mirror of
https://github.com/bsnes-emu/bsnes.git
synced 2025-02-24 15:12:23 +01:00
byuu says: Commands can be prefixed with: (cpu|smp|ppu|dsp|apu|vram|oam|cgram)/ to set their source. Eg "vram/hex 0800" or "smp/breakpoints.append execute ffc0"; default is cpu. These overlap a little bit in odd ways, but that's just the way the SNES works: it's not a very orthogonal system. CPU is both a processor and the main bus (ROM, RAM, WRAM, etc), APU is the shared memory by the SMP+DSP (eg use it to catch writes from either chip); PPU probably won't ever be used since it's broken down into three separate buses (VRAM, OAM, CGRAM), but DSP could be useful for tracking bugs like we found in Koushien 2 with the DSP echo buffer corrupting SMP opcodes. Technically the PPU memory pools are only ever tripped by the CPU poking at them, as the PPU doesn't ever write. I now have run.for, run.to, step.for, step.to. The difference is that run only prints the next instruction after running, whereas step prints all of the instructions along the way as well. run.to acts the same as "step over" here. Although it's not quite as nice, since you have to specify the address of the next instruction. Logging the Field/Vcounter/Hcounter on instruction listings now, good for timing information. Added in the tracer mask, as well as memory export, as well as VRAM/OAM/CGRAM/SMP read/write/execute breakpoints, as well as an APU usage map (it tracks DSP reads/writes separately, although I don't currently have debugger callbacks on DSP accesses just yet.) Have not hooked up actual SMP debugging just yet, but I plan to soon. Still thinking about how I want to allow / block interleaving of instructions (terminal output and tracing.) So ... remaining tasks at this point: - full SMP debugging - CPU+SMP interleave support - aliases - hotkeys - save states (will be kind of tricky ... will have to suppress breakpoints during synchronization, or abort a save in a break event.) - keep track of window geometry between runs
206 lines
4.6 KiB
C++
206 lines
4.6 KiB
C++
#ifdef SMP_CPP
|
|
|
|
alwaysinline uint8 SMP::ram_read(uint16 addr) {
|
|
if(addr >= 0xffc0 && status.iplrom_enable) return iplrom[addr & 0x3f];
|
|
if(status.ram_disable) return 0x5a; //0xff on mini-SNES
|
|
return apuram[addr];
|
|
}
|
|
|
|
alwaysinline void SMP::ram_write(uint16 addr, uint8 data) {
|
|
//writes to $ffc0-$ffff always go to apuram, even if the iplrom is enabled
|
|
if(status.ram_writable && !status.ram_disable) apuram[addr] = data;
|
|
}
|
|
|
|
uint8 SMP::port_read(uint2 port) const {
|
|
return apuram[0xf4 + port];
|
|
}
|
|
|
|
void SMP::port_write(uint2 port, uint8 data) {
|
|
apuram[0xf4 + port] = data;
|
|
}
|
|
|
|
uint8 SMP::op_busread(uint16 addr) {
|
|
unsigned result;
|
|
|
|
switch(addr) {
|
|
case 0xf0: //TEST -- write-only register
|
|
return 0x00;
|
|
|
|
case 0xf1: //CONTROL -- write-only register
|
|
return 0x00;
|
|
|
|
case 0xf2: //DSPADDR
|
|
return status.dsp_addr;
|
|
|
|
case 0xf3: //DSPDATA
|
|
//0x80-0xff are read-only mirrors of 0x00-0x7f
|
|
return dsp.read(status.dsp_addr & 0x7f);
|
|
|
|
case 0xf4: //CPUIO0
|
|
case 0xf5: //CPUIO1
|
|
case 0xf6: //CPUIO2
|
|
case 0xf7: //CPUIO3
|
|
synchronize_cpu();
|
|
return cpu.port_read(addr);
|
|
|
|
case 0xf8: //RAM0
|
|
return status.ram00f8;
|
|
|
|
case 0xf9: //RAM1
|
|
return status.ram00f9;
|
|
|
|
case 0xfa: //T0TARGET
|
|
case 0xfb: //T1TARGET
|
|
case 0xfc: //T2TARGET -- write-only registers
|
|
return 0x00;
|
|
|
|
