2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-22 21:13:18 -07:00
// LibFile: paths.scad
// Polylines, polygons and paths.
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 00:25:10 -07:00
// include <BOSL2/std.scad>
2019-03-22 21:13:18 -07:00
// ```
2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2020-03-28 20:50:04 -07:00
include < triangulation.scad >
2019-05-03 12:19:51 -07:00
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Section: Functions
2020-01-30 14:00:10 -08:00
// Function: is_path()
// Usage:
2020-03-02 13:47:43 -08:00
// is_path(list, [dim], [fast])
2020-01-30 14:00:10 -08:00
// Description:
2020-03-02 13:47:43 -08:00
// Returns true if `list` is a path. A path is a list of two or more numeric vectors (AKA points).
// All vectors must of the same size, and may only contain numbers that are not inf or nan.
2020-03-02 21:39:57 -05:00
// By default the vectors in a path must be 2d or 3d. Set the `dim` parameter to specify a list
// of allowed dimensions, or set it to `undef` to allow any dimension.
2020-03-02 13:47:43 -08:00
// Examples:
// is_path([[3,4],[5,6]]); // Returns true
// is_path([[3,4]]); // Returns false
// is_path([[3,4],[4,5]],2); // Returns true
// is_path([[3,4,3],[5,4,5]],2); // Returns false
// is_path([[3,4,3],[5,4,5]],2); // Returns false
// is_path([[3,4,5],undef,[4,5,6]]); // Returns false
// is_path([[3,5],[undef,undef],[4,5]]); // Returns false
// is_path([[3,4],[5,6],[5,3]]); // Returns true
// is_path([3,4,5,6,7,8]); // Returns false
// is_path([[3,4],[5,6]], dim=[2,3]);// Returns true
// is_path([[3,4],[5,6]], dim=[1,3]);// Returns false
// is_path([[3,4],"hello"], fast=true); // Returns true
// is_path([[3,4],[3,4,5]]); // Returns false
// is_path([[1,2,3,4],[2,3,4,5]]); // Returns false
2020-03-02 21:39:57 -05:00
// is_path([[1,2,3,4],[2,3,4,5]],undef);// Returns true
2020-03-02 13:47:43 -08:00
// Arguments:
// list = list to check
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
// fast = set to true for fast check that only looks at first entry. Default: false
function is_path ( list , dim = [ 2 , 3 ] , fast = false ) =
fast ? is_list ( list ) && is_vector ( list [ 0 ] , fast = true ) :
is_list ( list ) && is_list ( list [ 0 ] ) && len ( list ) > 1 &&
2020-03-13 20:55:17 -04:00
( is_undef ( dim ) || in_list ( len ( list [ 0 ] ) , force_list ( dim ) ) ) &&
is_list_of ( list , repeat ( 0 , len ( list [ 0 ] ) ) ) ;
2020-01-30 14:00:10 -08:00
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
2019-03-22 21:13:18 -07:00
// Description:
2020-01-30 14:00:10 -08:00
// Returns true if the first and last points in the given path are coincident.
function is_closed_path ( path , eps = EPSILON ) = approx ( path [ 0 ] , path [ len ( path ) - 1 ] , eps = eps ) ;
// Function: close_path()
2019-03-22 21:13:18 -07:00
// Usage:
2020-01-30 14:00:10 -08:00
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
function close_path ( path , eps = EPSILON ) = is_closed_path ( path , eps = eps ) ? path : concat ( path , [ path [ 0 ] ] ) ;
// Function: cleanup_path()
// Usage:
// cleanup_path(path);
// Description:
// If a path's last point coincides with its first point, deletes the last point in the path.
function cleanup_path ( path , eps = EPSILON ) = is_closed_path ( path , eps = eps ) ? select ( path , 0 , - 2 ) : path ;
// Function: path_subselect()
// Usage:
// path_subselect(path,s1,u1,s2,u2,[closed]):
// Description:
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
// Arguments:
// path = The path to get a section of.
// s1 = The number of the starting segment.
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
// s2 = The number of the ending segment.
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
// closed = If true, treat path as a closed polygon.
function path_subselect ( path , s1 , u1 , s2 , u2 , closed = false ) =
let (
lp = len ( path ) ,
l = lp - ( closed ? 0 : 1 ) ,
u1 = s1 < 0 ? 0 : s1 > l ? 1 : u1 ,
u2 = s2 < 0 ? 0 : s2 > l ? 1 : u2 ,
s1 = constrain ( s1 , 0 , l ) ,
s2 = constrain ( s2 , 0 , l ) ,
pathout = concat (
( s1 < l && u1 < 1 ) ? [ lerp ( path [ s1 ] , path [ ( s1 + 1 ) % lp ] , u1 ) ] : [ ] ,
[ for ( i = [ s1 + 1 : 1 : s2 ] ) path [ i ] ] ,
( s2 < l && u2 > 0 ) ? [ lerp ( path [ s2 ] , path [ ( s2 + 1 ) % lp ] , u2 ) ] : [ ]
)
) pathout ;
// Function: simplify_path()
// Description:
// Takes a path and removes unnecessary collinear points.
