mirror of
https://github.com/bsnes-emu/bsnes.git
synced 2025-02-22 06:02:28 +01:00
byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
240 lines
6.3 KiB
C++
240 lines
6.3 KiB
C++
auto CPU::dmaStep(uint clocks) -> void {
|
|
status.dmaClocks += clocks;
|
|
step(clocks);
|
|
}
|
|
|
|
//=============
|
|
//memory access
|
|
//=============
|
|
|
|
auto CPU::dmaTransferValid(uint8 bbus, uint24 abus) -> bool {
|
|
//transfers from WRAM to WRAM are invalid; chip only has one address bus
|
|
if(bbus == 0x80 && ((abus & 0xfe0000) == 0x7e0000 || (abus & 0x40e000) == 0x0000)) return false;
|
|
return true;
|
|
}
|
|
|
|
auto CPU::dmaAddressValid(uint24 abus) -> bool {
|
|
//A-bus access to B-bus or S-CPU registers are invalid
|
|
if((abus & 0x40ff00) == 0x2100) return false; //$00-3f,80-bf:2100-21ff
|
|
if((abus & 0x40fe00) == 0x4000) return false; //$00-3f,80-bf:4000-41ff
|
|
if((abus & 0x40ffe0) == 0x4200) return false; //$00-3f,80-bf:4200-421f
|
|
if((abus & 0x40ff80) == 0x4300) return false; //$00-3f,80-bf:4300-437f
|
|
return true;
|
|
}
|
|
|
|
auto CPU::dmaRead(uint24 abus) -> uint8 {
|
|
if(!dmaAddressValid(abus)) return 0x00;
|
|
return bus.read(abus, r.mdr);
|
|
}
|
|
|
|
//simulate two-stage pipeline for DMA transfers; example:
|
|
//cycle 0: read N+0
|
|
//cycle 1: write N+0 & read N+1 (parallel; one on A-bus, one on B-bus)
|
|
//cycle 2: write N+1 & read N+2 (parallel)
|
|
//cycle 3: write N+2
|
|
auto CPU::dmaWrite(bool valid, uint addr, uint8 data) -> void {
|
|
if(pipe.valid) bus.write(pipe.addr, pipe.data);
|
|
pipe.valid = valid;
|
|
pipe.addr = addr;
|
|
pipe.data = data;
|
|
}
|
|
|
|
auto CPU::dmaTransfer(bool direction, uint8 bbus, uint24 abus) -> void {
|
|
if(direction == 0) {
|
|
dmaStep(4);
|
|
r.mdr = dmaRead(abus);
|
|
dmaStep(4);
|
|
dmaWrite(dmaTransferValid(bbus, abus), 0x2100 | bbus, r.mdr);
|
|
} else {
|
|
dmaStep(4);
|
|
r.mdr = dmaTransferValid(bbus, abus) ? bus.read(0x2100 | bbus, r.mdr) : (uint8)0x00;
|
|
dmaStep(4);
|
|
dmaWrite(dmaAddressValid(abus), abus, r.mdr);
|
|
}
|
|
}
|
|
|
|
//===================
|
|
//address calculation
|
|
//===================
|
|
|
|
auto CPU::dmaAddressB(uint n, uint index) -> uint8 {
|
|
switch(channel[n].transferMode) {
|
|
case 0: return (channel[n].targetAddress); //0
|
|
case 1: return (channel[n].targetAddress + (index & 1)); //0,1
|
|
case 2: return (channel[n].targetAddress); //0,0
|
|
case 3: return (channel[n].targetAddress + ((index >> 1) & 1)); //0,0,1,1
|
|
case 4: return (channel[n].targetAddress + (index & 3)); //0,1,2,3
|
|
case 5: return (channel[n].targetAddress + (index & 1)); //0,1,0,1
|
|
case 6: return (channel[n].targetAddress); //0,0 [2]
|
|
case 7: return (channel[n].targetAddress + ((index >> 1) & 1)); //0,0,1,1 [3]
|
|
}
|
|
unreachable;
|
|
}
|
|
|
|
auto CPU::dmaAddress(uint n) -> uint24 {
|
|
uint24 addr = channel[n].sourceBank << 16 | channel[n].sourceAddress;
|
|
|
|
if(!channel[n].fixedTransfer) {
|
|
if(!channel[n].reverseTransfer) {
|
|
channel[n].sourceAddress++;
|
|
} else {
|
|
channel[n].sourceAddress--;
|
|
}
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
auto CPU::hdmaAddress(uint n) -> uint24 {
|
|
return channel[n].sourceBank << 16 | channel[n].hdmaAddress++;
|
|
}
|
|
|
|
auto CPU::hdmaIndirectAddress(uint n) -> uint24 {
|
|
return channel[n].indirectBank << 16 | channel[n].indirectAddress++;
|
|
}
|
|
|
|
//==============
|
|
//channel status
|
|
//==============
|
|
|
|
auto CPU::dmaEnabledChannels() -> uint {
