mirror of
https://github.com/moodle/moodle.git
synced 2025-01-18 22:08:20 +01:00
369389c9a6
Part of MDL-57791 epic.
934 lines
30 KiB
PHP
934 lines
30 KiB
PHP
<?php
|
|
// This file is part of Moodle - http://moodle.org/
|
|
//
|
|
// Moodle is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Moodle is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
/**
|
|
* Inspire tool model representation.
|
|
*
|
|
* @package core_analytics
|
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
|
*/
|
|
|
|
namespace core_analytics;
|
|
|
|
defined('MOODLE_INTERNAL') || die();
|
|
|
|
/**
|
|
* Inspire tool model representation.
|
|
*
|
|
* @package core_analytics
|
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
|
*/
|
|
class model {
|
|
|
|
const OK = 0;
|
|
const GENERAL_ERROR = 1;
|
|
const NO_DATASET = 2;
|
|
|
|
const EVALUATE_LOW_SCORE = 4;
|
|
const EVALUATE_NOT_ENOUGH_DATA = 8;
|
|
|
|
const ANALYSE_INPROGRESS = 2;
|
|
const ANALYSE_REJECTED_RANGE_PROCESSOR = 4;
|
|
const ANALYSABLE_STATUS_INVALID_FOR_RANGEPROCESSORS = 8;
|
|
const ANALYSABLE_STATUS_INVALID_FOR_TARGET = 16;
|
|
|
|
const MIN_SCORE = 0.7;
|
|
const ACCEPTED_DEVIATION = 0.05;
|
|
const EVALUATION_ITERATIONS = 10;
|
|
|
|
/**
|
|
* @var \stdClass
|
|
*/
|
|
protected $model = null;
|
|
|
|
/**
|
|
* @var \core_analytics\local\analyser\base
|
|
*/
|
|
protected $analyser = null;
|
|
|
|
/**
|
|
* @var \core_analytics\local\target\base
|
|
*/
|
|
protected $target = null;
|
|
|
|
/**
|
|
* @var \core_analytics\local\indicator\base[]
|
|
*/
|
|
protected $indicators = null;
|
|
|
|
/**
|
|
* Unique Model id created from site info and last model modification.
|
|
*
|
|
* @var string
|
|
*/
|
|
protected $uniqueid = null;
|
|
|
|
/**
|
|
* __construct
|
|
*
|
|
* @param int|stdClass $model
|
|
* @return void
|
|
*/
|
|
public function __construct($model) {
|
|
global $DB;
|
|
|
|
if (is_scalar($model)) {
|
|
$model = $DB->get_record('analytics_models', array('id' => $model));
|
|
}
|
|
$this->model = $model;
|
|
}
|
|
|
|
/**
|
|
* get_id
|
|
*
|
|
* @return int
|
|
*/
|
|
public function get_id() {
|
|
return $this->model->id;
|
|
}
|
|
|
|
/**
|
|
* get_model_obj
|
|
*
|
|
* @return \stdClass
|
|
*/
|
|
public function get_model_obj() {
|
|
return $this->model;
|
|
}
|
|
|
|
/**
|
|
* get_target
|
|
*
|
|
* @return \core_analytics\local\target\base
|
|
*/
|
|
public function get_target() {
|
|
if ($this->target !== null) {
|
|
return $this->target;
|
|
}
|
|
$instance = \core_analytics\manager::get_target($this->model->target);
|
|
$this->target = $instance;
|
|
|
|
return $this->target;
|
|
}
|
|
|
|
/**
|
|
* get_indicators
|
|
*
|
|
* @return \core_analytics\local\indicator\base[]
|
|
*/
|
|
public function get_indicators() {
|
|
if ($this->indicators !== null) {
|
|
return $this->indicators;
|
|
}
|
|
|
|
$fullclassnames = json_decode($this->model->indicators);
|
|
|
|
if (!is_array($fullclassnames)) {
|
|
throw new \coding_exception('Model ' . $this->model->id . ' indicators can not be read');
|
|
}
|
|
|
|
$this->indicators = array();
|
|
foreach ($fullclassnames as $fullclassname) {
|
|
$instance = \core_analytics\manager::get_indicator($fullclassname);
|
|
if ($instance) {
|
|
$this->indicators[$fullclassname] = $instance;
|
|
} else {
|
|
debugging('Can\'t load ' . $fullclassname . ' indicator', DEBUG_DEVELOPER);
|
|
}
|
|
}
|
|
|
|
return $this->indicators;
|
|
}
|
|
|
|
/**
|
|
* Returns the list of indicators that could potentially be used by the model target.