// Usage:
// simplify_path(path, [eps])
2019-03-22 21:13:18 -07:00
// Arguments:
// path = A list of 2D path points.
2020-01-30 14:00:10 -08:00
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path ( path , eps = EPSILON ) =
len ( path ) < = 2 ? path : let (
indices = concat ( [ 0 ] , [ for ( i = [ 1 : 1 : len ( path ) - 2 ] ) if ( ! collinear_indexed ( path , i - 1 , i , i + 1 , eps = eps ) ) i ] , [ len ( path ) - 1 ] )
) [ for ( i = indices ) path [ i ] ] ;
2019-03-22 21:13:18 -07:00
2020-01-30 14:00:10 -08:00
// Function: simplify_path_indexed()
2019-03-22 21:13:18 -07:00
// Description:
2020-01-30 14:00:10 -08:00
// Takes a list of points, and a path as a list of indices into `points`,
// and removes all path points that are unecessarily collinear.
2019-03-22 21:13:18 -07:00
// Usage:
2020-01-30 14:00:10 -08:00
// simplify_path_indexed(path, eps)
2019-03-22 21:13:18 -07:00
// Arguments:
2020-01-30 14:00:10 -08:00
// points = A list of points.
// path = A list of indices into `points` that forms a path.
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
function simplify_path_indexed ( points , path , eps = EPSILON ) =
len ( path ) < = 2 ? path : let (
indices = concat ( [ 0 ] , [ for ( i = [ 1 : 1 : len ( path ) - 2 ] ) if ( ! collinear_indexed ( points , path [ i - 1 ] , path [ i ] , path [ i + 1 ] , eps = eps ) ) i ] , [ len ( path ) - 1 ] )
) [ for ( i = indices ) path [ i ] ] ;
2019-03-22 21:13:18 -07:00
2019-03-26 23:22:38 -07:00
// Function: path_length()
// Usage:
2019-07-01 19:25:00 -04:00
// path_length(path,[closed])
2019-03-26 23:22:38 -07:00
// Description:
// Returns the length of the path.
// Arguments:
// path = The list of points of the path to measure.
2019-08-09 13:07:18 -07:00
// closed = true if the path is closed. Default: false
2019-03-26 23:22:38 -07:00
// Example:
// path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path));
2019-07-01 19:25:00 -04:00
function path_length ( path , closed = false ) =
2019-03-26 23:22:38 -07:00
len ( path ) < 2 ? 0 :
2019-07-01 19:25:00 -04:00
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ) + ( closed ? norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) : 0 ) ;
2019-03-26 23:22:38 -07:00
2020-01-28 19:13:56 -08:00
// Function: path_pos_from_start()
// Usage:
// pos = path_pos_from_start(path,length,[closed]);
// Description:
// Finds the segment and relative position along that segment that is `length` distance from the
// front of the given `path`. Returned as [SEGNUM, U] where SEGNUM is the segment number, and U is
// the relative distance along that segment, a number from 0 to 1. If the path is shorter than the
// asked for length, this returns `undef`.
// Arguments:
// path = The path to find the position on.
// length = The length from the start of the path to find the segment and position of.
// Example(2D):
// path = circle(d=50,$fn=18);
// pos = path_pos_from_start(path,20,closed=false);
// stroke(path,width=1,endcaps=false);
// pt = lerp(path[pos[0]], path[(pos[0]+1)%len(path)], pos[1]);
// color("red") translate(pt) circle(d=2,$fn=12);
function path_pos_from_start ( path , length , closed = false , _d = 0 , _i = 0 ) =
let ( lp = len ( path ) )
_i >= lp - ( closed ? 0 : 1 ) ? undef :
let ( l = norm ( path [ ( _i + 1 ) % lp ] - path [ _i ] ) )
_d + l < = length ? path_pos_from_start ( path , length , closed , _d + l , _i + 1 ) :
[ _i , ( length - _d ) / l ] ;
// Function: path_pos_from_end()
// Usage:
// pos = path_pos_from_end(path,length,[closed]);
// Description:
// Finds the segment and relative position along that segment that is `length` distance from the
// end of the given `path`. Returned as [SEGNUM, U] where SEGNUM is the segment number, and U is
// the relative distance along that segment, a number from 0 to 1. If the path is shorter than the
// asked for length, this returns `undef`.
// Arguments:
// path = The path to find the position on.
// length = The length from the end of the path to find the segment and position of.
// Example(2D):
// path = circle(d=50,$fn=18);
// pos = path_pos_from_end(path,20,closed=false);
// stroke(path,width=1,endcaps=false);
// pt = lerp(path[pos[0]], path[(pos[0]+1)%len(path)], pos[1]);
// color("red") translate(pt) circle(d=2,$fn=12);
function path_pos_from_end ( path , length , closed = false , _d = 0 , _i = undef ) =
let (
lp = len ( path ) ,
_i = _i ! = undef ? _i : lp - ( closed ? 1 : 2 )
)
_i < 0 ? undef :
let ( l = norm ( path [ ( _i + 1 ) % lp ] - path [ _i ] ) )
_d + l < = length ? path_pos_from_end ( path , length , closed , _d + l , _i - 1 ) :
[ _i , 1 - ( length - _d ) / l ] ;
// Function: path_trim_start()
// Usage:
// path_trim_start(path,trim);
// Description:
// Returns the `path`, with the start shortened by the length `trim`.
