mirror of
https://github.com/tomahawk-player/tomahawk.git
synced 2025-07-31 03:10:12 +02:00
* Added breakpad support for Linux.
This commit is contained in:
577
thirdparty/breakpad/processor/stackwalker_x86.cc
vendored
Normal file
577
thirdparty/breakpad/processor/stackwalker_x86.cc
vendored
Normal file
@@ -0,0 +1,577 @@
|
||||
// Copyright (c) 2010 Google Inc.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// stackwalker_x86.cc: x86-specific stackwalker.
|
||||
//
|
||||
// See stackwalker_x86.h for documentation.
|
||||
//
|
||||
// Author: Mark Mentovai
|
||||
|
||||
|
||||
#include "processor/postfix_evaluator-inl.h"
|
||||
|
||||
#include "google_breakpad/processor/call_stack.h"
|
||||
#include "google_breakpad/processor/code_modules.h"
|
||||
#include "google_breakpad/processor/memory_region.h"
|
||||
#include "google_breakpad/processor/source_line_resolver_interface.h"
|
||||
#include "google_breakpad/processor/stack_frame_cpu.h"
|
||||
#include "processor/logging.h"
|
||||
#include "processor/scoped_ptr.h"
|
||||
#include "processor/stackwalker_x86.h"
|
||||
#include "processor/windows_frame_info.h"
|
||||
#include "processor/cfi_frame_info.h"
|
||||
|
||||
namespace google_breakpad {
|
||||
|
||||
|
||||
const StackwalkerX86::CFIWalker::RegisterSet
|
||||
StackwalkerX86::cfi_register_map_[] = {
|
||||
// It may seem like $eip and $esp are callee-saves, because (with Unix or
|
||||
// cdecl calling conventions) the callee is responsible for having them
|
||||
// restored upon return. But the callee_saves flags here really means
|
||||
// that the walker should assume they're unchanged if the CFI doesn't
|
||||
// mention them, which is clearly wrong for $eip and $esp.
|
||||
{ "$eip", ".ra", false,
|
||||
StackFrameX86::CONTEXT_VALID_EIP, &MDRawContextX86::eip },
|
||||
{ "$esp", ".cfa", false,
|
||||
StackFrameX86::CONTEXT_VALID_ESP, &MDRawContextX86::esp },
|
||||
{ "$ebp", NULL, true,
|
||||
StackFrameX86::CONTEXT_VALID_EBP, &MDRawContextX86::ebp },
|
||||
{ "$eax", NULL, false,
|
||||
StackFrameX86::CONTEXT_VALID_EAX, &MDRawContextX86::eax },
|
||||
{ "$ebx", NULL, true,
|
||||
StackFrameX86::CONTEXT_VALID_EBX, &MDRawContextX86::ebx },
|
||||
{ "$ecx", NULL, false,
|
||||
StackFrameX86::CONTEXT_VALID_ECX, &MDRawContextX86::ecx },
|
||||
{ "$edx", NULL, false,
|
||||
StackFrameX86::CONTEXT_VALID_EDX, &MDRawContextX86::edx },
|
||||
{ "$esi", NULL, true,
|
||||
StackFrameX86::CONTEXT_VALID_ESI, &MDRawContextX86::esi },
|
||||
{ "$edi", NULL, true,
|
||||
StackFrameX86::CONTEXT_VALID_EDI, &MDRawContextX86::edi },
|
||||
};
|
||||
|
||||
StackwalkerX86::StackwalkerX86(const SystemInfo *system_info,
|
||||
const MDRawContextX86 *context,
|
||||
MemoryRegion *memory,
|
||||
const CodeModules *modules,
|
||||
SymbolSupplier *supplier,
|
||||
SourceLineResolverInterface *resolver)
|
||||
: Stackwalker(system_info, memory, modules, supplier, resolver),
|
||||
context_(context),
|
||||
cfi_walker_(cfi_register_map_,
|
||||
(sizeof(cfi_register_map_) / sizeof(cfi_register_map_[0]))) {
|
||||
if (memory_->GetBase() + memory_->GetSize() - 1 > 0xffffffff) {
|
||||
// The x86 is a 32-bit CPU, the limits of the supplied stack are invalid.
|
||||
// Mark memory_ = NULL, which will cause stackwalking to fail.