|
|
*
|
|
* It includes the indicators that are part of the model.
|
|
*
|
|
* @return \core_analytics\local\indicator\base
|
|
*/
|
|
public function get_potential_indicators() {
|
|
|
|
$indicators = \core_analytics\manager::get_all_indicators();
|
|
|
|
if (empty($this->analyser)) {
|
|
$this->init_analyser(array('evaluation' => true));
|
|
}
|
|
|
|
foreach ($indicators as $classname => $indicator) {
|
|
if ($this->analyser->check_indicator_requirements($indicator) !== true) {
|
|
unset($indicators[$classname]);
|
|
}
|
|
}
|
|
return $indicators;
|
|
}
|
|
|
|
/**
|
|
* get_analyser
|
|
*
|
|
* @return \core_analytics\local\analyser\base
|
|
*/
|
|
public function get_analyser() {
|
|
if ($this->analyser !== null) {
|
|
return $this->analyser;
|
|
}
|
|
|
|
// Default initialisation with no options.
|
|
$this->init_analyser();
|
|
|
|
return $this->analyser;
|
|
}
|
|
|
|
/**
|
|
* init_analyser
|
|
*
|
|
* @param array $options
|
|
* @return void
|
|
*/
|
|
protected function init_analyser($options = array()) {
|
|
|
|
$target = $this->get_target();
|
|
$indicators = $this->get_indicators();
|
|
|
|
if (empty($target)) {
|
|
throw new \moodle_exception('errornotarget', 'analytics');
|
|
}
|
|
|
|
if (!empty($options['evaluation'])) {
|
|
// The evaluation process will run using all available time splitting methods unless one is specified.
|
|
if (!empty($options['timesplitting'])) {
|
|
$timesplitting = \core_analytics\manager::get_time_splitting($options['timesplitting']);
|
|
$timesplittings = array($timesplitting->get_id() => $timesplitting);
|
|
} else {
|
|
$timesplittings = \core_analytics\manager::get_enabled_time_splitting_methods();
|
|
}
|
|
} else {
|
|
|
|
if (empty($this->model->timesplitting)) {
|
|
throw new \moodle_exception('invalidtimesplitting', 'analytics', '', $this->model->id);
|
|
}
|
|
|
|
// Returned as an array as all actions (evaluation, training and prediction) go through the same process.
|
|
$timesplittings = array($this->model->timesplitting => $this->get_time_splitting());
|
|
}
|
|
|
|
if (empty($timesplittings)) {
|
|
throw new \moodle_exception('errornotimesplittings', 'analytics');
|
|
}
|
|
|
|
$classname = $target->get_analyser_class();
|
|
if (!class_exists($classname)) {
|
|
throw \coding_exception($classname . ' class does not exists');
|
|
}
|
|
|
|
// Returns a \core_analytics\local\analyser\base class.
|
|
$this->analyser = new $classname($this->model->id, $target, $indicators, $timesplittings, $options);
|
|
}
|
|
|
|
/**
|
|
* get_time_splitting
|
|
*
|
|
* @return \core_analytics\local\time_splitting\base
|
|
*/
|
|
public function get_time_splitting() {
|
|
if (empty($this->model->timesplitting)) {
|
|
return false;
|
|
}
|
|
return \core_analytics\manager::get_time_splitting($this->model->timesplitting);
|
|
}
|
|
|
|
/**
|
|
* create
|
|
*
|
|
* @param \core_analytics\local\target\base $target
|
|
* @param \core_analytics\local\indicator\base[] $indicators
|
|
* @return \core_analytics\model
|
|
*/
|
|
public static function create(\core_analytics\local\target\base $target, array $indicators) {
|
|
global $USER, $DB;
|
|
|
|
$indicatorclasses = self::indicator_classes($indicators);
|
|
|
|
$now = time();
|
|
|
|
$modelobj = new \stdClass();
|
|
$modelobj->target = '\\' . get_class($target);
|
|
$modelobj->indicators = json_encode($indicatorclasses);
|
|
$modelobj->version = $now;
|
|
$modelobj->timecreated = $now;
|
|
$modelobj->timemodified = $now;
|
|
$modelobj->usermodified = $USER->id;
|
|
|
|
$id = $DB->insert_record('analytics_models', $modelobj);
|
|
|
|
// Get db defaults.