// Arguments:
// path = The path to trim.
// trim = The length to trim from the start.
// Example(2D):
// path = circle(d=50,$fn=18);
// path2 = path_trim_start(path,5);
// path3 = path_trim_start(path,20);
// color("blue") stroke(path3,width=5,endcaps=false);
// color("cyan") stroke(path2,width=3,endcaps=false);
// color("red") stroke(path,width=1,endcaps=false);
function path_trim_start ( path , trim , _d = 0 , _i = 0 ) =
_i >= len ( path ) - 1 ? [ ] :
let ( l = norm ( path [ _i + 1 ] - path [ _i ] ) )
_d + l < = trim ? path_trim_start ( path , trim , _d + l , _i + 1 ) :
2020-03-02 19:30:20 -08:00
let ( v = unit ( path [ _i + 1 ] - path [ _i ] ) )
2020-01-28 19:13:56 -08:00
concat (
[ path [ _i + 1 ] - v * ( l - ( trim - _d ) ) ] ,
[ for ( i = [ _i + 1 : 1 : len ( path ) - 1 ] ) path [ i ] ]
) ;
// Function: path_trim_end()
// Usage:
// path_trim_end(path,trim);
// Description:
// Returns the `path`, with the end shortened by the length `trim`.
// Arguments:
// path = The path to trim.
// trim = The length to trim from the end.
// Example(2D):
// path = circle(d=50,$fn=18);
// path2 = path_trim_end(path,5);
// path3 = path_trim_end(path,20);
// color("blue") stroke(path3,width=5,endcaps=false);
// color("cyan") stroke(path2,width=3,endcaps=false);
// color("red") stroke(path,width=1,endcaps=false);
function path_trim_end ( path , trim , _d = 0 , _i = undef ) =
let ( _i = _i ! = undef ? _i : len ( path ) - 1 )
_i < = 0 ? [ ] :
let ( l = norm ( path [ _i ] - path [ _i - 1 ] ) )
_d + l < = trim ? path_trim_end ( path , trim , _d + l , _i - 1 ) :
2020-03-02 19:30:20 -08:00
let ( v = unit ( path [ _i ] - path [ _i - 1 ] ) )
2020-01-28 19:13:56 -08:00
concat (
[ for ( i = [ 0 : 1 : _i - 1 ] ) path [ i ] ] ,
[ path [ _i - 1 ] + v * ( l - ( trim - _d ) ) ]
) ;
2019-08-16 21:22:41 -07:00
// Function: path_closest_point()
// Usage:
// path_closest_point(path, pt);
// Description:
// Finds the closest path segment, and point on that segment to the given point.
// Returns `[SEGNUM, POINT]`
// Arguments:
// path = The path to find the closest point on.
// pt = the point to find the closest point to.
// Example(2D):
// path = circle(d=100,$fn=6);
// pt = [20,10];
// closest = path_closest_point(path, pt);
// stroke(path, closed=true);
// color("blue") translate(pt) circle(d=3, $fn=12);
// color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point ( path , pt ) =
let (
pts = [ for ( seg = idx ( path ) ) segment_closest_point ( select ( path , seg , seg + 1 ) , pt ) ] ,
dists = [ for ( p = pts ) norm ( p - pt ) ] ,
min_seg = min_index ( dists )
) [ min_seg , pts [ min_seg ] ] ;
2020-03-01 16:12:51 -08:00
// Function: path_tangents()
// Usage: path_tangents(path, [closed])
// Description:
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
// The returns vectors will be normalized to length 1.
function path_tangents ( path , closed = false ) =
assert ( is_path ( path ) )
2020-03-04 20:24:00 -05:00
[ for ( t = deriv ( path , closed = closed ) ) unit ( t ) ] ;
2020-03-01 16:12:51 -08:00
// Function: path_normals()
// Usage: path_normals(path, [tangents], [closed])
// Description:
// Compute the normal vector to the input path. This vector is perpendicular to the
// path tangent and lies in the plane of the curve. When there are collinear points,
// the curve does not define a unique plane and the normal is not uniquely defined.
function path_normals ( path , tangents , closed = false ) =
assert ( is_path ( path ) )
assert ( is_bool ( closed ) )
let ( tangents = default ( tangents , path_tangents ( path , closed ) ) )
assert ( is_path ( tangents ) )
[
for ( i = idx ( path ) ) let (
pts = i = = 0 ? ( closed ? select ( path , - 1 , 1 ) : select ( path , 0 , 2 ) ) :
i = = len ( path ) - 1 ? ( closed ? select ( path , i - 1 , i + 1 ) : select ( path , i - 2 , i ) ) :
select ( path , i - 1 , i + 1 )
2020-03-02 19:30:20 -08:00
) unit ( cross (
2020-03-01 16:12:51 -08:00
cross ( pts [ 1 ] - pts [ 0 ] , pts [ 2 ] - pts [ 0 ] ) ,
tangents [ i ]
) )
] ;
// Function: path_curvature()
// Usage: path_curvature(path, [closed])
// Description:
// Numerically estimate the curvature of the path (in any dimension).