|
|
uint count = 0;
|
|
for(auto n : range(8)) count += channel[n].dmaEnabled;
|
|
return count;
|
|
}
|
|
|
|
auto CPU::hdmaActive(uint n) -> bool {
|
|
return channel[n].hdmaEnabled && !channel[n].hdmaCompleted;
|
|
}
|
|
|
|
auto CPU::hdmaActiveAfter(uint s) -> bool {
|
|
for(uint n = s + 1; n < 8; n++) {
|
|
if(hdmaActive(n)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
auto CPU::hdmaEnabledChannels() -> uint {
|
|
uint count = 0;
|
|
for(auto n : range(8)) count += channel[n].hdmaEnabled;
|
|
return count;
|
|
}
|
|
|
|
auto CPU::hdmaActiveChannels() -> uint {
|
|
uint count = 0;
|
|
for(auto n : range(8)) count += hdmaActive(n);
|
|
return count;
|
|
}
|
|
|
|
//==============
|
|
//core functions
|
|
//==============
|
|
|
|
auto CPU::dmaRun() -> void {
|
|
dmaStep(8);
|
|
dmaWrite(false);
|
|
dmaEdge();
|
|
|
|
for(auto n : range(8)) {
|
|
if(!channel[n].dmaEnabled) continue;
|
|
|
|
uint index = 0;
|
|
do {
|
|
dmaTransfer(channel[n].direction, dmaAddressB(n, index++), dmaAddress(n));
|
|
dmaEdge();
|
|
} while(channel[n].dmaEnabled && --channel[n].transferSize);
|
|
|
|
dmaStep(8);
|
|
dmaWrite(false);
|
|
dmaEdge();
|
|
|
|
channel[n].dmaEnabled = false;
|
|
}
|
|
|
|
status.irqLock = true;
|
|
}
|
|
|
|
auto CPU::hdmaUpdate(uint n) -> void {
|
|
dmaStep(4);
|
|
r.mdr = dmaRead(channel[n].sourceBank << 16 | channel[n].hdmaAddress);
|
|
dmaStep(4);
|
|
dmaWrite(false);
|
|
|
|
if((channel[n].lineCounter & 0x7f) == 0) {
|
|
channel[n].lineCounter = r.mdr;
|
|
channel[n].hdmaAddress++;
|
|
|
|
channel[n].hdmaCompleted = channel[n].lineCounter == 0;
|
|
channel[n].hdmaDoTransfer = !channel[n].hdmaCompleted;
|
|
|
|
if(channel[n].indirect) {
|
|
dmaStep(4);
|
|
r.mdr = dmaRead(hdmaAddress(n));
|
|
channel[n].indirectAddress = r.mdr << 8;
|
|
dmaStep(4);
|
|
dmaWrite(false);
|
|
|
|
if(!channel[n].hdmaCompleted || hdmaActiveAfter(n)) {
|
|
dmaStep(4);
|
|
r.mdr = dmaRead(hdmaAddress(n));
|
|
channel[n].indirectAddress >>= 8;
|
|
channel[n].indirectAddress |= r.mdr << 8;
|
|
dmaStep(4);
|
|
dmaWrite(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
auto CPU::hdmaRun() -> void {
|
|
dmaStep(8);
|
|
dmaWrite(false);
|
|
|
|
for(auto n : range(8)) {
|
|
if(!hdmaActive(n)) continue;
|
|
channel[n].dmaEnabled = false; //HDMA run during DMA will stop DMA mid-transfer
|
|
|
|
if(channel[n].hdmaDoTransfer) {
|
|
static const uint transferLength[8] = {1, 2, 2, 4, 4, 4, 2, 4};
|
|
uint length = transferLength[channel[n].transferMode];
|
|
for(auto index : range(length)) {
|
|
uint addr = !channel[n].indirect ? hdmaAddress(n) : hdmaIndirectAddress(n);
|
|
dmaTransfer(channel[n].direction, dmaAddressB(n, index), addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
for(auto n : range(8)) {
|
|
if(!hdmaActive(n)) continue;
|
|
|
|
channel[n].lineCounter--;
|
|
channel[n].hdmaDoTransfer = channel[n].lineCounter & 0x80;
|
|
hdmaUpdate(n);
|
|
}
|
|
|
|
status.irqLock = true;
|
|
}
|
|
|
|
auto CPU::hdmaInitReset() -> void {
|
|
for(auto n : range(8)) {
|
|
channel[n].hdmaCompleted = false;
|
|
channel[n].hdmaDoTransfer = false;
|
|
}
|
|
}
|
|
|
|
auto CPU::hdmaInit() -> void {
|
|
dmaStep(8);
|
|
dmaWrite(false);
|
|
|
|
for(auto n : range(8)) {
|
|
if(!channel[n].hdmaEnabled) continue;
|
|
channel[n].dmaEnabled = false; //HDMA init during DMA will stop DMA mid-transfer
|
|
|
|
channel[n].hdmaAddress = channel[n].sourceAddress;
|
|
channel[n].lineCounter = 0;
|
|
hdmaUpdate(n);
|
|
}
|
|
|
|
status.irqLock = true;
|
|
}
|