|
|
$modelobj = $DB->get_record('analytics_models', array('id' => $id), '*', MUST_EXIST);
|
|
|
|
return new static($modelobj);
|
|
}
|
|
|
|
public function update($enabled, $indicators, $timesplitting = '') {
|
|
global $USER, $DB;
|
|
|
|
$now = time();
|
|
|
|
$indicatorclasses = self::indicator_classes($indicators);
|
|
|
|
$indicatorsstr = json_encode($indicatorclasses);
|
|
if ($this->model->timesplitting !== $timesplitting ||
|
|
$this->model->indicators !== $indicatorsstr) {
|
|
// We update the version of the model so different time splittings are not mixed up.
|
|
$this->model->version = $now;
|
|
|
|
// Delete generated predictions.
|
|
$this->clear_model();
|
|
|
|
// Purge all generated files.
|
|
\core_analytics\dataset_manager::clear_model_files($this->model->id);
|
|
|
|
// Reset trained flag.
|
|
$this->model->trained = 0;
|
|
}
|
|
$this->model->enabled = $enabled;
|
|
$this->model->indicators = $indicatorsstr;
|
|
$this->model->timesplitting = $timesplitting;
|
|
$this->model->timemodified = $now;
|
|
$this->model->usermodified = $USER->id;
|
|
|
|
$DB->update_record('analytics_models', $this->model);
|
|
|
|
// It needs to be reset (just in case, we may already used it).
|
|
$this->uniqueid = null;
|
|
}
|
|
|
|
/**
|
|
* Evaluates the model datasets.
|
|
*
|
|
* Model datasets should already be available in Moodle's filesystem.
|
|
*
|
|
* @param array $options
|
|
* @return \stdClass[]
|
|
*/
|
|
public function evaluate($options = array()) {
|
|
|
|
// Increase memory limit.
|
|
$this->increase_memory();
|
|
|
|
$options['evaluation'] = true;
|
|
$this->init_analyser($options);
|
|
|
|
if (empty($this->get_indicators())) {
|
|
throw new \moodle_exception('errornoindicators', 'analytics');
|
|
}
|
|
|
|
// Before get_labelled_data call so we get an early exception if it is not ready.
|
|
$predictor = \core_analytics\manager::get_predictions_processor();
|
|
|
|
$datasets = $this->get_analyser()->get_labelled_data();
|
|
|
|
// No datasets generated.
|
|
if (empty($datasets)) {
|
|
$result = new \stdClass();
|
|
$result->status = self::NO_DATASET;
|
|
$result->info = $this->get_analyser()->get_logs();
|
|
return array($result);
|
|
}
|
|
|
|
if (!PHPUNIT_TEST && CLI_SCRIPT) {
|
|
echo PHP_EOL . get_string('processingsitecontents', 'analytics') . PHP_EOL;
|
|
}
|
|
|
|
$results = array();
|
|
foreach ($datasets as $timesplittingid => $dataset) {
|
|
|
|
$timesplitting = \core_analytics\manager::get_time_splitting($timesplittingid);
|
|
|
|
$result = new \stdClass();
|
|
|
|
$dashestimesplittingid = str_replace('\\', '', $timesplittingid);
|
|
$outputdir = $this->get_output_dir(array('evaluation', $dashestimesplittingid));
|
|
|
|
// Evaluate the dataset, the deviation we accept in the results depends on the amount of iterations.
|
|
$predictorresult = $predictor->evaluate($this->model->id, self::ACCEPTED_DEVIATION,
|
|
self::EVALUATION_ITERATIONS, $dataset, $outputdir);
|
|
|
|
$result->status = $predictorresult->status;
|
|
$result->info = $predictorresult->info;
|
|
|
|
if (isset($predictorresult->score)) {
|
|
$result->score = $predictorresult->score;
|
|
} else {
|
|
// Prediction processors may return an error, default to 0 score in that case.