function path_curvature ( path , closed = false ) =
let (
d1 = deriv ( path , closed = closed ) ,
d2 = deriv2 ( path , closed = closed )
) [
for ( i = idx ( path ) )
sqrt (
sqr ( norm ( d1 [ i ] ) * norm ( d2 [ i ] ) ) -
sqr ( d1 [ i ] * d2 [ i ] )
) / pow ( norm ( d1 [ i ] ) , 3 )
] ;
// Function: path_torsion()
// Usage: path_torsion(path, [closed])
// Description:
// Numerically estimate the torsion of a 3d path.
function path_torsion ( path , closed = false ) =
let (
d1 = deriv ( path , closed = closed ) ,
d2 = deriv2 ( path , closed = closed ) ,
d3 = deriv3 ( path , closed = closed )
) [
for ( i = idx ( path ) ) let (
crossterm = cross ( d1 [ i ] , d2 [ i ] )
) crossterm * d3 [ i ] / sqr ( norm ( crossterm ) )
] ;
2019-08-16 21:22:41 -07:00
2019-03-22 21:13:18 -07:00
// Function: path3d_spiral()
// Description:
// Returns a 3D spiral path.
// Usage:
// path3d_spiral(turns, h, n, r|d, [cp], [scale]);
// Arguments:
// h = Height of spiral.
// turns = Number of turns in spiral.
// n = Number of spiral sides.
// r = Radius of spiral.
// d = Radius of spiral.
// cp = Centerpoint of spiral. Default: `[0,0]`
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
// Example(3D):
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
function path3d_spiral ( turns = 3 , h = 100 , n = 12 , r = undef , d = undef , cp = [ 0 , 0 ] , scale = [ 1 , 1 ] ) = let (
rr = get_radius ( r = r , d = d , dflt = 100 ) ,
cnt = floor ( turns * n ) ,
dz = h / cnt
) [
2019-05-26 22:34:46 -07:00
for ( i = [ 0 : 1 : cnt ] ) [
2019-03-22 21:13:18 -07:00
rr * cos ( i * 360 / n ) * scale . x + cp . x ,
rr * sin ( i * 360 / n ) * scale . y + cp . y ,
i * dz
]
] ;
// Function: points_along_path3d()
// Usage:
// points_along_path3d(polyline, path);
// Description:
// Calculates the vertices needed to create a `polyhedron()` of the
// extrusion of `polyline` along `path`. The closed 2D path shold be
// centered on the XY plane. The 2D path is extruded perpendicularly
// along the 3D path. Produces a list of 3D vertices. Vertex count
// is `len(polyline)*len(path)`. Gives all the reoriented vertices
// for `polyline` at the first point in `path`, then for the second,
// and so on.
// Arguments:
// polyline = A closed list of 2D path points.
// path = A list of 3D path points.
function points_along_path3d (
polyline , // The 2D polyline to drag along the 3D path.
path , // The 3D polyline path to follow.
q = Q_Ident ( ) , // Used in recursion
n = 0 // Used in recursion
) = let (
end = len ( path ) - 1 ,
2020-03-02 19:30:20 -08:00
v1 = ( n = = 0 ) ? [ 0 , 0 , 1 ] : unit ( path [ n ] - path [ n - 1 ] ) ,
v2 = ( n = = end ) ? unit ( path [ n ] - path [ n - 1 ] ) : unit ( path [ n + 1 ] - path [ n ] ) ,
2019-03-22 21:13:18 -07:00
crs = cross ( v1 , v2 ) ,
axis = norm ( crs ) < = 0.001 ? [ 0 , 0 , 1 ] : crs ,
2019-03-25 03:52:09 -07:00
ang = vector_angle ( v1 , v2 ) ,
2019-03-22 21:13:18 -07:00
hang = ang * ( n = = 0 ? 1.0 : 0.5 ) ,
hrot = Quat ( axis , hang ) ,
arot = Quat ( axis , ang ) ,
roth = Q_Mul ( hrot , q ) ,
rotm = Q_Mul ( arot , q )
) concat (
2019-11-11 19:09:46 -08:00
[ for ( i = [ 0 : 1 : len ( polyline ) - 1 ] ) Qrot ( roth , p = point3d ( polyline [ i ] ) ) + path [ n ] ] ,
2019-03-22 21:13:18 -07:00
( n = = end ) ? [ ] : points_along_path3d ( polyline , path , rotm , n + 1 )
) ;
2020-01-30 14:00:10 -08:00
// Function: path_self_intersections()
// Usage:
// isects = path_self_intersections(path, [eps]);
// Description:
// Locates all self intersections of the given path. Returns a list of intersections, where
// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
// of the segment, and a proportion of 1.0 indicates the end of the segment.
