1
0
mirror of https://github.com/ianstormtaylor/slate.git synced 2025-02-25 09:43:21 +01:00
slate/lib/models/transforms.js
Somasundaram Ayyappan 0289edfc29 Rename mark/unmark transforms to addMark/removeMark (#113)
* Rename mark/unmark transforms to addMark/removeMark

* delete gitkeep
2016-07-18 12:00:30 -07:00

871 lines
24 KiB
JavaScript

import Block from './block'
import Character from './character'
import Data from './data'
import Document from './document'
import Inline from './inline'
import Mark from './mark'
import Selection from './selection'
import Text from './text'
import uid from '../utils/uid'
import { List, Map, Set } from 'immutable'
/**
* Transforms.
*
* These are pulled out into their own file because they can get complex.
*/
const Transforms = {
/**
* Delete everything in a `range`.
*
* @param {Selection} range
* @return {Node} node
*/
deleteAtRange(range) {
if (range.isCollapsed) return this
let node = this
// Make sure the children exist.
const { startKey, startOffset, endKey, endOffset } = range
node.assertHasDescendant(startKey)
node.assertHasDescendant(endKey)
// If the start and end nodes are the same, just remove characters.
if (startKey == endKey) {
let text = node.getDescendant(startKey)
text = text.removeCharacters(startOffset, endOffset)
node = node.updateDescendant(text)
return node
}
// Split the blocks and determine the edge boundaries.
const start = range.collapseToStart()
const end = range.collapseToEnd()
node = node.splitBlockAtRange(start, Infinity)
node = node.splitBlockAtRange(end, Infinity)
const startText = node.getDescendant(startKey)
const startEdgeText = node.getNextText(startKey)
const endText = node.getNextText(endKey)
const endEdgeText = node.getDescendant(endKey)
// Remove the new blocks inside the edges.
const startEdgeBlock = node.getFurthestBlock(startEdgeText)
const endEdgeBlock = node.getFurthestBlock(endEdgeText)
const nodes = node.nodes
.takeUntil(n => n == startEdgeBlock)
.concat(node.nodes.skipUntil(n => n == endEdgeBlock).rest())
node = node.merge({ nodes })
// Take the end edge's split text and move it to the start edge.
let startBlock = node.getFurthestBlock(startText)
let endChild = node.getFurthestInline(endText) || endText
const startNodes = startBlock.nodes.push(endChild)
startBlock = startBlock.merge({ nodes: startNodes })
node = node.updateDescendant(startBlock)
// While the end child is an only child, remove the block it's in.
let endParent = node.getClosestBlock(endChild)
while (endParent && endParent.nodes.size == 1) {
endChild = endParent
endParent = node.getClosestBlock(endParent)
}
node = node.removeDescendant(endChild)
// Normalize the adjacent text nodes.
return node.normalize()
},
/**
* Delete backward `n` characters at a `range`.
*
* @param {Selection} range
* @param {Number} n (optional)
* @return {Node} node
*/
deleteBackwardAtRange(range, n = 1) {
let node = this
const { startKey, startOffset } = range
// When the range is still expanded, just do a regular delete.
if (range.isExpanded) return node.deleteAtRange(range)
// When collapsed at the start of the node, there's nothing to do.
if (range.isAtStartOf(node)) return node
// When collapsed in a void node, remove that node.
const block = node.getClosestBlock(startKey)
if (block && block.isVoid) return node.removeDescendant(block)
const inline = node.getClosestInline(startKey)
if (inline && inline.isVoid) return node.removeDescendant(inline)
// When at start of a text node, merge forwards into the next text node.
const startNode = node.getDescendant(startKey)
if (range.isAtStartOf(startNode)) {
const previous = node.getPreviousText(startNode)
// If the previous descendant is void, remove it.
const prevBlock = node.getClosestBlock(previous)
if (prevBlock && prevBlock.isVoid) return node.removeDescendant(prevBlock)
const prevInline = node.getClosestInline(previous)
if (prevInline && prevInline.isVoid) return node.removeDescendant(prevInline)
range = range.extendToEndOf(previous)
range = range.normalize(node)
return node.deleteAtRange(range)
}
// Otherwise, remove `n` characters behind of the cursor.
range = range.extendBackward(n)
range = range.normalize(node)
return node.deleteAtRange(range)
},
/**
* Delete forward `n` characters at a `range`.
