Update to bsnes v011 release.

- Fixed Mode 0 color palette index problem. Fixes ToP, DQ5, etc.
    - Improved LoROM memory mapper to support 32mbit images. Fixes Tokimeki Memorial, etc.
    - Added full S-DD1 support, SFA2 and Star Ocean are now playable. Special thanks to Andreas Naive
    - Updated BGnxOFS / Mode7 registers with anomie's latest findings
    - Added basic ROM mirroring support. Fixes copy protection issues in MMX, etc.
    - Rewrote string library to work better on gcc/linux
    - Cleaned up S-RTC/S-DD1 emulation to make way for future add-on chip emulation
    - Rewrote DMA code, now runs cycle-by-cycle
    - Rewrote HDMA code, now allows HDMA to be enabled mid-frame, fixes many games
    - Fixed a bug in Mode7 vertical screen flip mode. Fixes FF5 title screen, etc.
    - Greatly improved IRQ triggering. Fixes Der Langrisser, etc.
    - Added full support for open bus. This includes PPU1 and PPU2 open bus support
    - Modified CPU core back to cycle-based system. Slower, but improves debugger
    - Implemented temporary fix for debugger to handle new cycle-based cores
    - Modified CGRAM to ignore highest bit, since it is not used at all by the SNES, and is impossible to read on real hardware. Lowers memory usage by ~1.2mb
    - Added mostly accurate PAL timing support. This should increase compatibility by ~30% or so
    - More stuff I'm forgetting at the moment...
This commit is contained in:
byuu
2005-08-26 20:38:00 +00:00
parent 970dcea0ac
commit 7e2cfb6d40
80 changed files with 7430 additions and 4387 deletions

178
src/chip/srtc/srtc.cpp Normal file
View File

@@ -0,0 +1,178 @@
/*
S-RTC chip emulation
Used by Hudson Soft in Dai Kaijuu Monogatari II and Far East of Eden Zero.
Currently, only the former is supported by bsnes.
Original S-RTC emulation code via John Weidman/SNES9x
Rewritten for compatibility with bsnes via byuu
The S-RTC is a real-time clock chip that was added to the above two carts
to allow the games to maintain the current time, even when the game was not
powered on. Thus allowing special events at certain times, and on certain
dates. Hudson Soft called this the PLG (Player's Life Gameplay System).
This chip is a special case to the term 'emulation' itself.
There are a few different ways to go about emulating this chip, and each
result in a different style of emulation.
The first is to simply return the current PC system time when the S-RTC is
read from. This emulates the original S-RTC in the sense that it always
returns the true current time, ignoring the speed that the SNES itself is
running at. The downside to this method is that you lose the ability to set
the time to whatever you choose inside the game itself. It will always return
the true time, regardless. This can be overcome by changing the PC system time,
which actually adds a greater degree of control over event timing, very useful
for emulation. It also has a timeshifting flaw discussed below.
The second is to run the S-RTC relative to the SNES speed. This means that
if the emulator is sped up (via fast forward key, frameskipping, etc), or
slowed down (via slowdown key, system bottlenecking, etc); the time increments
slower, thus ~60 frames on the SNES equal one second. Without this, timeshifting
will occur between the S-RTC and the real SNES.
The third and final method is to save a copy of the local system time when the
S-RTC is initially set, and compare the current system time against this value
when setting the S-RTC time. This overcomes the first methods' shortcoming of
not allowing the player to set the time in-game, however a new problem arises.
You now have to save the time when the RTC was initially set to both savestates
and to save-game data. This would require an extra file, or the breaking of
perhaps the only standard format (.srm savegame backups) in the entire SNES
emulation scene. You also give up the control of being able to override the
RTC clock at will via the PC system time outside of emulation.
The first method has another advantage over the third: Dai Kaijuu Monogatari II
only allows dates in the range of the years 1996-2199. The first method gets
around this limitation. But who knows, maybe it will break something in the
game if the date exceeds 2199... I guess we'll worry about that in two hundred
years from now.
For my implementation, I chose to go with the first method. Both for simplicity
and because I did not wish to create a new method for saving the system time
whenever the RTC is set.
*/
#include "../../base.h"
void SRTC::set_time() {
time_t rawtime;
tm *t;
::time(&rawtime);
t = localtime(&rawtime);
//see srtc.h for format of srtc.data[]
srtc.data[0] = t->tm_sec % 10;
srtc.data[1] = t->tm_sec / 10;
srtc.data[2] = t->tm_min % 10;
srtc.data[3] = t->tm_min / 10;
srtc.data[4] = t->tm_hour % 10;
srtc.data[5] = t->tm_hour / 10;
srtc.data[6] = t->tm_mday % 10;
srtc.data[7] = t->tm_mday / 10;
srtc.data[8] = t->tm_mon + 1;
srtc.data[9] = t->tm_year % 10;
srtc.data[10] = (t->tm_year / 10) % 10;
srtc.data[11] = 9 + (t->tm_year / 100);
srtc.data[12] = t->tm_wday;
}
void SRTC::power() {
memset(&srtc, 0, sizeof(srtc));
reset();
}
void SRTC::reset() {
srtc.index = -1;
srtc.mode = SRTC_READ;
}
//Please see notes above about the implementation of the S-RTC
//Writes are stored the srtc.data[] array, but they are ignored
//as reads will refresh the data array with the current system
//time. The write method is only here for the sake of faux
//emulation of the real hardware.
void SRTC::write(uint8 data) {
data &= 0x0f; //only the low four bits are used
if(data >= 0x0d) {
switch(data) {
case 0x0d:
srtc.mode = SRTC_READ;
srtc.index = -1;
break;
case 0x0e:
srtc.mode = SRTC_COMMAND;
break;
case 0x0f:
//unknown behaviour
break;
}
return;
}
if(srtc.mode == SRTC_WRITE) {
if(srtc.index >= 0 && srtc.index < MAX_SRTC_INDEX) {
srtc.data[srtc.index++] = data;
if(srtc.index == MAX_SRTC_INDEX) {
//all S-RTC data has been loaded by program
srtc.data[srtc.index++] = 0x00; //day_of_week
}
}
} else if(srtc.mode == SRTC_COMMAND) {
switch(data) {
case SRTC_COMMAND_CLEAR:
memset(srtc.data, 0, MAX_SRTC_INDEX + 1);
srtc.index = -1;
srtc.mode = SRTC_READY;
break;
case SRTC_COMMAND_WRITE:
srtc.index = 0;
srtc.mode = SRTC_WRITE;
break;
default:
//unknown behaviour
srtc.mode = SRTC_READY;
break;
}
} else {
if(srtc.mode == SRTC_READ) {
//ignore writes while in read mode
} else if(srtc.mode == SRTC_READY) {
//unknown behaviour
}
}
}
uint8 SRTC::read() {
if(srtc.mode == SRTC_READ) {
if(srtc.index < 0) {
set_time();
srtc.index++;
return 0x0f; //send start message
} else if(srtc.index > MAX_SRTC_INDEX) {
srtc.index = -1;
return 0x0f; //send finished message
} else {
return srtc.data[srtc.index++];
}
} else {
return 0x00;
}
}
SRTC::SRTC() {
mmio = new SRTCMMIO();
}
uint8 SRTCMMIO::read(uint32 addr) {
switch(addr) {
case 0x2800:return srtc->read();
}
return cpu->regs.mdr;
}
void SRTCMMIO::write(uint32 addr, uint8 value) {
switch(addr) {
case 0x2801:srtc->write(value);break;
}
}