// Arguments:
// path = The path to find self intersections of.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// isects = path_self_intersections(path, closed=true);
// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
// stroke(path, closed=true, width=1);
// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
function path_self_intersections ( path , closed = true , eps = EPSILON ) =
let (
path = cleanup_path ( path , eps = eps ) ,
plen = len ( path )
) [
for ( i = [ 0 : 1 : plen - ( closed ? 2 : 3 ) ] , j = [ i + 1 : 1 : plen - ( closed ? 1 : 2 ) ] ) let (
a1 = path [ i ] ,
a2 = path [ ( i + 1 ) % plen ] ,
b1 = path [ j ] ,
b2 = path [ ( j + 1 ) % plen ] ,
isect =
( max ( a1 . x , a2 . x ) < min ( b1 . x , b2 . x ) ) ? undef :
( min ( a1 . x , a2 . x ) > max ( b1 . x , b2 . x ) ) ? undef :
( max ( a1 . y , a2 . y ) < min ( b1 . y , b2 . y ) ) ? undef :
( min ( a1 . y , a2 . y ) > max ( b1 . y , b2 . y ) ) ? undef :
let (
c = a1 - a2 ,
d = b1 - b2 ,
denom = ( c . x * d . y ) - ( c . y * d . x )
) abs ( denom ) < eps ? undef : let (
e = a1 - b1 ,
t = ( ( e . x * d . y ) - ( e . y * d . x ) ) / denom ,
u = ( ( e . x * c . y ) - ( e . y * c . x ) ) / denom
) [ a1 + t * ( a2 - a1 ) , t , u ]
) if (
isect ! = undef &&
isect [ 1 ] > eps && isect [ 1 ] < = 1 + eps &&
isect [ 2 ] > eps && isect [ 2 ] < = 1 + eps
) [ isect [ 0 ] , i , isect [ 1 ] , j , isect [ 2 ] ]
] ;
2020-01-31 16:37:27 -08:00
// Function: split_path_at_self_crossings()
// Usage:
// polylines = split_path_at_self_crossings(path, [closed], [eps]);
// Description:
// Splits a path into polyline sections wherever the path crosses itself.
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
// Arguments:
// path = The path to split up.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
// polylines = split_path_at_self_crossings(path);
// rainbow(polylines) stroke($item, closed=false, width=2);
function split_path_at_self_crossings ( path , closed = true , eps = EPSILON ) =
let (
path = cleanup_path ( path , eps = eps ) ,
isects = deduplicate (
eps = eps ,
concat (
[ [ 0 , 0 ] ] ,
sort ( [
for (
a = path_self_intersections ( path , closed = closed , eps = eps ) ,
ss = [ [ a [ 1 ] , a [ 2 ] ] , [ a [ 3 ] , a [ 4 ] ] ]
) if ( ss [ 0 ] ! = undef ) ss
] ) ,
[ [ len ( path ) - ( closed ? 1 : 2 ) , 1 ] ]
)
)
) [
for ( p = pair ( isects ) )
let (
s1 = p [ 0 ] [ 0 ] ,
u1 = p [ 0 ] [ 1 ] ,
s2 = p [ 1 ] [ 0 ] ,
u2 = p [ 1 ] [ 1 ] ,
section = path_subselect ( path , s1 , u1 , s2 , u2 , closed = closed ) ,
outpath = deduplicate ( eps = eps , section )
)
outpath
] ;
2020-01-30 14:00:10 -08:00
function _tag_self_crossing_subpaths ( path , closed = true , eps = EPSILON ) =
let (
subpaths = split_path_at_self_crossings (
path , closed = closed , eps = eps
)
) [
for ( subpath = subpaths ) let (
seg = select ( subpath , 0 , 1 ) ,
mp = mean ( seg ) ,
n = line_normal ( seg ) / 2048 ,
p1 = mp + n ,
p2 = mp - n ,
p1in = point_in_polygon ( p1 , path ) >= 0 ,
p2in = point_in_polygon ( p2 , path ) >= 0 ,
tag = ( p1in && p2in ) ? "I" : "O"
) [ tag , subpath ]
] ;
// Function: decompose_path()
// Usage:
// splitpaths = decompose_path(path, [closed], [eps]);
// Description:
// Given a possibly self-crossing path, decompose it into non-crossing paths that are on the perimeter
// of the areas bounded by that path.