*
* @param {Selection} range
* @param {Number} n (optional)
* @return {Node} node
*/
deleteForwardAtRange(range, n = 1) {
let node = this
const { startKey } = range
// When the range is still expanded, just do a regular delete.
if (range.isExpanded) return node.deleteAtRange(range)
// When collapsed at the end of the node, there's nothing to do.
if (range.isAtEndOf(node)) return node
// When collapsed in a void node, remove that node.
const block = node.getClosestBlock(startKey)
if (block && block.isVoid) return node.removeDescendant(block)
const inline = node.getClosestInline(startKey)
if (inline && inline.isVoid) return node.removeDescendant(inline)
// When at end of a text node, merge forwards into the next text node.
const startNode = node.getDescendant(startKey)
if (range.isAtEndOf(startNode)) {
const next = node.getNextText(startNode)
range = range.extendToStartOf(next)
range = range.normalize(node)
return node.deleteAtRange(range)
}
// Otherwise, remove `n` characters ahead of the cursor.
range = range.extendForward(n)
range = range.normalize(node)
return node.deleteAtRange(range)
},
/**
* Insert a `fragment` at a `range`.
*
* @param {Selection} range
* @param {List} fragment
* @return {Node} node
*/
insertFragmentAtRange(range, fragment) {
range = range.normalize(this)
let node = this
// If the range is expanded, delete first.
if (range.isExpanded) {
node = node.deleteAtRange(range)
range = range.collapseToStart()
}
// If the fragment is empty, do nothing.
if (!fragment.length) return node
// Make sure each node in the fragment has a unique key.
fragment = fragment.mapDescendants(child => child.set('key', uid()))
// Split the inlines if need be.
if (!node.isInlineSplitAtRange(range)) {
node = node.splitInlineAtRange(range)
}
// Determine the start and next children to insert into.
const { startKey, endKey } = range
let block = node.getClosestBlock(startKey)
let start = node.getDescendant(startKey)
let startChild
let nextChild
if (range.isAtStartOf(node)) {
nextChild = node.getClosestBlock(node.getTextNodes().first())
}
if (range.isAtStartOf(block)) {
nextChild = block.getHighestChild(block.getTextNodes().first())
}
else if (range.isAtStartOf(start)) {
startChild = block.getHighestChild(block.getPreviousText(start))
nextChild = block.getNextSibling(startChild)
}
else {
startChild = block.getHighestChild(start)
nextChild = block.getNextSibling(startChild)
}
// Get the first and last block of the fragment.
const blocks = fragment.getDeepestBlocks()
const firstBlock = blocks.first()
let lastBlock = blocks.last()
// If the block is empty, merge in the first block's type and data.
if (block.length == 0) {
block = block.merge({
type: firstBlock.type,
data: firstBlock.data
})
}
// Insert the first blocks nodes into the starting block.
if (startChild) {
block = block.insertChildrenAfter(startChild, firstBlock.nodes)
} else {
block = block.insertChildrenBefore(nextChild, firstBlock.nodes)
}
node = node.updateDescendant(block)
// If there are no other siblings, that's it.
if (firstBlock == lastBlock) return node.normalize()
// Otherwise, remove the fragment's first block's highest solo parent...
let highestParent = fragment.getHighestOnlyChildParent(firstBlock)
fragment = fragment.removeDescendant(highestParent || firstBlock)
// Then, add the inlines after the cursor from the current block to the
// start of the last block in the fragment.
if (nextChild) {
lastBlock = lastBlock.concatChildren(block.getChildrenAfterIncluding(nextChild))
fragment = fragment.updateDescendant(lastBlock)
block = block.removeChildrenAfterIncluding(nextChild)
node = node.updateDescendant(block)
}
// Finally, add the fragment's children after the block.
node = node.insertChildrenAfter(block, fragment.nodes)
return node.normalize()
},
/**
* Insert text `string` at a `range`, with optional `marks`.
*
* @param {Selection} range
* @param {String} string
* @param {Set} marks (optional)
* @return {Node} node
*/
insertTextAtRange(range, string, marks) {
let node = this
// When still expanded, remove the current range first.
if (range.isExpanded) {
node = node.deleteAtRange(range)
range = range.collapseToStart()
}
// Insert text at the range's offset.
const { startKey, startOffset } = range
let text = node.getDescendant(startKey)
text = text.insertText(startOffset, string, marks)
node = node.updateDescendant(text)
return node
},
/**
* Add a new `mark` to the characters at `range`.