|
|
$result->score = 0;
|
|
}
|
|
|
|
$dir = false;
|
|
if (!empty($predictorresult->dir)) {
|
|
$dir = $predictorresult->dir;
|
|
}
|
|
|
|
$result->logid = $this->log_result($timesplitting->get_id(), $result->score, $dir, $result->info);
|
|
|
|
$results[$timesplitting->get_id()] = $result;
|
|
}
|
|
|
|
return $results;
|
|
}
|
|
|
|
/**
|
|
* train
|
|
*
|
|
* @return \stdClass
|
|
*/
|
|
public function train() {
|
|
global $DB;
|
|
|
|
// Increase memory limit.
|
|
$this->increase_memory();
|
|
|
|
if ($this->model->enabled == false || empty($this->model->timesplitting)) {
|
|
throw new \moodle_exception('invalidtimesplitting', 'analytics', '', $this->model->id);
|
|
}
|
|
|
|
if (empty($this->get_indicators())) {
|
|
throw new \moodle_exception('errornoindicators', 'analytics');
|
|
}
|
|
|
|
// Before get_labelled_data call so we get an early exception if it is not writable.
|
|
$outputdir = $this->get_output_dir(array('execution'));
|
|
|
|
// Before get_labelled_data call so we get an early exception if it is not ready.
|
|
$predictor = \core_analytics\manager::get_predictions_processor();
|
|
|
|
$datasets = $this->get_analyser()->get_labelled_data();
|
|
|
|
// No training if no files have been provided.
|
|
if (empty($datasets) || empty($datasets[$this->model->timesplitting])) {
|
|
|
|
$result = new \stdClass();
|
|
$result->status = self::NO_DATASET;
|
|
$result->info = $this->get_analyser()->get_logs();
|
|
return $result;
|
|
}
|
|
$samplesfile = $datasets[$this->model->timesplitting];
|
|
|
|
// Train using the dataset.
|
|
$predictorresult = $predictor->train($this->get_unique_id(), $samplesfile, $outputdir);
|
|
|
|
$result = new \stdClass();
|
|
$result->status = $predictorresult->status;
|
|
$result->info = $predictorresult->info;
|
|
|
|
$this->flag_file_as_used($samplesfile, 'trained');
|
|
|
|
// Mark the model as trained if it wasn't.
|
|
if ($this->model->trained == false) {
|
|
$this->mark_as_trained();
|
|
}
|
|
|
|
return $result;
|
|
}
|
|
|
|
/**
|
|
* predict
|
|
*
|
|
* @return \stdClass
|
|
*/
|
|
public function predict() {
|
|
global $DB;
|
|
|
|
// Increase memory limit.
|
|
$this->increase_memory();
|
|
|
|
if ($this->model->enabled == false || empty($this->model->timesplitting)) {
|
|
throw new \moodle_exception('invalidtimesplitting', 'analytics', '', $this->model->id);
|
|
}
|
|
|
|
if (empty($this->get_indicators())) {
|
|
throw new \moodle_exception('errornoindicators', 'analytics');
|
|
}
|
|
|
|
// Before get_unlabelled_data call so we get an early exception if it is not writable.
|
|
$outputdir = $this->get_output_dir(array('execution'));
|
|
|
|
// Before get_unlabelled_data call so we get an early exception if it is not ready.
|
|
$predictor = \core_analytics\manager::get_predictions_processor();
|
|
|
|
$samplesdata = $this->get_analyser()->get_unlabelled_data();
|
|
|
|
// Get the prediction samples file.
|
|
if (empty($samplesdata) || empty($samplesdata[$this->model->timesplitting])) {
|
|
|
|
$result = new \stdClass();
|
|
$result->status = self::NO_DATASET;
|
|
$result->info = $this->get_analyser()->get_logs();
|
|
return $result;
|
|
}
|
|
$samplesfile = $samplesdata[$this->model->timesplitting];
|
|
|
|
// We need to throw an exception if we are trying to predict stuff that was already predicted.