// Arguments:
// path = The path to split up.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// splitpaths = decompose_path(path, closed=true);
// rainbow(splitpaths) stroke($item, closed=true, width=3);
function decompose_path ( path , closed = true , eps = EPSILON ) =
let (
path = cleanup_path ( path , eps = eps ) ,
tagged = _tag_self_crossing_subpaths ( path , closed = closed , eps = eps ) ,
kept = [ for ( sub = tagged ) if ( sub [ 0 ] = = "O" ) sub [ 1 ] ] ,
2020-04-01 01:36:48 -07:00
completed = [ for ( frag = kept ) if ( is_closed_path ( frag ) ) frag ] ,
incomplete = [ for ( frag = kept ) if ( ! is_closed_path ( frag ) ) frag ] ,
defrag = _path_fast_defragment ( incomplete , eps = eps ) ,
completed2 = assemble_path_fragments ( defrag , eps = eps )
) concat ( completed2 , completed ) ;
function _path_fast_defragment ( fragments , eps = EPSILON , _done = [ ] ) =
len ( fragments ) = = 0 ? _done :
let (
path = fragments [ 0 ] ,
endpt = select ( path , - 1 ) ,
extenders = [
for ( i = [ 1 : 1 : len ( fragments ) - 1 ] ) let (
test1 = approx ( endpt , fragments [ i ] [ 0 ] , eps = eps ) ,
test2 = approx ( endpt , select ( fragments [ i ] , - 1 ) , eps = eps )
) if ( test1 || test2 ) ( test1 ? i : - 1 )
]
) len ( extenders ) = = 1 && extenders [ 0 ] >= 0 ? _path_fast_defragment (
fragments = [
concat ( select ( path , 0 , - 2 ) , fragments [ extenders [ 0 ] ] ) ,
for ( i = [ 1 : 1 : len ( fragments ) - 1 ] )
if ( i ! = extenders [ 0 ] ) fragments [ i ]
] ,
eps = eps ,
_done = _done
) : _path_fast_defragment (
fragments = [ for ( i = [ 1 : 1 : len ( fragments ) - 1 ] ) fragments [ i ] ] ,
eps = eps ,
_done = concat ( _done , [ deduplicate ( path , closed = true , eps = eps ) ] )
) ;
2020-01-30 14:00:10 -08:00
function _extreme_angle_fragment ( seg , fragments , rightmost = true , eps = EPSILON ) =
! fragments ? [ undef , [ ] ] :
let (
delta = seg [ 1 ] - seg [ 0 ] ,
segang = atan2 ( delta . y , delta . x ) ,
frags = [
for ( i = idx ( fragments ) ) let (
fragment = fragments [ i ] ,
fwdmatch = approx ( seg [ 1 ] , fragment [ 0 ] , eps = eps ) ,
bakmatch = approx ( seg [ 1 ] , select ( fragment , - 1 ) , eps = eps )
) [
fwdmatch ,
bakmatch ,
bakmatch ? reverse ( fragment ) : fragment
]
] ,
angs = [
for ( frag = frags )
( frag [ 0 ] || frag [ 1 ] ) ? let (
delta2 = frag [ 2 ] [ 1 ] - frag [ 2 ] [ 0 ] ,
segang2 = atan2 ( delta2 . y , delta2 . x )
) modang ( segang2 - segang ) : (
rightmost ? 999 : - 999
)
] ,
fi = rightmost ? min_index ( angs ) : max_index ( angs )
) abs ( angs [ fi ] ) > 360 ? [ undef , fragments ] : let (
remainder = [ for ( i = idx ( fragments ) ) if ( i ! = fi ) fragments [ i ] ] ,
frag = frags [ fi ] ,
foundfrag = frag [ 2 ]
) [ foundfrag , remainder ] ;
// Function: assemble_a_path_from_fragments()
// Usage:
// assemble_a_path_from_fragments(subpaths);
// Description:
// Given a list of incomplete paths, assembles them together into one complete closed path, and
// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
// polyline path fragments.
// Arguments:
// fragments = List of polylines to be assembled into complete polygons.
// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
2020-04-01 01:36:48 -07:00
// startfrag = The fragment to start with. Default: 0
2020-01-30 14:00:10 -08:00
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
2020-04-01 01:36:48 -07:00
function assemble_a_path_from_fragments ( fragments , rightmost = true , startfrag = 0 , eps = EPSILON ) =
2020-01-30 14:00:10 -08:00
len ( fragments ) = = 0 ? _finished :
let (
2020-04-01 01:36:48 -07:00
path = fragments [ startfrag ] ,
newfrags = [ for ( i = idx ( fragments ) ) if ( i ! = startfrag ) fragments [ i ] ]
2020-01-30 14:00:10 -08:00
) is_closed_path ( path , eps = eps ) ? (
// starting fragment is already closed
[ path , newfrags ]
) : let (
// Find rightmost/leftmost continuation fragment
seg = select ( path , - 2 , - 1 ) ,
2020-04-01 01:36:48 -07:00
extrema = _extreme_angle_fragment ( seg = seg , fragments = newfrags , rightmost = rightmost , eps = eps ) ,
2020-01-30 14:00:10 -08:00
foundfrag = extrema [ 0 ] ,
2020-04-01 01:36:48 -07:00
remainder = extrema [ 1 ]
2020-01-30 14:00:10 -08:00
) is_undef ( foundfrag ) ? (
// No remaining fragments connect! INCOMPLETE PATH!
// Treat it as complete.
