// // FILE: I2C_eeprom.cpp // AUTHOR: Rob Tillaart // VERSION: 1.0.05 // PURPOSE: Simple I2C_eeprom library for Arduino with EEPROM 24LC256 et al. // // HISTORY: // 0.1.00 - 2011-01-21 initial version // 0.1.01 - 2011-02-07 added setBlock function // 0.2.00 - 2011-02-11 fixed 64 bit boundary bug // 0.2.01 - 2011-08-13 _readBlock made more robust + return value // 1.0.00 - 2013-06-09 support for Arduino 1.0.x // 1.0.01 - 2013-11-01 fixed writeBlock bug, refactor // 1.0.02 - 2013-11-03 optimize internal buffers, refactor // 1.0.03 - 2013-11-03 refactor 5 millis() write-latency // 1.0.04 - 2013-11-03 fix bug in readBlock, moved waitEEReady() -> more efficient. // 1.0.05 - 2013-11-06 improved waitEEReady(), added determineSize() // // Released to the public domain // #include I2C_eeprom::I2C_eeprom(uint8_t device) { _deviceAddress = device; Wire.begin(); _lastWrite = 0; TWBR = 12; // 12=400Khz 32=200 72=100 152=50 F_CPU/16+(2*TWBR) } int I2C_eeprom::writeByte(uint16_t address, uint8_t data) { int rv = _WriteBlock(address, &data, 1); return rv; } int I2C_eeprom::setBlock(uint16_t address, uint8_t data, uint16_t length) { uint8_t buffer[I2C_TWIBUFFERSIZE]; for (uint8_t i =0; i< I2C_TWIBUFFERSIZE; i++) buffer[i] = data; int rv = _pageBlock(address, buffer, length, false); // todo check return value.. return rv; } int I2C_eeprom::writeBlock(uint16_t address, uint8_t* buffer, uint16_t length) { int rv = _pageBlock(address, buffer, length, true); // todo check return value.. return rv; } uint8_t I2C_eeprom::readByte(uint16_t address) { uint8_t rdata; _ReadBlock(address, &rdata, 1); return rdata; } uint16_t I2C_eeprom::readBlock(uint16_t address, uint8_t* buffer, uint16_t length) { uint16_t rv = 0; while (length > 0) { uint8_t cnt = min(length, I2C_TWIBUFFERSIZE); rv += _ReadBlock(address, buffer, cnt); address += cnt; buffer += cnt; length -= cnt; } return rv; } #ifdef I2C_EEPROM_EXTENDED // returns 64, 32, 16, 8, 4, 2, 1, 0 // 0 is smaller than 1K uint8_t I2C_eeprom::determineSize() { uint8_t rv = 0; // unknown uint8_t orgValues[8]; uint16_t addr; // remember old values, non destructive for (uint8_t i=0; i<8; i++) { addr = (512 << i) + 1; orgValues[i] = readByte(addr); } // scan page folding for (uint8_t i=0; i<8; i++) { rv = i; uint16_t addr1 = (512 << i) + 1; uint16_t addr2 = (512 << (i+1)) + 1; writeByte(addr1, 0xAA); writeByte(addr2, 0x55); if (readByte(addr1) == 0x55) // folded! { break; } } // restore original values for (uint8_t i=0; i<8; i++) { uint16_t addr = (512 << i) + 1; writeByte(addr, orgValues[i]); } return 0x01 << (rv-1); } #endif //////////////////////////////////////////////////////////////////// // // PRIVATE // // _pageBlock aligns buffer to page boundaries for writing. // and to TWI buffer size // returns 0 = OK otherwise error int I2C_eeprom::_pageBlock(uint16_t address, uint8_t* buffer, uint16_t length, bool incrBuffer) { int rv = 0; while (length > 0) { uint8_t bytesUntilPageBoundary = I2C_EEPROM_PAGESIZE - address%I2C_EEPROM_PAGESIZE; uint8_t cnt = min(length, bytesUntilPageBoundary); cnt = min(cnt, I2C_TWIBUFFERSIZE); int rv = _WriteBlock(address, buffer, cnt); // todo check return value.. if (rv != 0) return rv; address += cnt; if (incrBuffer) buffer += cnt; length -= cnt; } return rv; } // pre: length <= I2C_EEPROM_PAGESIZE && length <= I2C_TWIBUFFERSIZE; // returns 0 = OK otherwise error int I2C_eeprom::_WriteBlock(uint16_t address, uint8_t* buffer, uint8_t length) { waitEEReady(); Wire.beginTransmission(_deviceAddress); #if defined(ARDUINO) && ARDUINO >= 100 Wire.write((int)(address >> 8)); Wire.write((int)(address & 0xFF)); for (uint8_t cnt = 0; cnt < length; cnt++) Wire.write(buffer[cnt]); #else Wire.send((int)(address >> 8)); Wire.send((int)(address & 0xFF)); for (uint8_t cnt = 0; cnt < length; cnt++) Wire.send(buffer[cnt]); #endif int rv = Wire.endTransmission(); _lastWrite = micros(); return rv; } // pre: buffer is large enough to hold length bytes // returns bytes written uint8_t I2C_eeprom::_ReadBlock(uint16_t address, uint8_t* buffer, uint8_t length) { waitEEReady(); Wire.beginTransmission(_deviceAddress); #if defined(ARDUINO) && ARDUINO >= 100 Wire.write((int)(address >> 8)); Wire.write((int)(address & 0xFF)); #else Wire.send((int)(address >> 8)); Wire.send((int)(address & 0xFF)); #endif int rv = Wire.endTransmission(); if (rv != 0) return 0; // error Wire.requestFrom(_deviceAddress, length); uint8_t cnt = 0; uint32_t before = millis(); while ((cnt < length) && ((millis() - before) < I2C_EEPROM_TIMEOUT)) { #if defined(ARDUINO) && ARDUINO >= 100 if (Wire.available()) buffer[cnt++] = Wire.read(); #else if (Wire.available()) buffer[cnt++] = Wire.receive(); #endif } return cnt; } void I2C_eeprom::waitEEReady() { #define I2C_WRITEDELAY 5000 // Wait until EEPROM gives ACK again. // this is a bit faster than the hardcoded 5 milli while ((micros() - _lastWrite) <= I2C_WRITEDELAY) { Wire.beginTransmission(_deviceAddress); int x = Wire.endTransmission(); if (x == 0) break; } } // // END OF FILE //