bsnes/higan/processor/hg51b/instructions.cpp
Tim Allen e7806dd6e8 Update to v102r27 release.
byuu says:

Changelog:

  - processor/gsu: minor code cleanup
  - processor/hg51b: renamed reg(Read,Write) to register(Read,Write)
  - processor/lr35902: minor code cleanup
  - processor/spc700: completed code cleanup (sans disassembler)
      - no longer uses internal global state inside instructions
  - processor/spc700: will no longer hang the emulator if stuck in a WAI
    (SLEEP) or STP (STOP) instruction
  - processor/spc700: fixed bug in handling of OR1 and AND1 instructions
  - processor/z80: minor code cleanup
  - sfc/dsp: revert to initializing registers to 0x00; save for
    ENDX=random(), FLG=0xe0 [Jonas Quinn]

Major testing of the SNES game library would be appreciated, now that
its CPU cores have all been revised.

We know the DSP registers read back as randomized data ... mostly, but
there are apparently internal latches, which we can't emulate with the
current DSP design. So until we know which registers have separate
internal state that actually *is* initialized, I'm going to play it safe
and not break more games.

Thanks again to Jonas Quinn for the continued research into this issue.

EDIT: that said ... `MD works if((ENDX&0x30) > 0)` is only a 3:4 chance
that the game will work. That seems pretty unlikely that the odds of it
working are that low, given hardware testing by others in the past :/ I
thought if worked if `PITCH != 0` before, which would have been way more
likely.

The two remaining CPU cores that need major cleanup efforts are the
LR35902 and ARM cores. Both are very large, complicated, annoying cores
that will probably be better off as full rewrites from scratch. I don't
think I want to delay v103 in trying to accomplish that, however.

So I think it'll be best to focus on allowing the Mega Drive core to not
lock when processors are frozen waiting on a response from other
processors during a save state operation. Then we should be good for a
new release.
2017-06-19 12:07:54 +10:00