*
* @param {Selection} range
* @param {Mark or String} mark
* @return {Node} node
*/
addMarkAtRange(range, mark) {
let node = this
// Allow for just passing a type for convenience.
if (typeof mark == 'string') {
mark = new Mark({ type: mark })
}
// When the range is collapsed, do nothing.
if (range.isCollapsed) return node
// Otherwise, find each of the text nodes within the range.
const { startKey, startOffset, endKey, endOffset } = range
let texts = node.getTextsAtRange(range)
// Apply the mark to each of the text nodes's matching characters.
texts = texts.map((text) => {
let characters = text.characters.map((char, i) => {
if (!isInRange(i, text, range)) return char
let { marks } = char
marks = marks.add(mark)
return char.merge({ marks })
})
return text.merge({ characters })
})
// Update each of the text nodes.
texts.forEach((text) => {
node = node.updateDescendant(text)
})
return node
},
/**
* Set the `properties` of block nodes in a `range`.
*
* @param {Selection} range
* @param {Object or String} properties
* @return {Node} node
*/
setBlockAtRange(range, properties = {}) {
let node = this
// Allow for properties to be a string `type` for convenience.
if (typeof properties == 'string') {
properties = { type: properties }
}
// Update each of the blocks.
const blocks = node.getBlocksAtRange(range)
blocks.forEach((block) => {
if (properties.data) properties.data = Data.create(properties.data)
block = block.merge(properties)
node = node.updateDescendant(block)
})
return node.normalize()
},
/**
* Set the `properties` of inline nodes in a `range`.
*
* @param {Selection} range
* @param {Object or String} properties
* @return {Node} node
*/
setInlineAtRange(range, properties = {}) {
let node = this
// Allow for properties to be a string `type` for convenience.
if (typeof properties == 'string') {
properties = { type: properties }
}
// Update each of the inlines.
const inlines = node.getInlinesAtRange(range)
inlines.forEach((inline) => {
if (properties.data) properties.data = Data.create(properties.data)
inline = inline.merge(properties)
node = node.updateDescendant(inline)
})
return node.normalize()
},
/**
* Split the block nodes at a `range`, to optional `depth`.
*
* @param {Selection} range
* @param {Number} depth (optional)
* @return {Node} node
*/
splitBlockAtRange(range, depth = 1) {
let node = this
// If the range is expanded, remove it first.
if (range.isExpanded) {
node = node.deleteAtRange(range)
range = range.collapseToStart()
}
// Split the inline nodes at the range.
node = node.splitInlineAtRange(range)
// Find the highest inline elements that were split.
const { startKey } = range
const firstText = node.getDescendant(startKey)
const secondText = node.getNextText(startKey)
let firstChild = node.getFurthestInline(firstText) || firstText
let secondChild = node.getFurthestInline(secondText) || secondText
let parent = node.getClosestBlock(firstChild)
let firstChildren = parent.nodes.takeUntil(n => n == firstChild).push(firstChild)
let secondChildren = parent.nodes.skipUntil(n => n == secondChild)
let d = 0
// While the parent is a block, split the block nodes.
while (parent && d < depth) {
firstChild = parent.merge({ nodes: firstChildren })
secondChild = Block.create({
nodes: secondChildren,
type: parent.type,
data: parent.data
})
firstChildren = Block.createList([firstChild])
secondChildren = Block.createList([secondChild])
// Add the new children.
const grandparent = node.getParent(parent)
const nodes = grandparent.nodes
.takeUntil(n => n.key == firstChild.key)
.push(firstChild)
.push(secondChild)
.concat(grandparent.nodes.skipUntil(n => n.key == firstChild.key).rest())
// Update the grandparent.
node = grandparent == node
? node.merge({ nodes })
: node.updateDescendant(grandparent.merge({ nodes }))
d++
parent = node.getClosestBlock(firstChild)
}
return node
},
/**
* Split the inline nodes at a `range`, to optional `depth`.
*
* @param {Selection} range
* @param {Number} depth (optiona)
* @return {Node} node
*/
splitInlineAtRange(range, depth = Infinity) {
let node = this
// If the range is expanded, remove it first.
if (range.isExpanded) {
node = node.deleteAtRange(range)
range = range.collapseToStart()
}
// First split the text nodes.
node = node.splitTextAtRange(range)
// Find the children that were split.
const { startKey } = range
let firstChild = node.getDescendant(startKey)
let secondChild = node.getNextText(firstChild)
let parent = node.getClosestInline(firstChild)
let d = 0
// While the parent is an inline parent, split the inline nodes.
while (parent && d < depth) {
firstChild = parent.merge({ nodes: Inline.createList([firstChild]) })
secondChild = Inline.create({
nodes: [secondChild],
type: parent.type,
data: parent.data
})
// Split the children.
const grandparent = node.getParent(parent)
const nodes = grandparent.nodes
.takeUntil(n => n.key == firstChild.key)
.push(firstChild)
.push(secondChild)
.concat(grandparent.nodes.skipUntil(n => n.key == firstChild.key).rest())
// Update the grandparent.
node = grandparent == node
? node.merge({ nodes })
: node.updateDescendant(grandparent.merge({ nodes }))
d++
parent = node.getClosestInline(firstChild)
}
return node
},
/**
* Split the text nodes at a `range`.