|
|
$params = array('modelid' => $this->model->id, 'fileid' => $samplesfile->get_id(), 'action' => 'predicted');
|
|
if ($predicted = $DB->get_record('analytics_used_files', $params)) {
|
|
throw new \moodle_exception('erroralreadypredict', 'analytics', '', $samplesfile->get_id());
|
|
}
|
|
|
|
$predictorresult = $predictor->predict($this->get_unique_id(), $samplesfile, $outputdir);
|
|
|
|
$result = new \stdClass();
|
|
$result->status = $predictorresult->status;
|
|
$result->info = $predictorresult->info;
|
|
|
|
$calculations = \core_analytics\dataset_manager::get_structured_data($samplesfile);
|
|
|
|
// Here we will store all predictions' contexts, this will be used to limit which users will see those predictions.
|
|
$samplecontexts = array();
|
|
|
|
if ($predictorresult) {
|
|
$result->predictions = $predictorresult->predictions;
|
|
foreach ($result->predictions as $sampleinfo) {
|
|
|
|
// We parse each prediction
|
|
switch (count($sampleinfo)) {
|
|
case 1:
|
|
// For whatever reason the predictions processor could not process this sample, we
|
|
// skip it and do nothing with it.
|
|
debugging($this->model->id . ' model predictions processor could not process the sample with id ' .
|
|
$sampleinfo[0], DEBUG_DEVELOPER);
|
|
continue;
|
|
case 2:
|
|
// Prediction processors that do not return a prediction score will have the maximum prediction
|
|
// score.
|
|
list($uniquesampleid, $prediction) = $sampleinfo;
|
|
$predictionscore = 1;
|
|
break;
|
|
case 3:
|
|
list($uniquesampleid, $prediction, $predictionscore) = $sampleinfo;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ($this->get_target()->triggers_callback($prediction, $predictionscore)) {
|
|
|
|
// The unique sample id contains both the sampleid and the rangeindex.
|
|
list($sampleid, $rangeindex) = $this->get_time_splitting()->infer_sample_info($uniquesampleid);
|
|
|
|
// Store the predicted values.
|
|
$samplecontext = $this->save_prediction($sampleid, $rangeindex, $prediction, $predictionscore,
|
|
json_encode($calculations[$uniquesampleid]));
|
|
|
|
// Also store all samples context to later generate insights or whatever action the target wants to perform.
|
|
$samplecontexts[$samplecontext->id] = $samplecontext;
|
|
|
|
$this->get_target()->prediction_callback($this->model->id, $sampleid, $rangeindex, $samplecontext,
|
|
$prediction, $predictionscore);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!empty($samplecontexts)) {
|
|
// Notify the target that all predictions have been processed.
|
|
$this->get_target()->generate_insights($this->model->id, $samplecontexts);
|
|
|
|
// Aggressive invalidation, the cost of filling up the cache is not high.
|
|
$cache = \cache::make('core', 'modelswithpredictions');
|
|
foreach ($samplecontexts as $context) {
|
|
$cache->delete($context->id);
|
|
}
|
|
}
|
|
|
|
$this->flag_file_as_used($samplesfile, 'predicted');
|
|
|
|
return $result;
|
|
}
|
|
|
|
/**
|
|
* save_prediction
|
|
*
|
|
* @param int $sampleid
|
|
* @param int $rangeindex
|
|
* @param int $prediction
|
|
* @param float $predictionscore
|
|
* @param string $calculations
|
|
* @return \context
|
|
*/
|
|
protected function save_prediction($sampleid, $rangeindex, $prediction, $predictionscore, $calculations) {
|
|
global $DB;
|
|
|
|
$context = $this->get_analyser()->sample_access_context($sampleid);
|
|
|
|
$record = new \stdClass();
|
|
$record->modelid = $this->model->id;
|
|
$record->contextid = $context->id;
|
|
$record->sampleid = $sampleid;
|
|
$record->rangeindex = $rangeindex;
|
|
$record->prediction = $prediction;
|
|
$record->predictionscore = $predictionscore;
|
|
$record->calculations = $calculations;
|
|
$record->timecreated = time();
|
|
$DB->insert_record('analytics_predictions', $record);
|
|
|
|
return $context;
|
|
}
|
|
|
|
/**
|
|
* enable
|
|
*
|
|
* @param string $timesplittingid
|
|
* @return void
|
|
*/
|
|
public function enable($timesplittingid = false) {
|
|
global $DB;
|
|
|
|
$now = time();
|
|
|
|
if ($timesplittingid && $timesplittingid !== $this->model->timesplitting) {
|
|
|
|
if (!\core_analytics\manager::is_valid($timesplittingid, '\core_analytics\local\time_splitting\base')) {
|
|
throw new \moodle_exception('errorinvalidtimesplitting', 'analytics');
|
|
}
|
|
|
|
if (substr($timesplittingid, 0, 1) !== '\\') {
|
|
throw new \moodle_exception('errorinvalidtimesplitting', 'analytics');
|
|
}
|
|
|
|
$this->model->timesplitting = $timesplittingid;
|
|
$this->model->version = $now;
|
|
}
|
|
$this->model->enabled = 1;
|
|
$this->model->timemodified = $now;
|
|
|
|
// We don't always update timemodified intentionally as we reserve it for target, indicators or timesplitting updates.