|
||||
BPLOG(ERROR) << "Memory out of range for stackwalking: " <<
|
||||
HexString(memory_->GetBase()) << "+" <<
|
||||
HexString(memory_->GetSize());
|
||||
memory_ = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
StackFrameX86::~StackFrameX86() {
|
||||
if (windows_frame_info)
|
||||
delete windows_frame_info;
|
||||
windows_frame_info = NULL;
|
||||
if (cfi_frame_info)
|
||||
delete cfi_frame_info;
|
||||
cfi_frame_info = NULL;
|
||||
}
|
||||
|
||||
StackFrame *StackwalkerX86::GetContextFrame() {
|
||||
if (!context_ || !memory_) {
|
||||
BPLOG(ERROR) << "Can't get context frame without context or memory";
|
||||
return NULL;
|
||||
}
|
||||
|
||||
StackFrameX86 *frame = new StackFrameX86();
|
||||
|
||||
// The instruction pointer is stored directly in a register, so pull it
|
||||
// straight out of the CPU context structure.
|
||||
frame->context = *context_;
|
||||
frame->context_validity = StackFrameX86::CONTEXT_VALID_ALL;
|
||||
frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
|
||||
frame->instruction = frame->context.eip;
|
||||
|
||||
return frame;
|
||||
}
|
||||
|
||||
StackFrameX86 *StackwalkerX86::GetCallerByWindowsFrameInfo(
|
||||
const vector<StackFrame *> &frames,
|
||||
WindowsFrameInfo *last_frame_info) {
|
||||
StackFrame::FrameTrust trust = StackFrame::FRAME_TRUST_NONE;
|
||||
|
||||
StackFrameX86 *last_frame = static_cast<StackFrameX86 *>(frames.back());
|
||||
|
||||
// Save the stack walking info we found, in case we need it later to
|
||||
// find the callee of the frame we're constructing now.
|
||||
last_frame->windows_frame_info = last_frame_info;
|
||||
|
||||
// This function only covers the full STACK WIN case. If
|
||||
// last_frame_info is VALID_PARAMETER_SIZE-only, then we should
|
||||
// assume the traditional frame format or use some other strategy.
|
||||
if (last_frame_info->valid != WindowsFrameInfo::VALID_ALL)
|
||||
return NULL;
|
||||
|
||||
// This stackwalker sets each frame's %esp to its value immediately prior
|
||||
// to the CALL into the callee. This means that %esp points to the last
|
||||
// callee argument pushed onto the stack, which may not be where %esp points
|
||||
// after the callee returns. Specifically, the value is correct for the
|
||||
// cdecl calling convention, but not other conventions. The cdecl
|
||||
// convention requires a caller to pop its callee's arguments from the
|
||||
// stack after the callee returns. This is usually accomplished by adding
|
||||
// the known size of the arguments to %esp. Other calling conventions,
|
||||
// including stdcall, thiscall, and fastcall, require the callee to pop any
|
||||
// parameters stored on the stack before returning. This is usually
|
||||
// accomplished by using the RET n instruction, which pops n bytes off
|
||||
// the stack after popping the return address.
|
||||
//
|
||||
// Because each frame's %esp will point to a location on the stack after
|
||||
// callee arguments have been PUSHed, when locating things in a stack frame
|
||||
// relative to %esp, the size of the arguments to the callee need to be
|
||||
// taken into account. This seems a little bit unclean, but it's better
|
||||
// than the alternative, which would need to take these same things into
|
||||
// account, but only for cdecl functions. With this implementation, we get
|
||||
// to be agnostic about each function's calling convention. Furthermore,
|
||||
// this is how Windows debugging tools work, so it means that the %esp
|
||||
// values produced by this stackwalker directly correspond to the %esp
|
||||
// values you'll see there.
|
||||
//
|
||||
// If the last frame has no callee (because it's the context frame), just
|
||||
// set the callee parameter size to 0: the stack pointer can't point to
|
||||
// callee arguments because there's no callee. This is correct as long
|
||||
// as the context wasn't captured while arguments were being pushed for
|
||||
// a function call. Note that there may be functions whose parameter sizes
|
||||
// are unknown, 0 is also used in that case. When that happens, it should
|
||||
// be possible to walk to the next frame without reference to %esp.