case 0xfd: //T0OUT -- 4-bit counter value
|
|
result = timer0.stage3_ticks;
|
|
timer0.stage3_ticks = 0;
|
|
return result;
|
|
|
|
case 0xfe: //T1OUT -- 4-bit counter value
|
|
result = timer1.stage3_ticks;
|
|
timer1.stage3_ticks = 0;
|
|
return result;
|
|
|
|
case 0xff: //T2OUT -- 4-bit counter value
|
|
result = timer2.stage3_ticks;
|
|
timer2.stage3_ticks = 0;
|
|
return result;
|
|
}
|
|
|
|
return ram_read(addr);
|
|
}
|
|
|
|
void SMP::op_buswrite(uint16 addr, uint8 data) {
|
|
switch(addr) {
|
|
case 0xf0: //TEST
|
|
if(regs.p.p) break; //writes only valid when P flag is clear
|
|
|
|
status.clock_speed = (data >> 6) & 3;
|
|
status.timer_speed = (data >> 4) & 3;
|
|
status.timers_enable = data & 0x08;
|
|
status.ram_disable = data & 0x04;
|
|
status.ram_writable = data & 0x02;
|
|
status.timers_disable = data & 0x01;
|
|
|
|
status.timer_step = (1 << status.clock_speed) + (2 << status.timer_speed);
|
|
|
|
timer0.synchronize_stage1();
|
|
timer1.synchronize_stage1();
|
|
timer2.synchronize_stage1();
|
|
break;
|
|
|
|
case 0xf1: //CONTROL
|
|
status.iplrom_enable = data & 0x80;
|
|
|
|
if(data & 0x30) {
|
|
//one-time clearing of APU port read registers,
|
|
//emulated by simulating CPU writes of 0x00
|
|
synchronize_cpu();
|
|
if(data & 0x20) {
|
|
cpu.port_write(2, 0x00);
|
|
cpu.port_write(3, 0x00);
|
|
}
|
|
if(data & 0x10) {
|
|
cpu.port_write(0, 0x00);
|
|
cpu.port_write(1, 0x00);
|
|
}
|
|
}
|
|
|
|
//0->1 transistion resets timers
|
|
if(timer2.enable == false && (data & 0x04)) {
|
|
timer2.stage2_ticks = 0;
|
|
timer2.stage3_ticks = 0;
|
|
}
|
|
timer2.enable = data & 0x04;
|
|
|
|
if(timer1.enable == false && (data & 0x02)) {
|
|
timer1.stage2_ticks = 0;
|
|
timer1.stage3_ticks = 0;
|
|
}
|
|
timer1.enable = data & 0x02;
|
|
|
|
if(timer0.enable == false && (data & 0x01)) {
|
|
timer0.stage2_ticks = 0;
|
|
timer0.stage3_ticks = 0;
|
|
}
|
|
timer0.enable = data & 0x01;
|
|
break;
|
|
|
|
case 0xf2: //DSPADDR
|
|
status.dsp_addr = data;
|
|
break;
|
|
|
|
case 0xf3: //DSPDATA
|
|
if(status.dsp_addr & 0x80) break; //0x80-0xff are read-only mirrors of 0x00-0x7f
|
|
dsp.write(status.dsp_addr & 0x7f, data);
|
|
break;
|
|
|
|
case 0xf4: //CPUIO0
|
|
case 0xf5: //CPUIO1
|
|
case 0xf6: //CPUIO2
|
|
case 0xf7: //CPUIO3
|
|
synchronize_cpu();
|
|
port_write(addr, data);
|
|
break;
|
|
|
|
case 0xf8: //RAM0
|
|
status.ram00f8 = data;
|
|
break;
|
|
|
|
case 0xf9: //RAM1
|
|
status.ram00f9 = data;
|
|
break;
|
|
|
|
case 0xfa: //T0TARGET
|
|
timer0.target = data;
|
|
break;
|
|
|
|
case 0xfb: //T1TARGET
|
|
timer1.target = data;
|
|
break;
|
|
|
|
case 0xfc: //T2TARGET
|
|
timer2.target = data;
|
|
break;
|
|
|
|
case 0xfd: //T0OUT
|
|
case 0xfe: //T1OUT
|
|
case 0xff: //T2OUT -- read-only registers
|
|
break;
|
|
}
|
|
|
|
ram_write(addr, data); //all writes, even to MMIO registers, appear on bus
|
|
}
|
|
|
|
void SMP::op_io() {
|
|
add_clocks(24);
|
|
cycle_edge();
|
|
}
|
|
|
|
uint8 SMP::op_read(uint16 addr) {
|
|
add_clocks(12);
|
|
uint8 data = op_busread(addr);
|
|
add_clocks(12);
|
|
cycle_edge();
|
|
debugger.op_read(addr, data);
|
|
return data;
|
|
}
|
|
|
|
void SMP::op_write(uint16 addr, uint8 data) {
|
|
add_clocks(24);
|
|
op_buswrite(addr, data);
|
|
cycle_edge();
|
|
debugger.op_write(addr, data);
|
|
}
|
|
|
|
uint8 SMP::disassembler_read(uint16 addr) {
|
|
if((addr & 0xfff0) == 0x00f0) return 0x00;
|
|
if((addr & 0xffc0) == 0xffc0 && status.iplrom_enable) return iplrom[addr & 0x3f];
|
|
return apuram[addr];
|
|
}
|
|
|
|
#endif
|