bsnes/ruby/audio/xaudio2.cpp
Tim Allen e0815b55b9 Update to v094r28 release.
byuu says:

This WIP substantially restructures the ruby API for the first time
since that project started.

It is my hope that with this restructuring, destruction of the ruby
objects should now be deterministic, which should fix the crashing on
closing the emulator on Linux. We'll see I guess ... either way, it
removed two layers of wrappers from ruby, so it's a pretty nice code
cleanup.

It won't compile on Windows due to a few issues I didn't see until
uploading the WIP, too lazy to upload another. But I fixed all the
compilation issues locally, so it'll work on Windows again with the next
WIP (unless I break something else.)

(Kind of annoying that Linux defines glActiveTexture but Windows
doesn't.)
2015-06-20 15:44:05 +10:00

184 lines
5.4 KiB
C++

#include "xaudio2.hpp"
#include <windows.h>
struct AudioXAudio2 : Audio, public IXAudio2VoiceCallback {
AudioXAudio2() { term(); }
IXAudio2* pXAudio2 = nullptr;
IXAudio2MasteringVoice* pMasterVoice = nullptr;
IXAudio2SourceVoice* pSourceVoice = nullptr;
//inherited from IXAudio2VoiceCallback
STDMETHODIMP_(void) OnBufferStart(void* pBufferContext){}
STDMETHODIMP_(void) OnLoopEnd(void* pBufferContext){}
STDMETHODIMP_(void) OnStreamEnd() {}
STDMETHODIMP_(void) OnVoiceError(void* pBufferContext, HRESULT Error) {}
STDMETHODIMP_(void) OnVoiceProcessingPassEnd() {}
STDMETHODIMP_(void) OnVoiceProcessingPassStart(UINT32 BytesRequired) {}
struct {
unsigned buffers = 0;
unsigned latency = 0;
uint32_t* buffer = nullptr;
unsigned bufferoffset = 0;
volatile long submitbuffers = 0;
unsigned writebuffer = 0;
} device;
struct {
bool synchronize = false;
unsigned frequency = 22050;
unsigned latency = 120;
} settings;
auto cap(const string& name) -> bool {
if(name == Audio::Synchronize) return true;
if(name == Audio::Frequency) return true;
if(name == Audio::Latency) return true;
return false;
}
auto get(const string& name) -> any {
if(name == Audio::Synchronize) return settings.synchronize;
if(name == Audio::Frequency) return settings.frequency;
if(name == Audio::Latency) return settings.latency;
return {};
}
auto set(const string& name, const any& value) -> bool {
if(name == Audio::Synchronize && value.is<bool>()) {
settings.synchronize = value.get<bool>();
if(pXAudio2) clear();
return true;
}
if(name == Audio::Frequency && value.is<unsigned>()) {
settings.frequency = value.get<unsigned>();
if(pXAudio2) init();
return true;
}
if(name == Audio::Latency && value.is<unsigned>()) {
settings.latency = value.get<unsigned>();
if(pXAudio2) init();
return true;
}
return false;
}
auto pushbuffer(unsigned bytes, uint32_t* pAudioData) -> void {
XAUDIO2_BUFFER xa2buffer = {0};
xa2buffer.AudioBytes = bytes;
xa2buffer.pAudioData = reinterpret_cast<BYTE*>(pAudioData);
xa2buffer.pContext = 0;
InterlockedIncrement(&device.submitbuffers);
pSourceVoice->SubmitSourceBuffer(&xa2buffer);
}
auto sample(uint16_t left, uint16_t right) -> void {
device.buffer[device.writebuffer * device.latency + device.bufferoffset++] = left + (right << 16);
if(device.bufferoffset < device.latency) return;
device.bufferoffset = 0;
if(device.submitbuffers == device.buffers - 1) {
if(settings.synchronize == true) {
//wait until there is at least one other free buffer for the next sample
while(device.submitbuffers == device.buffers - 1) {
//Sleep(0);
}
} else { //we need one free buffer for the next sample, so ignore the current contents
return;
}
}
pushbuffer(device.latency * 4,device.buffer + device.writebuffer * device.latency);
device.writebuffer = (device.writebuffer + 1) % device.buffers;
}
auto clear() -> void {
if(!pSourceVoice) return;
pSourceVoice->Stop(0);
pSourceVoice->FlushSourceBuffers(); //calls OnBufferEnd for all currently submitted buffers
device.writebuffer = 0;
device.bufferoffset = 0;
if(device.buffer) memset(device.buffer, 0, device.latency * device.buffers * 4);
pSourceVoice->Start(0);
}
auto init() -> bool {
device.buffers = 8;
device.latency = settings.frequency * settings.latency / device.buffers / 1000.0 + 0.5;
device.buffer = new uint32_t[device.latency * device.buffers];
device.bufferoffset = 0;
device.submitbuffers = 0;
HRESULT hr;
if(FAILED(hr = XAudio2Create(&pXAudio2, 0 , XAUDIO2_DEFAULT_PROCESSOR))) {
return false;
}
unsigned deviceCount = 0;
pXAudio2->GetDeviceCount(&deviceCount);
if(deviceCount == 0) { term(); return false; }
unsigned deviceID = 0;
for(unsigned deviceIndex = 0; deviceIndex < deviceCount; deviceIndex++) {
XAUDIO2_DEVICE_DETAILS deviceDetails;
memset(&deviceDetails, 0, sizeof(XAUDIO2_DEVICE_DETAILS));
pXAudio2->GetDeviceDetails(deviceIndex, &deviceDetails);
if(deviceDetails.Role & DefaultGameDevice) deviceID = deviceIndex;
}
if(FAILED(hr = pXAudio2->CreateMasteringVoice(&pMasterVoice, 2, settings.frequency, 0, deviceID, NULL))) {
return false;
}
WAVEFORMATEX wfx;
wfx.wFormatTag = WAVE_FORMAT_PCM;
wfx.nChannels = 2;
wfx.nSamplesPerSec = settings.frequency;
wfx.nBlockAlign = 4;
wfx.wBitsPerSample = 16;
wfx.nAvgBytesPerSec = wfx.nSamplesPerSec * wfx.nBlockAlign;
wfx.cbSize = 0;
if(FAILED(hr = pXAudio2->CreateSourceVoice(&pSourceVoice, (WAVEFORMATEX*)&wfx, XAUDIO2_VOICE_NOSRC, XAUDIO2_DEFAULT_FREQ_RATIO, this, NULL, NULL))) {
return false;
}
clear();
return true;
}
auto term() -> void {
if(pSourceVoice) {
pSourceVoice->Stop(0);
pSourceVoice->DestroyVoice();
pSourceVoice = nullptr;
}
if(pMasterVoice) {
pMasterVoice->DestroyVoice();
pMasterVoice = nullptr;
}
if(pXAudio2) {
pXAudio2->Release();
pXAudio2 = nullptr;
}
if(device.buffer) {
delete[] device.buffer;
device.buffer = nullptr;
}
}
STDMETHODIMP_(void) OnBufferEnd(void* pBufferContext) {
InterlockedDecrement(&device.submitbuffers);
}
};