|
|
$DB->update_record('analytics_models', $this->model);
|
|
|
|
// It needs to be reset (just in case, we may already used it).
|
|
$this->uniqueid = null;
|
|
}
|
|
|
|
/**
|
|
* is_enabled
|
|
*
|
|
* @return bool
|
|
*/
|
|
public function is_enabled() {
|
|
return (bool)$this->model->enabled;
|
|
}
|
|
|
|
/**
|
|
* is_trained
|
|
*
|
|
* @return bool
|
|
*/
|
|
public function is_trained() {
|
|
return (bool)$this->model->trained;
|
|
}
|
|
|
|
/**
|
|
* mark_as_trained
|
|
*
|
|
* @return void
|
|
*/
|
|
public function mark_as_trained() {
|
|
global $DB;
|
|
|
|
$this->model->trained = 1;
|
|
$DB->update_record('analytics_models', $this->model);
|
|
}
|
|
|
|
/**
|
|
* get_predictions_contexts
|
|
*
|
|
* @return \stdClass[]
|
|
*/
|
|
public function get_predictions_contexts() {
|
|
global $DB;
|
|
|
|
$sql = "SELECT DISTINCT contextid FROM {analytics_predictions} WHERE modelid = ?";
|
|
return $DB->get_records_sql($sql, array($this->model->id));
|
|
}
|
|
|
|
/**
|
|
* Whether predictions exist for this context.
|
|
*
|
|
* @param \context $context
|
|
* @return bool
|
|
*/
|
|
public function predictions_exist(\context $context) {
|
|
global $DB;
|
|
|
|
// Filters out previous predictions keeping only the last time range one.
|
|
$select = "modelid = :modelid AND contextid = :contextid";
|
|
$params = array($this->model->id, $context->id);
|
|
return $DB->record_exists_select('analytics_predictions', $select, $params);
|
|
}
|
|
|
|
/**
|
|
* Gets the predictions for this context.
|
|
*
|
|
* @param \context $context
|
|
* @return \core_analytics\prediction[]
|
|
*/
|
|
public function get_predictions(\context $context) {
|
|
global $DB;
|
|
|
|
// Filters out previous predictions keeping only the last time range one.
|
|
$sql = "SELECT tip.*
|
|
FROM {analytics_predictions} tip
|
|
JOIN (
|
|
SELECT sampleid, max(rangeindex) AS rangeindex
|
|
FROM {analytics_predictions}
|
|
WHERE modelid = ? and contextid = ?
|
|
GROUP BY sampleid
|
|
) tipsub
|
|
ON tip.sampleid = tipsub.sampleid AND tip.rangeindex = tipsub.rangeindex
|
|
WHERE tip.modelid = ? and tip.contextid = ?";
|
|
$params = array($this->model->id, $context->id, $this->model->id, $context->id);
|
|
if (!$predictions = $DB->get_records_sql($sql, $params)) {
|
|
return array();
|
|
}
|
|
|
|
// Get predicted samples' ids.