*
* @param {Selection} range
* @return {Node} node
*/
splitTextAtRange(range) {
let node = this
// If the range is expanded, remove it first.
if (range.isExpanded) {
node = node.deleteAtRange(range)
range = range.collapseToStart()
}
// Split the text node's characters.
const { startKey, startOffset } = range
const text = node.getDescendant(startKey)
const { characters } = text
const firstChars = characters.take(startOffset)
const secondChars = characters.skip(startOffset)
let firstChild = text.merge({ characters: firstChars })
let secondChild = Text.create({ characters: secondChars })
// Split the text nodes.
let parent = node.getParent(text)
const nodes = parent.nodes
.takeUntil(c => c.key == firstChild.key)
.push(firstChild)
.push(secondChild)
.concat(parent.nodes.skipUntil(n => n.key == firstChild.key).rest())
// Update the nodes.
parent = parent.merge({ nodes })
node = node.updateDescendant(parent)
return node
},
/**
* Remove an existing `mark` to the characters at `range`.
*
* @param {Selection} range
* @param {Mark or String} mark (optional)
* @return {Node} node
*/
removeMarkAtRange(range, mark) {
let node = this
// Allow for just passing a type for convenience.
if (typeof mark == 'string') {
mark = new Mark({ type: mark })
}
// When the range is collapsed, do nothing.
if (range.isCollapsed) return node
// Otherwise, find each of the text nodes within the range.
let texts = node.getTextsAtRange(range)
// Apply the mark to each of the text nodes's matching characters.
texts = texts.map((text) => {
let characters = text.characters.map((char, i) => {
if (!isInRange(i, text, range)) return char
let { marks } = char
marks = mark
? marks.remove(mark)
: marks.clear()
return char.merge({ marks })
})
return text.merge({ characters })
})
// Update each of the text nodes.
texts.forEach((text) => {
node = node.updateDescendant(text)
})
return node
},
/**
* Unwrap all of the block nodes in a `range` from a block node of `type.`
*
* @param {Selection} range
* @param {String} type (optional)
* @param {Data or Object} data (optional)
* @return {Node} node
*/
unwrapBlockAtRange(range, type, data) {
let node = this
// Allow for only data.
if (typeof type == 'object') {
data = type
type = null
}
// Ensure that data is immutable.
if (data) data = Data.create(data)
// Find the closest wrapping blocks of each text node.
const texts = node.getBlocksAtRange(range)
const wrappers = texts.reduce((memo, text) => {
const match = node.getClosest(text, (parent) => {
if (parent.kind != 'block') return false
if (type && parent.type != type) return false
if (data && !parent.data.isSuperset(data)) return false
return true
})
if (match) memo = memo.add(match)
return memo
}, new Set())
// Replace each of the wrappers with their child nodes.
wrappers.forEach((wrapper) => {
const parent = node.getParent(wrapper)
// Replace the wrapper in the parent's nodes with the block.
const nodes = parent.nodes.takeUntil(n => n == wrapper)
.concat(wrapper.nodes)
.concat(parent.nodes.skipUntil(n => n == wrapper).rest())
// Update the parent.
node = parent == node
? node.merge({ nodes })
: node.updateDescendant(parent.merge({ nodes }))
})
return node.normalize()
},
/**
* Unwrap the inline nodes in a `range` from an parent inline with `type`.
