bsnes/nall/random.hpp

169 lines
4.2 KiB
C++
Raw Normal View History

#pragma once
#include <nall/arithmetic.hpp>
#include <nall/chrono.hpp>
#include <nall/range.hpp>
#include <nall/serializer.hpp>
#include <nall/stdint.hpp>
#if !defined(PLATFORM_ANDROID)
#include <nall/cipher/chacha20.hpp>
#endif
#if defined(PLATFORM_LINUX) && __has_include(<sys/random.h>)
#include <sys/random.h>
#elif defined(PLATFORM_ANDROID) && __has_include(<sys/syscall.h>)
#include <sys/syscall.h>
#elif defined(PLATFORM_WINDOWS) && __has_include(<wincrypt.h>)
#include <wincrypt.h>
#else
#include <stdio.h>
#endif
namespace nall {
template<typename Base> struct RNG {
template<typename T = uint64_t> auto random() -> T {
T value = 0;
for(uint n : range((sizeof(T) + 3) / 4)) {
value = value << 32 | (uint32_t)static_cast<Base*>(this)->read();
}
return value;
}
template<typename T = uint64_t> auto bound(T range) -> T {
T threshold = -range % range;
while(true) {
T value = random<T>();
if(value >= threshold) return value % range;
}
}
protected:
auto randomSeed() -> uint256_t {
uint256_t seed = 0;
#if defined(PLATFORM_BSD) || defined(PLATFORM_MACOS)
for(uint n : range(8)) seed = seed << 32 | (uint32_t)arc4random();
#elif defined(PLATFORM_LINUX) && __has_include(<sys/random.h>)
getrandom(&seed, 32, GRND_NONBLOCK);
#elif defined(PLATFORM_ANDROID) && __has_include(<sys/syscall.h>)
syscall(__NR_getrandom, &seed, 32, 0x0001); //GRND_NONBLOCK
#elif defined(PLATFORM_WINDOWS) && __has_include(<wincrypt.h>)
HCRYPTPROV provider;
if(CryptAcquireContext(&provider, nullptr, MS_STRONG_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
CryptGenRandom(provider, 32, (BYTE*)&seed);
CryptReleaseContext(provider, 0);
}
#else
srand(time(nullptr));
for(uint n : range(32)) seed = seed << 8 | (uint8_t)rand();
if(auto fp = fopen("/dev/urandom", "rb")) {
fread(&seed, 32, 1, fp);
fclose(fp);
}
#endif
return seed;
}
};
namespace PRNG {
//Galois linear feedback shift register using CRC64 polynomials
struct LFSR : RNG<LFSR> {
LFSR() { seed(); }
auto seed(maybe<uint64_t> seed = {}) -> void {
lfsr = seed ? seed() : (uint64_t)randomSeed();
for(uint n : range(8)) read(); //hide the CRC64 polynomial from initial output
}
auto serialize(serializer& s) -> void {
s.integer(lfsr);
}
private:
auto read() -> uint64_t {
return lfsr = (lfsr >> 1) ^ (-(lfsr & 1) & crc64);
}
Update to v098r11 release. byuu says: Changelog: - fixed nall/path.hpp compilation issue - fixed ruby/audio/xaudio header declaration compilation issue (again) - cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the file was whitespace overkill) - added null terminator entry to nall/windows/utf8.hpp argc[] array - nall/windows/guid.hpp uses the Windows API for generating the GUID - this should stop all the bug reports where two nall users were generating GUIDs at the exact same second - fixed hiro/cocoa compilation issue with uint# types - fixed major higan/sfc Super Game Boy audio latency issue - fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions - major cleanups to higan/processor/r65816 core - merged emulation/native-mode opcodes - use camel-case naming on memory.hpp functions - simplify address masking code for memory.hpp functions - simplify a few opcodes themselves (avoid redundant copies, etc) - rename regs.* to r.* to match modern convention of other CPU cores - removed device.order<> concept from Emulator::Interface - cores will now do the translation to make the job of the UI easier - fixed plurality naming of arrays in Emulator::Interface - example: emulator.ports[p].devices[d].inputs[i] - example: vector<Medium> media - probably more surprises Major show-stoppers to the next official release: - we need to work on GB core improvements: LY=153/0 case, multiple STAT IRQs case, GBC audio output regs, etc. - we need to re-add software cursors for light guns (Super Scope, Justifier) - after the above, we need to fix the turbo button for the Super Scope I really have no idea how I want to implement the light guns. Ideally, we'd want it in higan/video, so we can support the NES Zapper with the same code. But this isn't going to be easy, because only the SNES knows when its output is interlaced, and its resolutions can vary as {256,512}x{224,240,448,480} which requires pixel doubling that was hard-coded to the SNES-specific behavior, but isn't appropriate to be exposed in higan/video.
2016-05-25 21:13:02 +10:00
static const uint64_t crc64 = 0xc96c'5795'd787'0f42;
uint64_t lfsr = crc64;
friend class RNG<LFSR>;
};
struct PCG : RNG<PCG> {
PCG() { seed(); }
auto seed(maybe<uint32_t> seed = {}, maybe<uint32_t> sequence = {}) -> void {
if(!seed) seed = (uint32_t)randomSeed();
if(!sequence) sequence = 0;
state = 0;
increment = sequence() << 1 | 1;
read();
state += seed();
read();
}
auto serialize(serializer& s) -> void {
s.integer(state);
s.integer(increment);
}
private:
auto read() -> uint32_t {
uint64_t state = this->state;
this->state = state * 6'364'136'223'846'793'005ull + increment;
uint32_t xorshift = (state >> 18 ^ state) >> 27;
uint32_t rotate = state >> 59;
return xorshift >> rotate | xorshift << (-rotate & 31);
}
uint64_t state = 0;
uint64_t increment = 0;
friend class RNG<PCG>;
};
}
#if !defined(PLATFORM_ANDROID)
namespace CSPRNG {
//XChaCha20 cryptographically secure pseudo-random number generator
struct XChaCha20 : RNG<XChaCha20> {
XChaCha20() { seed(); }
auto seed(maybe<uint256_t> key = {}, maybe<uint192_t> nonce = {}) -> void {
//the randomness comes from the key; the nonce just adds a bit of added entropy
if(!key) key = randomSeed();
if(!nonce) nonce = (uint192_t)clock() << 64 | chrono::nanosecond();
context = {key(), nonce()};
}
private:
auto read() -> uint32_t {
if(!counter) { context.cipher(); context.increment(); }
uint32_t value = context.block[counter++];
if(counter == 16) counter = 0; //64-bytes per block; 4 bytes per read
return value;
}
Cipher::XChaCha20 context{0, 0};
uint counter = 0;
friend class RNG<XChaCha20>;
};
}
#endif
//
template<typename T = uint64_t> inline auto random() -> T {
static PRNG::PCG pcg; //note: unseeded
return pcg.random<T>();
}
}