|
|
$sampleids = array_map(function($prediction) {
|
|
return $prediction->sampleid;
|
|
}, $predictions);
|
|
|
|
list($unused, $samplesdata) = $this->get_analyser()->get_samples($sampleids);
|
|
|
|
// Add samples data as part of each prediction.
|
|
foreach ($predictions as $predictionid => $predictiondata) {
|
|
|
|
$sampleid = $predictiondata->sampleid;
|
|
|
|
// Filter out predictions which samples are not available anymore.
|
|
if (empty($samplesdata[$sampleid])) {
|
|
unset($predictions[$predictionid]);
|
|
continue;
|
|
}
|
|
|
|
// Replace stdClass object by \core_analytics\prediction objects.
|
|
$prediction = new \core_analytics\prediction($predictiondata, $samplesdata[$sampleid]);
|
|
|
|
$predictions[$predictionid] = $prediction;
|
|
}
|
|
|
|
return $predictions;
|
|
}
|
|
|
|
/**
|
|
* prediction_sample_data
|
|
*
|
|
* @param \stdClass $predictionobj
|
|
* @return array
|
|
*/
|
|
public function prediction_sample_data($predictionobj) {
|
|
|
|
list($unused, $samplesdata) = $this->get_analyser()->get_samples(array($predictionobj->sampleid));
|
|
|
|
if (empty($samplesdata[$predictionobj->sampleid])) {
|
|
throw new \moodle_exception('errorsamplenotavailable', 'analytics');
|
|
}
|
|
|
|
return $samplesdata[$predictionobj->sampleid];
|
|
}
|
|
|
|
/**
|
|
* prediction_sample_description
|
|
*
|
|
* @param \core_analytics\prediction $prediction
|
|
* @return array 2 elements: list(string, \renderable)
|
|
*/
|
|
public function prediction_sample_description(\core_analytics\prediction $prediction) {
|
|
return $this->get_analyser()->sample_description($prediction->get_prediction_data()->sampleid,
|
|
$prediction->get_prediction_data()->contextid, $prediction->get_sample_data());
|
|
}
|
|
|
|
/**
|
|
* Returns the output directory for prediction processors.
|
|
*
|
|
* Directory structure as follows:
|
|
* - Evaluation runs:
|
|
* models/$model->id/$model->version/evaluation/$model->timesplitting
|
|
* - Training & prediction runs:
|
|
* models/$model->id/$model->version/execution
|
|
*
|
|
* @param array $subdirs
|
|
* @return string
|
|
*/
|
|
protected function get_output_dir($subdirs = array()) {
|
|
global $CFG;
|
|
|
|
$subdirstr = '';
|
|
foreach ($subdirs as $subdir) {
|
|
$subdirstr .= DIRECTORY_SEPARATOR . $subdir;
|
|
}
|
|
|
|
$outputdir = get_config('analytics', 'modeloutputdir');
|
|
if (empty($outputdir)) {
|
|
// Apply default value.
|
|
$outputdir = rtrim($CFG->dataroot, '/') . DIRECTORY_SEPARATOR . 'models';
|
|
}
|
|
|
|
// Append model id and version + subdirs.
|
|
$outputdir .= DIRECTORY_SEPARATOR . $this->model->id . DIRECTORY_SEPARATOR . $this->model->version . $subdirstr;
|
|
|
|
make_writable_directory($outputdir);
|
|
|
|
return $outputdir;
|
|
}
|
|
|
|
/**
|
|
* get_unique_id
|
|
*
|
|
* @return string
|
|
*/
|
|
public function get_unique_id() {
|
|
global $CFG;
|
|
|
|
if (!is_null($this->uniqueid)) {
|
|
return $this->uniqueid;
|
|
}
|
|
|
|
// Generate a unique id for this site, this model and this time splitting method, considering the last time
|
|
// that the model target and indicators were updated.
|
|
$ids = array($CFG->wwwroot, $CFG->dirroot, $CFG->prefix, $this->model->id, $this->model->version);
|
|
$this->uniqueid = sha1(implode('$$', $ids));
|
|
|
|
return $this->uniqueid;
|
|
}
|
|
|
|
/**
|
|
* Exports the model data.