2020-04-01 01:36:48 -07:00
[ path , remainder ]
2020-01-30 14:00:10 -08:00
) : is_closed_path ( foundfrag , eps = eps ) ? (
// Found fragment is already closed
2020-04-01 01:36:48 -07:00
[ foundfrag , concat ( [ path ] , remainder ) ]
2020-01-30 14:00:10 -08:00
) : let (
fragend = select ( foundfrag , - 1 ) ,
hits = [ for ( i = idx ( path , end = - 2 ) ) if ( approx ( path [ i ] , fragend , eps = eps ) ) i ]
) hits ? (
let (
// Found fragment intersects with initial path
hitidx = select ( hits , - 1 ) ,
newpath = slice ( path , 0 , hitidx + 1 ) ,
newfrags = concat ( len ( newpath ) > 1 ? [ newpath ] : [ ] , remainder ) ,
outpath = concat ( slice ( path , hitidx , - 2 ) , foundfrag )
)
[ outpath , newfrags ]
) : let (
// Path still incomplete. Continue building it.
newpath = concat ( path , slice ( foundfrag , 1 , - 1 ) ) ,
newfrags = concat ( [ newpath ] , remainder )
)
assemble_a_path_from_fragments (
fragments = newfrags ,
rightmost = rightmost ,
eps = eps
) ;
// Function: assemble_path_fragments()
// Usage:
// assemble_path_fragments(subpaths);
// Description:
// Given a list of incomplete paths, assembles them together into complete closed paths if it can.
// Arguments:
// fragments = List of polylines to be assembled into complete polygons.
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
2020-03-11 22:14:16 -07:00
function assemble_path_fragments ( fragments , eps = EPSILON , _finished = [ ] ) =
2020-01-30 14:00:10 -08:00
len ( fragments ) = = 0 ? _finished :
let (
2020-03-11 22:14:16 -07:00
minxidx = min_index ( [
for ( frag = fragments ) min ( subindex ( frag , 0 ) )
] ) ,
result_l = assemble_a_path_from_fragments (
2020-04-01 01:36:48 -07:00
fragments = fragments ,
startfrag = minxidx ,
2020-03-11 22:14:16 -07:00
rightmost = false ,
eps = eps
) ,
result_r = assemble_a_path_from_fragments (
2020-04-01 01:36:48 -07:00
fragments = fragments ,
startfrag = minxidx ,
2020-03-11 22:14:16 -07:00
rightmost = true ,
2020-01-30 14:00:10 -08:00
eps = eps
) ,
2020-03-11 22:14:16 -07:00
l_area = abs ( polygon_area ( result_l [ 0 ] ) ) ,
r_area = abs ( polygon_area ( result_r [ 0 ] ) ) ,
result = l_area < r_area ? result_l : result_r ,
newpath = cleanup_path ( result [ 0 ] ) ,
2020-01-30 14:00:10 -08:00
remainder = result [ 1 ] ,
finished = concat ( _finished , [ newpath ] )
) assemble_path_fragments (
fragments = remainder ,
2020-03-11 22:14:16 -07:00
eps = eps ,
2020-01-30 14:00:10 -08:00
_finished = finished
) ;
2019-03-22 21:13:18 -07:00
// Section: 2D Modules
// Module: modulated_circle()
// Description:
// Creates a 2D polygon circle, modulated by one or more superimposed sine waves.
// Arguments:
2017-08-29 17:00:16 -07:00
// r = radius of the base circle.
2019-03-22 21:13:18 -07:00
// sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle.
// Example(2D):
2017-08-29 17:00:16 -07:00
// modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6);
module modulated_circle ( r = 40 , sines = [ 10 ] )
{
freqs = len ( sines ) > 0 ? [ for ( i = sines ) i [ 1 ] ] : [ 5 ] ;
points = [
for ( a = [ 0 : ( 360 / segs ( r ) / max ( freqs ) ) : 360 ] )
let ( nr = r + sum_of_sines ( a , sines ) ) [ nr * cos ( a ) , nr * sin ( a ) ]
] ;
polygon ( points ) ;
}
2019-03-22 21:13:18 -07:00
// Section: 3D Modules
// Module: extrude_from_to()
// Description:
// Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
// Arguments:
2019-02-03 00:12:37 -08:00
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
2019-03-22 21:13:18 -07:00
// Example(FlatSpin):
2019-02-03 00:12:37 -08:00
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
2020-03-24 19:11:05 -07:00
// xcopies(3) circle(3, $fn=32);
2019-02-03 00:12:37 -08:00
// }
module extrude_from_to ( pt1 , pt2 , convexity = undef , twist = undef , scale = undef , slices = undef ) {
2019-02-06 03:35:13 -08:00
rtp = xyz_to_spherical ( pt2 - pt1 ) ;
2019-02-03 00:12:37 -08:00
translate ( pt1 ) {
2019-02-06 03:35:13 -08:00
rotate ( [ 0 , rtp [ 2 ] , rtp [ 1 ] ] ) {
linear_extrude ( height = rtp [ 0 ] , convexity = convexity , center = false , slices = slices , twist = twist , scale = scale ) {
children ( ) ;
2019-02-03 00:12:37 -08:00
}
}
}
}
2019-06-24 00:32:13 -07:00
// Module: spiral_sweep()
2019-03-22 21:13:18 -07:00
// Description:
// Takes a closed 2D polyline path, centered on the XY plane, and
// extrudes it along a 3D spiral path of a given radius, height and twist.