*
* @param {Selection} range
* @param {String} type (optional)
* @param {Data} data (optional)
* @return {Node} node
*/
unwrapInlineAtRange(range, type, data) {
let node = this
let blocks = node.getInlinesAtRange(range)
// Allow for no type.
if (typeof type == 'object') {
data = type
type = null
}
// Ensure that data is immutable.
if (data) data = Data.create(data)
// Find the closest matching inline wrappers of each text node.
const texts = this.getTextNodes()
const wrappers = texts.reduce((memo, text) => {
const match = node.getClosest(text, (parent) => {
if (parent.kind != 'inline') return false
if (type && parent.type != type) return false
if (data && !parent.data.isSuperset(data)) return false
return true
})
if (match) memo = memo.add(match)
return memo
}, new Set())
// Replace each of the wrappers with their child nodes.
wrappers.forEach((wrapper) => {
const parent = node.getParent(wrapper)
// Replace the wrapper in the parent's nodes with the block.
const nodes = parent.nodes.takeUntil(n => n == wrapper)
.concat(wrapper.nodes)
.concat(parent.nodes.skipUntil(n => n == wrapper).rest())
// Update the parent.
node = parent == node
? node.merge({ nodes })
: node.updateDescendant(parent.merge({ nodes }))
})
return node.normalize()
},
/**
* Wrap all of the blocks in a `range` in a new block node of `type`.
*
* @param {Selection} range
* @param {String} type
* @param {Data} data (optional)
* @return {Node} node
*/
wrapBlockAtRange(range, type, data) {
data = Data.create(data)
let node = this
// Get the block nodes, sorted by depth.
const blocks = node.getBlocksAtRange(range)
const sorted = blocks.sort((a, b) => {
const da = node.getDepth(a)
const db = node.getDepth(b)
if (da == db) return 0
else if (da > db) return -1
else return 1
})
// Get the lowest common siblings, relative to the highest block.
const highest = sorted.first()
const depth = node.getDepth(highest)
const siblings = blocks.reduce((memo, block) => {
const sibling = node.getDepth(block) == depth
? block
: node.getClosest(block, (p) => node.getDepth(p) == depth)
memo = memo.push(sibling)
return memo
}, Block.createList())
// Wrap the siblings in a new block.
const wrapper = Block.create({
nodes: siblings,
type,
data
})
// Replace the siblings with the wrapper.
const first = siblings.first()
const last = siblings.last()
const parent = node.getParent(highest)
const nodes = parent.nodes
.takeUntil(n => n == first)
.push(wrapper)
.concat(parent.nodes.skipUntil(n => n == last).rest())
// Update the parent.
node = parent == node
? node.merge({ nodes })
: node.updateDescendant(parent.merge({ nodes }))
return node
},
/**
* Wrap the text and inline nodes in a `range` with a new inline node.
*
* @param {Selection} range
* @param {String} type
* @param {Data} data (optional)
* @return {Node} node
*/
wrapInlineAtRange(range, type, data) {
data = Data.create(data)
let node = this
// If collapsed, there's nothing to wrap.
if (range.isCollapsed) return node
// Split at the start of the range.
const start = range.collapseToStart()
node = node.splitInlineAtRange(start)
// Determine the new end of the range, and split there.
const { startKey, startOffset, endKey, endOffset } = range
const firstNode = node.getDescendant(startKey)
const nextNode = node.getNextText(startKey)
const end = startKey != endKey
? range.collapseToEnd()
: Selection.create({
anchorKey: nextNode.key,
anchorOffset: endOffset - startOffset,
focusKey: nextNode.key,
focusOffset: endOffset - startOffset
})
node = node.splitInlineAtRange(end)
// Calculate the new range to wrap around.
const endNode = node.getDescendant(end.anchorKey)
range = Selection.create({
anchorKey: nextNode.key,
anchorOffset: 0,
focusKey: endNode.key,
focusOffset: endNode.length
})
// Get the furthest inline nodes in the range.
const texts = node.getTextsAtRange(range)
const children = texts.map(text => node.getFurthestInline(text) || text)
// Iterate each of the child nodes, wrapping them.
children.forEach((child) => {
const obj = {}
obj.nodes = [child]
obj.type = type
if (data) obj.data = data
const wrapper = Inline.create(obj)
// Replace the child in it's parent with the wrapper.
const parent = node.getParent(child)
const nodes = parent.nodes.takeUntil(n => n == child)
.push(wrapper)
.concat(parent.nodes.skipUntil(n => n == child).rest())
// Update the parent.
node = parent == node
? node.merge({ nodes })
: node.updateDescendant(parent.merge({ nodes }))
})
return node
}
}
/**
* Check if an `index` of a `text` node is in a `range`.
*
* @param {Number} index
* @param {Text} text
* @param {Selection} range
* @return {Set} characters
*/
function isInRange(index, text, range) {
const { startKey, startOffset, endKey, endOffset } = range
let matcher
if (text.key == startKey && text.key == endKey) {
return startOffset <= index && index < endOffset
} else if (text.key == startKey) {
return startOffset <= index
} else if (text.key == endKey) {
return index < endOffset
} else {
return true
}
}
/**
* Export.
*/
export default Transforms