|
|
*
|
|
* @return \stdClass
|
|
*/
|
|
public function export() {
|
|
$data = clone $this->model;
|
|
$data->target = $this->get_target()->get_name();
|
|
|
|
if ($timesplitting = $this->get_time_splitting()) {
|
|
$data->timesplitting = $timesplitting->get_name();
|
|
}
|
|
|
|
$data->indicators = array();
|
|
foreach ($this->get_indicators() as $indicator) {
|
|
$data->indicators[] = $indicator->get_name();
|
|
}
|
|
return $data;
|
|
}
|
|
|
|
/**
|
|
* flag_file_as_used
|
|
*
|
|
* @param \stored_file $file
|
|
* @param string $action
|
|
* @return void
|
|
*/
|
|
protected function flag_file_as_used(\stored_file $file, $action) {
|
|
global $DB;
|
|
|
|
$usedfile = new \stdClass();
|
|
$usedfile->modelid = $this->model->id;
|
|
$usedfile->fileid = $file->get_id();
|
|
$usedfile->action = $action;
|
|
$usedfile->time = time();
|
|
$DB->insert_record('analytics_used_files', $usedfile);
|
|
}
|
|
|
|
/**
|
|
* log_result
|
|
*
|
|
* @param string $timesplittingid
|
|
* @param float $score
|
|
* @param string $dir
|
|
* @param array $info
|
|
* @return int The inserted log id
|
|
*/
|
|
protected function log_result($timesplittingid, $score, $dir = false, $info = false) {
|
|
global $DB, $USER;
|
|
|
|
$log = new \stdClass();
|
|
$log->modelid = $this->get_id();
|
|
$log->version = $this->model->version;
|
|
$log->target = $this->model->target;
|
|
$log->indicators = $this->model->indicators;
|
|
$log->timesplitting = $timesplittingid;
|
|
$log->dir = $dir;
|
|
if ($info) {
|
|
// Ensure it is not an associative array.
|
|
$log->info = json_encode(array_values($info));
|
|
}
|
|
$log->score = $score;
|
|
$log->timecreated = time();
|
|
$log->usermodified = $USER->id;
|
|
|
|
return $DB->insert_record('analytics_models_log', $log);
|
|
}
|
|
|
|
/**
|
|
* Utility method to return indicator class names from a list of indicator objects
|
|
*
|
|
* @param \core_analytics\local\indicator\base[] $indicators
|
|
* @return string[]
|
|
*/
|
|
private static function indicator_classes($indicators) {
|
|
|
|
// What we want to check and store are the indicator classes not the keys.
|
|
$indicatorclasses = array();
|
|
foreach ($indicators as $indicator) {
|
|
if (!\core_analytics\manager::is_valid($indicator, '\core_analytics\local\indicator\base')) {
|
|
if (!is_object($indicator) && !is_scalar($indicator)) {
|
|
$indicator = strval($indicator);
|
|
} else if (is_object($indicator)) {
|
|
$indicator = get_class($indicator);
|
|
}
|
|
throw new \moodle_exception('errorinvalidindicator', 'analytics', '', $indicator);
|
|
}
|
|
$indicatorclasses[] = '\\' . get_class($indicator);
|
|
}
|
|
|
|
return $indicatorclasses;
|
|
}
|
|
|
|
/**
|
|
* Clears the model training and prediction data.
|
|
*
|
|
* Executed after updating model critical elements like the time splitting method
|
|
* or the indicators.
|
|
*
|
|
* @return void
|
|
*/
|
|
private function clear_model() {
|
|
global $DB;
|
|
|
|
$DB->delete_records('analytics_predict_ranges', array('modelid' => $this->model->id));
|
|
$DB->delete_records('analytics_predictions', array('modelid' => $this->model->id));
|
|
$DB->delete_records('analytics_train_samples', array('modelid' => $this->model->id));
|
|
$DB->delete_records('analytics_used_files', array('modelid' => $this->model->id));
|
|
|
|
$cache = \cache::make('core', 'modelswithpredictions');
|
|
$result = $cache->purge();
|
|
}
|
|
|
|
private function increase_memory() {
|
|
if (ini_get('memory_limit') != -1) {
|
|
raise_memory_limit(MEMORY_HUGE);
|
|
}
|
|
}
|
|
|
|
}
|