bsnes/nall/priority-queue.hpp
Tim Allen 092cac9073 Update to v094r37 release.
byuu says:

Changelog:
- synchronizes lots of nall changes
- changes displayed program title from tomoko to higan(*)
- browser dialog sort is case-insensitive
- .sys folders look at user-selected library path; no longer hard-coded

Tried to get rid of the file modes from the Windows browser dialog, but
it was being a bitch so I left it on for now.

- The storage locations and binary still use tomoko. I'm not really sure
  what to do here. The idea is there may be more than one "higan" UI in
  the future, but I don't want people to go around calling the entire
  program by the UI name. For official Windows releases, I can rename
  the binaries to "higan-{profile}.exe", and by putting the config files
  with the binary, they won't ever see the tomoko folder. Linux is of
  course trickier.

Note: Windows users will need to edit hiro/components.hpp and comment
out these lines:

 #define Hiro_Console
 #define Hiro_IconView
 #define Hiro_SourceView
 #define Hiro_TreeView

I forgot to do that, and too lazy to upload another WIP.
2015-07-14 19:32:43 +10:00

110 lines
2.8 KiB
C++

#ifndef NALL_PRIORITY_QUEUE_HPP
#define NALL_PRIORITY_QUEUE_HPP
#include <limits>
#include <nall/function.hpp>
#include <nall/serializer.hpp>
#include <nall/utility.hpp>
namespace nall {
template<typename type_t> auto priority_queue_nocallback(type_t) -> void {}
//priority queue implementation using binary min-heap array;
//does not require normalize() function.
//O(1) find (tick)
//O(log n) append (enqueue)
//O(log n) remove (dequeue)
template<typename type_t> struct priority_queue {
priority_queue(unsigned size, function<void (type_t)> callback = &priority_queue_nocallback<type_t>) : callback(callback) {
heap = new heap_t[size];
heapcapacity = size;
reset();
}
~priority_queue() {
delete[] heap;
}
priority_queue(const priority_queue&) = delete;
auto operator=(const priority_queue&) -> priority_queue& = delete;
inline auto tick(unsigned ticks) -> void {
basecounter += ticks;
while(heapsize && gte(basecounter, heap[0].counter)) callback(dequeue());
}
//counter is relative to current time (eg enqueue(64, ...) fires in 64 ticks);
//counter cannot exceed std::numeric_limits<unsigned>::max() >> 1.
auto enqueue(unsigned counter, type_t event) -> void {
unsigned child = heapsize++;
counter += basecounter;
while(child) {
unsigned parent = (child - 1) >> 1;
if(gte(counter, heap[parent].counter)) break;
heap[child].counter = heap[parent].counter;
heap[child].event = heap[parent].event;
child = parent;
}
heap[child].counter = counter;
heap[child].event = event;
}
auto dequeue() -> type_t {
type_t event(heap[0].event);
unsigned parent = 0;
unsigned counter = heap[--heapsize].counter;
while(true) {
unsigned child = (parent << 1) + 1;
if(child >= heapsize) break;
if(child + 1 < heapsize && gte(heap[child].counter, heap[child + 1].counter)) child++;
if(gte(heap[child].counter, counter)) break;
heap[parent].counter = heap[child].counter;
heap[parent].event = heap[child].event;
parent = child;
}
heap[parent].counter = counter;
heap[parent].event = heap[heapsize].event;
return event;
}
auto reset() -> void {
basecounter = 0;
heapsize = 0;
}
auto serialize(serializer& s) -> void {
s.integer(basecounter);
s.integer(heapsize);
for(unsigned n = 0; n < heapcapacity; n++) {
s.integer(heap[n].counter);
s.integer(heap[n].event);
}
}
private:
function<void (type_t)> callback;
unsigned basecounter;
unsigned heapsize;
unsigned heapcapacity;
struct heap_t {
unsigned counter;
type_t event;
} *heap;
//return true if x is greater than or equal to y
inline auto gte(unsigned x, unsigned y) -> bool {
return x - y < (std::numeric_limits<unsigned>::max() >> 1);
}
};
}
#endif