void sys_io_control(uint8_t io_num_mask, bool turnOn) {
return; return;
} }
#endif #endif
}
// Call this function to get an RMT channel number
// returns -1 for error
int8_t sys_get_next_RMT_chan_num()
{
static uint8_t next_RMT_chan_num = 0; // channels 0-7 are valid
if (next_RMT_chan_num< 8) { // 7 is the max PWM channel number
return next_RMT_chan_num++;
}
else {
grbl_msg_sendf(CLIENT_SERIAL, MSG_LEVEL_ERROR, "Error: out of RMT channels");
return -1;
}
} }

View File

@@ -227,5 +227,7 @@ void system_exec_control_pin(uint8_t pin);
void sys_io_control(uint8_t io_num_mask, bool turnOn); void sys_io_control(uint8_t io_num_mask, bool turnOn);
//
int8_t sys_get_next_RMT_chan_num();
#endif #endif

View File

@@ -512,7 +512,7 @@ void Web_Server::handle_web_command ()
cmd_part2 = cmd.substring (ESPpos2 + 1); cmd_part2 = cmd.substring (ESPpos2 + 1);
} }
//if command is a valid number then execute command //if command is a valid number then execute command
if (cmd_part1.toInt() != 0) { if (cmd_part1.toInt() >= 0) {
ESPResponseStream espresponse(_webserver); ESPResponseStream espresponse(_webserver);
//commmand is web only //commmand is web only
COMMANDS::execute_internal_command (cmd_part1.toInt(), cmd_part2, auth_level, &espresponse); COMMANDS::execute_internal_command (cmd_part1.toInt(), cmd_part2, auth_level, &espresponse);
@@ -589,7 +589,7 @@ void Web_Server::handle_web_command_silent ()
cmd_part2 = cmd.substring (ESPpos2 + 1); cmd_part2 = cmd.substring (ESPpos2 + 1);
} }
//if command is a valid number then execute command //if command is a valid number then execute command
if (cmd_part1.toInt() != 0) { if (cmd_part1.toInt() >= 0) {
//commmand is web only //commmand is web only
if(COMMANDS::execute_internal_command (cmd_part1.toInt(), cmd_part2, auth_level, NULL)) _webserver->send (200, "text/plain", "ok"); if(COMMANDS::execute_internal_command (cmd_part1.toInt(), cmd_part2, auth_level, NULL)) _webserver->send (200, "text/plain", "ok");
else _webserver->send (200, "text/plain", "error"); else _webserver->send (200, "text/plain", "error");

View File

@@ -53,8 +53,13 @@
//defaults values //defaults values
#define DEFAULT_HOSTNAME "grblesp" #define DEFAULT_HOSTNAME "grblesp"
#ifdef CONNECT_TO_SSID
#define DEFAULT_STA_SSID CONNECT_TO_SSID
#define DEFAULT_STA_PWD SSID_PASSWORD
#else //!CONNECT_TO_SSID
#define DEFAULT_STA_SSID "GRBL_ESP" #define DEFAULT_STA_SSID "GRBL_ESP"
#define DEFAULT_STA_PWD "12345678" #define DEFAULT_STA_PWD "12345678"
#endif //CONNECT_TO_SSID
#define DEFAULT_STA_IP "0.0.0.0" #define DEFAULT_STA_IP "0.0.0.0"
#define DEFAULT_STA_GW "0.0.0.0" #define DEFAULT_STA_GW "0.0.0.0"
#define DEFAULT_STA_MK "0.0.0.0" #define DEFAULT_STA_MK "0.0.0.0"