|
||||
|
||||
u_int32_t last_frame_callee_parameter_size = 0;
|
||||
int frames_already_walked = frames.size();
|
||||
if (frames_already_walked >= 2) {
|
||||
const StackFrameX86 *last_frame_callee
|
||||
= static_cast<StackFrameX86 *>(frames[frames_already_walked - 2]);
|
||||
WindowsFrameInfo *last_frame_callee_info
|
||||
= last_frame_callee->windows_frame_info;
|
||||
if (last_frame_callee_info &&
|
||||
(last_frame_callee_info->valid
|
||||
& WindowsFrameInfo::VALID_PARAMETER_SIZE)) {
|
||||
last_frame_callee_parameter_size =
|
||||
last_frame_callee_info->parameter_size;
|
||||
}
|
||||
}
|
||||
|
||||
// Set up the dictionary for the PostfixEvaluator. %ebp and %esp are used
|
||||
// in each program string, and their previous values are known, so set them
|
||||
// here.
|
||||
PostfixEvaluator<u_int32_t>::DictionaryType dictionary;
|
||||
// Provide the current register values.
|
||||
dictionary["$ebp"] = last_frame->context.ebp;
|
||||
dictionary["$esp"] = last_frame->context.esp;
|
||||
// Provide constants from the debug info for last_frame and its callee.
|
||||
// .cbCalleeParams is a Breakpad extension that allows us to use the
|
||||
// PostfixEvaluator engine when certain types of debugging information
|
||||
// are present without having to write the constants into the program
|
||||
// string as literals.
|
||||
dictionary[".cbCalleeParams"] = last_frame_callee_parameter_size;
|
||||
dictionary[".cbSavedRegs"] = last_frame_info->saved_register_size;
|
||||
dictionary[".cbLocals"] = last_frame_info->local_size;
|
||||
dictionary[".raSearchStart"] = last_frame->context.esp +
|
||||
last_frame_callee_parameter_size +
|
||||
last_frame_info->local_size +
|
||||
last_frame_info->saved_register_size;
|
||||
dictionary[".cbParams"] = last_frame_info->parameter_size;
|
||||
|
||||
// Decide what type of program string to use. The program string is in
|
||||
// postfix notation and will be passed to PostfixEvaluator::Evaluate.
|
||||
// Given the dictionary and the program string, it is possible to compute
|
||||
// the return address and the values of other registers in the calling
|
||||
// function. Because of bugs described below, the stack may need to be
|
||||
// scanned for these values. The results of program string evaluation
|
||||
// will be used to determine whether to scan for better values.
|
||||
string program_string;
|
||||
bool recover_ebp = true;
|
||||
|
||||
trust = StackFrame::FRAME_TRUST_CFI;
|
||||
if (!last_frame_info->program_string.empty()) {
|
||||
// The FPO data has its own program string, which will tell us how to
|
||||
// get to the caller frame, and may even fill in the values of
|
||||
// nonvolatile registers and provide pointers to local variables and
|
||||
// parameters. In some cases, particularly with program strings that use
|
||||
// .raSearchStart, the stack may need to be scanned afterward.
|
||||
program_string = last_frame_info->program_string;
|
||||
} else if (last_frame_info->allocates_base_pointer) {
|
||||
// The function corresponding to the last frame doesn't use the frame
|
||||
// pointer for conventional purposes, but it does allocate a new
|
||||
// frame pointer and use it for its own purposes. Its callee's
|
||||
// information is still accessed relative to %esp, and the previous
|
||||
// value of %ebp can be recovered from a location in its stack frame,
|
||||
// within the saved-register area.
|
||||
//
|
||||
// Functions that fall into this category use the %ebp register for
|
||||
// a purpose other than the frame pointer. They restore the caller's
|
||||
// %ebp before returning. These functions create their stack frame
|
||||
// after a CALL by decrementing the stack pointer in an amount
|
||||
// sufficient to store local variables, and then PUSHing saved
|
||||
// registers onto the stack. Arguments to a callee function, if any,
|
||||
// are PUSHed after that. Walking up to the caller, therefore,
|
||||
// can be done solely with calculations relative to the stack pointer
|
||||
// (%esp). The return address is recovered from the memory location
|
||||
// above the known sizes of the callee's parameters, saved registers,
|
||||
// and locals. The caller's stack pointer (the value of %esp when
|
||||
// the caller executed CALL) is the location immediately above the
|
||||
// saved return address. The saved value of %ebp to be restored for
|
||||
// the caller is at a known location in the saved-register area of
|
||||
// the stack frame.