353 lines
8.0 KiB
C++

auto HG51B::push() -> void {
stack[7] = stack[6];
stack[6] = stack[5];
stack[5] = stack[4];
stack[4] = stack[3];
stack[3] = stack[2];
stack[2] = stack[1];
stack[1] = stack[0];
stack[0] = regs.pc;
}
auto HG51B::pull() -> void {
regs.pc = stack[0];
stack[0] = stack[1];
stack[1] = stack[2];
stack[2] = stack[3];
stack[3] = stack[4];
stack[4] = stack[5];
stack[5] = stack[6];
stack[6] = stack[7];
stack[7] = 0x0000;
}
//Shift-A: math opcodes can shift A register prior to ALU operation
auto HG51B::sa() -> uint {
switch(opcode & 0x0300) { default:
case 0x0000: return regs.a << 0;
case 0x0100: return regs.a << 1;
case 0x0200: return regs.a << 8;
case 0x0300: return regs.a << 16;
}
}
//Register-or-Immediate: most opcodes can load from a register or immediate
auto HG51B::ri() -> uint {
if(opcode & 0x0400) return opcode & 0xff;
return registerRead(opcode & 0xff);
}
//New-PC: determine jump target address; opcode.d9 = long jump flag (1 = yes)
auto HG51B::np() -> uint {
if(opcode & 0x0200) return (regs.p << 8) | (opcode & 0xff);
return (regs.pc & 0xffff00) | (opcode & 0xff);
}
auto HG51B::instruction() -> void {
if((opcode & 0xffff) == 0x0000) {
//0000 0000 0000 0000
//nop
}
else if((opcode & 0xdd00) == 0x0800) {
//00.0 10.0 .... ....
//jump i
if(opcode & 0x2000) push();
regs.pc = np();
}
else if((opcode & 0xdd00) == 0x0c00) {
//00.0 11.0 .... ....
//jumpeq i
if(regs.z) {
if(opcode & 0x2000) push();
regs.pc = np();
}
}
else if((opcode & 0xdd00) == 0x1000) {
//00.1 00.0 .... ....
//jumpge i
if(regs.c) {
if(opcode & 0x2000) push();
regs.pc = np();
}
}
else if((opcode & 0xdd00) == 0x1400) {
//00.1 01.0 .... ....
//jumpmi i
if(regs.n) {
if(opcode & 0x2000) push();
regs.pc = np();
}
}
else if((opcode & 0xffff) == 0x1c00) {
//0001 1100 0000 0000
//loop?
}
else if((opcode & 0xfffe) == 0x2500) {
//0010 0101 0000 000.
//skiplt/skipge
if(regs.c == (opcode & 1)) regs.pc++;
}
else if((opcode & 0xfffe) == 0x2600) {
//0010 0110 0000 000.
//skipne/skipeq
if(regs.z == (opcode & 1)) regs.pc++;
}
else if((opcode & 0xfffe) == 0x2700) {
//0010 0111 0000 000.
//skipmi/skippl
if(regs.n == (opcode & 1)) regs.pc++;
}
else if((opcode & 0xffff) == 0x3c00) {
//0011 1100 0000 0000
//ret
pull();
}
else if((opcode & 0xffff) == 0x4000) {
//0100 0000 0000 0000
//rdbus
regs.busdata = read(regs.busaddr++);
}
else if((opcode & 0xf800) == 0x4800) {
//0100 1... .... ....
//cmpr a<<n,ri
int result = ri() - sa();
regs.n = result & 0x800000;
regs.z = (uint24)result == 0;
regs.c = result >= 0;
}
else if((opcode & 0xf800) == 0x5000) {
//0101 0... .... ....
//cmp a<<n,ri
int result = sa() - ri();
regs.n = result & 0x800000;
regs.z = (uint24)result == 0;
regs.c = result >= 0;
}
else if((opcode & 0xfb00) == 0x5900) {
//0101 1.01 .... ....
//sxb
regs.a = (int8)ri();
}
else if((opcode & 0xfb00) == 0x5a00) {
//0101 1.10 .... ....
//sxw
regs.a = (int16)ri();
}
else if((opcode & 0xfb00) == 0x6000) {
//0110 0.00 .... ....
//ld a,ri
regs.a = ri();
}
else if((opcode & 0xfb00) == 0x6100) {
//0110 0.01 .... ....
//ld ?,ri
}
else if((opcode & 0xfb00) == 0x6300) {
//0110 0.11 .... ....
//ld p,ri
regs.p = ri();
}
else if((opcode & 0xfb00) == 0x6800) {
//0110 1.00 .... ....
//rdraml
uint24 target = ri() + (opcode & 0x0400 ? regs.ramaddr : (uint24)0);
if(target < 0xc00) regs.ramdata = (regs.ramdata & 0xffff00) | (dataRAM[target] << 0);
}
else if((opcode & 0xfb00) == 0x6900) {
//0110 1.01 .... ....
//rdramh
uint24 target = ri() + (opcode & 0x0400 ? regs.ramaddr : (uint24)0);
if(target < 0xc00) regs.ramdata = (regs.ramdata & 0xff00ff) | (dataRAM[target] << 8);
}
else if((opcode & 0xfb00) == 0x6a00) {