|
||||
//
|
||||
// For this type of frame, MSVC 14 (from Visual Studio 8/2005) in
|
||||
// link-time code generation mode (/LTCG and /GL) can generate erroneous
|
||||
// debugging data. The reported size of saved registers can be 0,
|
||||
// which is clearly an error because these frames must, at the very
|
||||
// least, save %ebp. For this reason, in addition to those given above
|
||||
// about the use of .raSearchStart, the stack may need to be scanned
|
||||
// for a better return address and a better frame pointer after the
|
||||
// program string is evaluated.
|
||||
//
|
||||
// %eip_new = *(%esp_old + callee_params + saved_regs + locals)
|
||||
// %ebp_new = *(%esp_old + callee_params + saved_regs - 8)
|
||||
// %esp_new = %esp_old + callee_params + saved_regs + locals + 4
|
||||
program_string = "$eip .raSearchStart ^ = "
|
||||
"$ebp $esp .cbCalleeParams + .cbSavedRegs + 8 - ^ = "
|
||||
"$esp .raSearchStart 4 + =";
|
||||
} else {
|
||||
// The function corresponding to the last frame doesn't use %ebp at
|
||||
// all. The callee frame is located relative to %esp.
|
||||
//
|
||||
// The called procedure's instruction pointer and stack pointer are
|
||||
// recovered in the same way as the case above, except that no
|
||||
// frame pointer (%ebp) is used at all, so it is not saved anywhere
|
||||
// in the callee's stack frame and does not need to be recovered.
|
||||
// Because %ebp wasn't used in the callee, whatever value it has
|
||||
// is the value that it had in the caller, so it can be carried
|
||||
// straight through without bringing its validity into question.
|
||||
//
|
||||
// Because of the use of .raSearchStart, the stack will possibly be
|
||||
// examined to locate a better return address after program string
|
||||
// evaluation. The stack will not be examined to locate a saved
|
||||
// %ebp value, because these frames do not save (or use) %ebp.
|
||||
//
|
||||
// %eip_new = *(%esp_old + callee_params + saved_regs + locals)
|
||||
// %esp_new = %esp_old + callee_params + saved_regs + locals + 4
|
||||
// %ebp_new = %ebp_old
|
||||
program_string = "$eip .raSearchStart ^ = "
|
||||
"$esp .raSearchStart 4 + =";
|
||||
recover_ebp = false;
|
||||
}
|
||||
|
||||
// Now crank it out, making sure that the program string set at least the
|
||||
// two required variables.
|
||||
PostfixEvaluator<u_int32_t> evaluator =
|
||||
PostfixEvaluator<u_int32_t>(&dictionary, memory_);
|
||||
PostfixEvaluator<u_int32_t>::DictionaryValidityType dictionary_validity;
|
||||
if (!evaluator.Evaluate(program_string, &dictionary_validity) ||
|
||||
dictionary_validity.find("$eip") == dictionary_validity.end() ||
|
||||
dictionary_validity.find("$esp") == dictionary_validity.end()) {
|
||||
// Program string evaluation failed. It may be that %eip is not somewhere
|
||||
// with stack frame info, and %ebp is pointing to non-stack memory, so
|
||||
// our evaluation couldn't succeed. We'll scan the stack for a return
|
||||
// address. This can happen if the stack is in a module for which
|
||||
// we don't have symbols, and that module is compiled without a
|
||||
// frame pointer.
|
||||
u_int32_t location_start = last_frame->context.esp;
|
||||
u_int32_t location, eip;
|
||||
if (!ScanForReturnAddress(location_start, &location, &eip)) {
|
||||
// if we can't find an instruction pointer even with stack scanning,
|
||||
// give up.
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// This seems like a reasonable return address. Since program string
|
||||
// evaluation failed, use it and set %esp to the location above the
|
||||
// one where the return address was found.
|
||||
dictionary["$eip"] = eip;
|
||||
dictionary["$esp"] = location + 4;
|
||||
trust = StackFrame::FRAME_TRUST_SCAN;
|
||||
}
|
||||
|
||||
// Since this stack frame did not use %ebp in a traditional way,
|
||||
// locating the return address isn't entirely deterministic. In that
|
||||
// case, the stack can be scanned to locate the return address.
|
||||
//
|
||||
// However, if program string evaluation resulted in both %eip and
|
||||
// %ebp values of 0, trust that the end of the stack has been
|
||||
// reached and don't scan for anything else.
|
||||
if (dictionary["$eip"] != 0 || dictionary["$ebp"] != 0) {
|
||||
int offset = 0;
|
||||
|
||||
// This scan can only be done if a CodeModules object is available, to
|
||||
// check that candidate return addresses are in fact inside a module.
|
||||
//
|
||||
// TODO(mmentovai): This ignores dynamically-generated code. One possible
|
||||
// solution is to check the minidump's memory map to see if the candidate
|
||||
// %eip value comes from a mapped executable page, although this would
|
||||
// require dumps that contain MINIDUMP_MEMORY_INFO, which the Breakpad
|
||||
// client doesn't currently write (it would need to call MiniDumpWriteDump
|
||||
// with the MiniDumpWithFullMemoryInfo type bit set). Even given this
|
||||
// ability, older OSes (pre-XP SP2) and CPUs (pre-P4) don't enforce
|
||||
// an independent execute privilege on memory pages.
|
||||
|
||||
u_int32_t eip = dictionary["$eip"];
|
||||
if (modules_ && !modules_->GetModuleForAddress(eip)) {
|
||||
// The instruction pointer at .raSearchStart was invalid, so start
|
||||
// looking one 32-bit word above that location.
|
||||
u_int32_t location_start = dictionary[".raSearchStart"] + 4;
|
||||
u_int32_t location;
|
||||
if (ScanForReturnAddress(location_start, &location, &eip)) {
|
||||
// This is a better return address that what program string
|
||||
// evaluation found. Use it, and set %esp to the location above the
|
||||
// one where the return address was found.
|
||||
dictionary["$eip"] = eip;
|
||||
dictionary["$esp"] = location + 4;
|
||||
offset = location - location_start;
|
||||
trust = StackFrame::FRAME_TRUST_CFI_SCAN;
|
||||
}
|
||||
}
|
||||
|
||||
// When trying to recover the previous value of the frame pointer (%ebp),
|
||||
// start looking at the lowest possible address in the saved-register
|
||||
// area, and look at the entire saved register area, increased by the
|
||||
// size of |offset| to account for additional data that may be on the
|
||||
// stack. The scan is performed from the highest possible address to
|
||||
// the lowest, because we expect that the function's prolog would have
|
||||
// saved %ebp early.
|
||||
u_int32_t ebp = dictionary["$ebp"];
|
||||
u_int32_t value; // throwaway variable to check pointer validity
|
||||
if (recover_ebp && !memory_->GetMemoryAtAddress(ebp, &value)) {
|
||||
int fp_search_bytes = last_frame_info->saved_register_size + offset;
|
||||
u_int32_t location_end = last_frame->context.esp +
|
||||
last_frame_callee_parameter_size;
|
||||
|
||||
for (u_int32_t location = location_end + fp_search_bytes;
|
||||
location >= location_end;
|
||||
location -= 4) {
|
||||
if (!memory_->GetMemoryAtAddress(location, &ebp))
|
||||
break;
|
||||
|
||||
if (memory_->GetMemoryAtAddress(ebp, &value)) {
|
||||
// The candidate value is a pointer to the same memory region
|
||||
// (the stack). Prefer it as a recovered %ebp result.
|
||||
dictionary["$ebp"] = ebp;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new stack frame (ownership will be transferred to the caller)
|
||||
// and fill it in.
|
||||
StackFrameX86 *frame = new StackFrameX86();
|
||||
|
||||
frame->trust = trust;
|
||||
frame->context = last_frame->context;
|
||||
frame->context.eip = dictionary["$eip"];
|
||||
frame->context.esp = dictionary["$esp"];
|
||||
frame->context.ebp = dictionary["$ebp"];
|
||||
frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
|
||||
StackFrameX86::CONTEXT_VALID_ESP |
|
||||
StackFrameX86::CONTEXT_VALID_EBP;
|
||||
|
||||
// These are nonvolatile (callee-save) registers, and the program string
|
||||
// may have filled them in.