//0110 1.10 .... ....
//rdramb
uint24 target = ri() + (opcode & 0x0400 ? regs.ramaddr : (uint24)0);
if(target < 0xc00) regs.ramdata = (regs.ramdata & 0x00ffff) | (dataRAM[target] << 16);
}
else if((opcode & 0xffff) == 0x7000) {
//0111 0000 0000 0000
//rdrom
regs.romdata = dataROM[regs.a & 0x3ff];
}
else if((opcode & 0xff00) == 0x7c00) {
//0111 1100 .... ....
//ld pl,i
regs.p = (regs.p & 0xff00) | ((opcode & 0xff) << 0);
}
else if((opcode & 0xff00) == 0x7d00) {
//0111 1101 .... ....
//ld ph,i
regs.p = (regs.p & 0x00ff) | ((opcode & 0xff) << 8);
}
else if((opcode & 0xf800) == 0x8000) {
//1000 0... .... ....
//add a<<n,ri
int result = sa() + ri();
regs.a = result;
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
regs.c = result > 0xffffff;
}
else if((opcode & 0xf800) == 0x8800) {
//1000 1... .... ....
//subr a<<n,ri
int result = ri() - sa();
regs.a = result;
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
regs.c = result >= 0;
}
else if((opcode & 0xf800) == 0x9000) {
//1001 0... .... ....
//sub a<<n,ri
int result = sa() - ri();
regs.a = result;
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
regs.c = result >= 0;
}
else if((opcode & 0xfb00) == 0x9800) {
//1001 1.00 .... ....
//mul a,ri
int64 x = (int24)regs.a;
int64 y = (int24)ri();
x *= y;
regs.accl = x >> 0ull;
regs.acch = x >> 24ull;
regs.n = regs.acch & 0x800000;
regs.z = x == 0;
}
else if((opcode & 0xf800) == 0xa800) {
//1010 1... .... ....
//xor a<<n,ri
regs.a = sa() ^ ri();
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
}
else if((opcode & 0xf800) == 0xb000) {
//1011 0... .... ....
//and a<<n,ri
regs.a = sa() & ri();
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
}
else if((opcode & 0xf800) == 0xb800) {
//1011 1... .... ....
//or a<<n,ri
regs.a = sa() | ri();
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
}
else if((opcode & 0xfb00) == 0xc000) {
//1100 0.00 .... ....
//shr a,ri
regs.a = regs.a >> ri();
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
}
else if((opcode & 0xfb00) == 0xc800) {
//1100 1.00 .... ....
//asr a,ri
regs.a = (int24)regs.a >> ri();
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
}
else if((opcode & 0xfb00) == 0xd000) {
//1101 0.00 .... ....
//ror a,ri
uint24 length = ri();
regs.a = (regs.a >> length) | (regs.a << (24 - length));
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
}
else if((opcode & 0xfb00) == 0xd800) {
//1101 1.00 .... ....
//shl a,ri
regs.a = regs.a << ri();
regs.n = regs.a & 0x800000;
regs.z = regs.a == 0;
}
else if((opcode & 0xff00) == 0xe000) {
//1110 0000 .... ....
//st r,a
registerWrite(opcode & 0xff, regs.a);
}
else if((opcode & 0xfb00) == 0xe800) {
//1110 1.00 .... ....
//wrraml
uint24 target = ri() + (opcode & 0x0400 ? regs.ramaddr : (uint24)0);
if(target < 0xc00) dataRAM[target] = regs.ramdata >> 0;
}
else if((opcode & 0xfb00) == 0xe900) {
//1110 1.01 .... ....
//wrramh
uint24 target = ri() + (opcode & 0x0400 ? regs.ramaddr : (uint24)0);
if(target < 0xc00) dataRAM[target] = regs.ramdata >> 8;
}
else if((opcode & 0xfb00) == 0xea00) {
//1110 1.10 .... ....
//wrramb
uint24 target = ri() + (opcode & 0x0400 ? regs.ramaddr : (uint24)0);
if(target < 0xc00) dataRAM[target] = regs.ramdata >> 16;
}
else if((opcode & 0xff00) == 0xf000) {
//1111 0000 .... ....
//swap a,r
uint24 source = registerRead(opcode & 0xff);
uint24 target = regs.a;
regs.a = source;
registerWrite(opcode & 0xff, target);
}
else if((opcode & 0xffff) == 0xfc00) {
//1111 1100 0000 0000
//halt
regs.halt = true;
}
else {
print("Hitachi DSP: unknown opcode @ ", hex(regs.pc - 1, 4L), " = ", hex(opcode, 4L), "\n");
regs.halt = true;
}
}