|
||||
if (dictionary_validity.find("$ebx") != dictionary_validity.end()) {
|
||||
frame->context.ebx = dictionary["$ebx"];
|
||||
frame->context_validity |= StackFrameX86::CONTEXT_VALID_EBX;
|
||||
}
|
||||
if (dictionary_validity.find("$esi") != dictionary_validity.end()) {
|
||||
frame->context.esi = dictionary["$esi"];
|
||||
frame->context_validity |= StackFrameX86::CONTEXT_VALID_ESI;
|
||||
}
|
||||
if (dictionary_validity.find("$edi") != dictionary_validity.end()) {
|
||||
frame->context.edi = dictionary["$edi"];
|
||||
frame->context_validity |= StackFrameX86::CONTEXT_VALID_EDI;
|
||||
}
|
||||
|
||||
return frame;
|
||||
}
|
||||
|
||||
StackFrameX86 *StackwalkerX86::GetCallerByCFIFrameInfo(
|
||||
const vector<StackFrame*> &frames,
|
||||
CFIFrameInfo *cfi_frame_info) {
|
||||
StackFrameX86 *last_frame = static_cast<StackFrameX86*>(frames.back());
|
||||
last_frame->cfi_frame_info = cfi_frame_info;
|
||||
|
||||
scoped_ptr<StackFrameX86> frame(new StackFrameX86());
|
||||
if (!cfi_walker_
|
||||
.FindCallerRegisters(*memory_, *cfi_frame_info,
|
||||
last_frame->context, last_frame->context_validity,
|
||||
&frame->context, &frame->context_validity))
|
||||
return NULL;
|
||||
|
||||
// Make sure we recovered all the essentials.
|
||||
static const int essentials = (StackFrameX86::CONTEXT_VALID_EIP
|
||||
| StackFrameX86::CONTEXT_VALID_ESP
|
||||
| StackFrameX86::CONTEXT_VALID_EBP);
|
||||
if ((frame->context_validity & essentials) != essentials)
|
||||
return NULL;
|
||||
|
||||
frame->trust = StackFrame::FRAME_TRUST_CFI;
|
||||
|
||||
return frame.release();
|
||||
}
|
||||
|
||||
StackFrameX86 *StackwalkerX86::GetCallerByEBPAtBase(
|
||||
const vector<StackFrame *> &frames) {
|
||||
StackFrame::FrameTrust trust;
|
||||
StackFrameX86 *last_frame = static_cast<StackFrameX86 *>(frames.back());
|
||||
u_int32_t last_esp = last_frame->context.esp;
|
||||
u_int32_t last_ebp = last_frame->context.ebp;
|
||||
|
||||
// Assume that the standard %ebp-using x86 calling convention is in
|
||||
// use.
|
||||
//
|
||||
// The typical x86 calling convention, when frame pointers are present,
|
||||
// is for the calling procedure to use CALL, which pushes the return
|
||||
// address onto the stack and sets the instruction pointer (%eip) to
|
||||
// the entry point of the called routine. The called routine then
|
||||
// PUSHes the calling routine's frame pointer (%ebp) onto the stack
|
||||
// before copying the stack pointer (%esp) to the frame pointer (%ebp).
|
||||
// Therefore, the calling procedure's frame pointer is always available
|
||||
// by dereferencing the called procedure's frame pointer, and the return
|
||||
// address is always available at the memory location immediately above
|
||||
// the address pointed to by the called procedure's frame pointer. The
|
||||
// calling procedure's stack pointer (%esp) is 8 higher than the value
|
||||
// of the called procedure's frame pointer at the time the calling
|
||||
// procedure made the CALL: 4 bytes for the return address pushed by the
|
||||
// CALL itself, and 4 bytes for the callee's PUSH of the caller's frame
|
||||
// pointer.
|
||||
//
|
||||
// %eip_new = *(%ebp_old + 4)
|
||||
// %esp_new = %ebp_old + 8
|
||||
// %ebp_new = *(%ebp_old)
|
||||
|
||||
u_int32_t caller_eip, caller_esp, caller_ebp;
|
||||
|
||||
if (memory_->GetMemoryAtAddress(last_ebp + 4, &caller_eip) &&
|
||||
memory_->GetMemoryAtAddress(last_ebp, &caller_ebp)) {
|
||||
caller_esp = last_ebp + 8;
|
||||
trust = StackFrame::FRAME_TRUST_FP;
|
||||
} else {
|
||||
// We couldn't read the memory %ebp refers to. It may be that %ebp
|
||||
// is pointing to non-stack memory. We'll scan the stack for a
|
||||
// return address. This can happen if last_frame is executing code
|
||||
// for a module for which we don't have symbols, and that module
|
||||
// is compiled without a frame pointer.
|
||||
if (!ScanForReturnAddress(last_esp, &caller_esp, &caller_eip)) {
|
||||
// if we can't find an instruction pointer even with stack scanning,
|
||||
// give up.
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// ScanForReturnAddress found a reasonable return address. Advance
|
||||
// %esp to the location above the one where the return address was
|
||||
// found. Assume that %ebp is unchanged.
|
||||
caller_esp += 4;
|
||||
caller_ebp = last_ebp;
|
||||
|
||||
trust = StackFrame::FRAME_TRUST_SCAN;
|
||||
}
|
||||
|
||||
// Create a new stack frame (ownership will be transferred to the caller)
|
||||
// and fill it in.
|
||||
StackFrameX86 *frame = new StackFrameX86();
|
||||
|
||||
frame->trust = trust;
|
||||
frame->context = last_frame->context;
|
||||
frame->context.eip = caller_eip;
|
||||
frame->context.esp = caller_esp;
|
||||
frame->context.ebp = caller_ebp;
|
||||
frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
|
||||
StackFrameX86::CONTEXT_VALID_ESP |
|
||||
StackFrameX86::CONTEXT_VALID_EBP;
|
||||
|
||||
return frame;
|
||||
}
|
||||
|
||||
StackFrame *StackwalkerX86::GetCallerFrame(const CallStack *stack) {
|
||||
if (!memory_ || !stack) {
|
||||
BPLOG(ERROR) << "Can't get caller frame without memory or stack";
|
||||
return NULL;
|
||||
}
|
||||
|
||||
const vector<StackFrame *> &frames = *stack->frames();
|
||||
StackFrameX86 *last_frame = static_cast<StackFrameX86 *>(frames.back());
|
||||
scoped_ptr<StackFrameX86> new_frame;
|
||||
|
||||
// If the resolver has Windows stack walking information, use that.
|
||||
WindowsFrameInfo *windows_frame_info
|
||||
= resolver_ ? resolver_->FindWindowsFrameInfo(last_frame) : NULL;
|
||||
if (windows_frame_info)
|
||||
new_frame.reset(GetCallerByWindowsFrameInfo(frames, windows_frame_info));
|
||||
|
||||
// If the resolver has DWARF CFI information, use that.
|
||||
if (!new_frame.get()) {
|
||||
CFIFrameInfo *cfi_frame_info =
|
||||
resolver_ ? resolver_->FindCFIFrameInfo(last_frame) : NULL;
|
||||
if (cfi_frame_info)
|
||||
new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info));
|
||||
}
|
||||
|
||||
// Otherwise, hope that the program was using a traditional frame structure.
|
||||
if (!new_frame.get())
|
||||
new_frame.reset(GetCallerByEBPAtBase(frames));
|
||||
|
||||
// If nothing worked, tell the caller.
|
||||
if (!new_frame.get())
|
||||
return NULL;
|
||||
|
||||
// Treat an instruction address of 0 as end-of-stack.
|
||||
if (new_frame->context.eip == 0)
|
||||
return NULL;
|
||||
|
||||
// If the new stack pointer is at a lower address than the old, then
|
||||
// that's clearly incorrect. Treat this as end-of-stack to enforce
|
||||
// progress and avoid infinite loops.
|
||||
if (new_frame->context.esp <= last_frame->context.esp)
|
||||
return NULL;
|
||||
|
||||
// new_frame->context.eip is the return address, which is one instruction
|
||||
// past the CALL that caused us to arrive at the callee. Set
|
||||
// new_frame->instruction to one less than that. This won't reference the
|
||||
// beginning of the CALL instruction, but it's guaranteed to be within
|
||||
// the CALL, which is sufficient to get the source line information to
|
||||
// match up with the line that contains a function call. Callers that
|
||||
// require the exact return address value may access the context.eip
|
||||
// field of StackFrameX86.
|
||||
new_frame->instruction = new_frame->context.eip - 1;
|
||||
|
||||
return new_frame.release();
|
||||
}
|
||||
|
||||
} // namespace google_breakpad
|
Reference in New Issue
Block a user