// Arguments:
2017-08-29 17:00:16 -07:00
// polyline = Array of points of a polyline path, to be extruded.
// h = height of the spiral to extrude along.
// r = radius of the spiral to extrude along.
// twist = number of degrees of rotation to spiral up along height.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-05-03 11:32:40 -07:00
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2017-08-29 17:00:16 -07:00
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
2019-06-24 00:32:13 -07:00
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
2020-02-29 13:16:15 -08:00
module spiral_sweep ( polyline , h , r , twist = 360 , center , anchor , spin = 0 , orient = UP ) {
2020-04-19 14:17:37 -07:00
polyline = path3d ( polyline ) ;
2017-08-29 17:00:16 -07:00
pline_count = len ( polyline ) ;
steps = ceil ( segs ( r ) * ( twist / 360 ) ) ;
2020-02-29 13:16:15 -08:00
anchor = get_anchor ( anchor , center , BOT , BOT ) ;
2017-08-29 17:00:16 -07:00
poly_points = [
for (
2019-05-26 22:34:46 -07:00
p = [ 0 : 1 : steps ]
2017-08-29 17:00:16 -07:00
) let (
a = twist * ( p / steps ) ,
dx = r * cos ( a ) ,
dy = r * sin ( a ) ,
dz = h * ( p / steps ) ,
2020-03-15 11:50:41 -07:00
pts = apply_list (
2019-03-22 21:13:18 -07:00
polyline , [
2019-05-13 23:11:55 -07:00
affine3d_xrot ( 90 ) ,
affine3d_zrot ( a ) ,
affine3d_translate ( [ dx , dy , dz - h / 2 ] )
2019-03-22 21:13:18 -07:00
]
)
) for ( pt = pts ) pt
2017-08-29 17:00:16 -07:00
] ;
poly_faces = concat (
2019-05-26 22:34:46 -07:00
[ [ for ( b = [ 0 : 1 : pline_count - 1 ] ) b ] ] ,
2017-08-29 17:00:16 -07:00
[
for (
2019-05-26 22:34:46 -07:00
p = [ 0 : 1 : steps - 1 ] ,
b = [ 0 : 1 : pline_count - 1 ] ,
2017-08-29 17:00:16 -07:00
i = [ 0 : 1 ]
) let (
b2 = ( b = = pline_count - 1 ) ? 0 : b + 1 ,
p0 = p * pline_count + b ,
p1 = p * pline_count + b2 ,
p2 = ( p + 1 ) * pline_count + b2 ,
p3 = ( p + 1 ) * pline_count + b ,
pt = ( i = = 0 ) ? [ p0 , p2 , p1 ] : [ p0 , p3 , p2 ]
) pt
] ,
[ [ for ( b = [ pline_count - 1 : - 1 : 0 ] ) b + ( steps ) * pline_count ] ]
) ;
2018-09-01 02:38:47 -07:00
tri_faces = triangulate_faces ( poly_points , poly_faces ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , r = r , l = h ) {
2019-03-22 21:13:18 -07:00
polyhedron ( points = poly_points , faces = tri_faces , convexity = 10 ) ;
2019-04-19 17:02:17 -07:00
children ( ) ;
2019-03-22 21:13:18 -07:00
}
2017-08-29 17:00:16 -07:00
}
2019-06-24 00:32:13 -07:00
// Module: path_extrude()
2019-03-22 21:13:18 -07:00
// Description:
// Extrudes 2D children along a 3D polyline path. This may be slow.
// Arguments:
2018-11-24 01:37:56 -08:00
// path = array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through.
// clipsize = increase if artifacts are left. Default: 1000
2019-03-22 21:13:18 -07:00
// Example(FlatSpin):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
2019-06-24 00:32:13 -07:00
// path_extrude(path) circle(r=10, $fn=6);
module path_extrude ( path , convexity = 10 , clipsize = 100 ) {
2019-02-02 02:19:05 -08:00
function polyquats ( path , q = Q_Ident ( ) , v = [ 0 , 0 , 1 ] , i = 0 ) = let (
v2 = path [ i + 1 ] - path [ i ] ,
2019-03-25 03:52:09 -07:00
ang = vector_angle ( v , v2 ) ,
2020-03-02 19:30:20 -08:00
axis = ang > 0.001 ? unit ( cross ( v , v2 ) ) : [ 0 , 0 , 1 ] ,
2019-02-02 02:19:05 -08:00
newq = Q_Mul ( Quat ( axis , ang ) , q ) ,
dist = norm ( v2 )
) i < ( len ( path ) - 2 ) ?
concat ( [ [ dist , newq , ang ] ] , polyquats ( path , newq , v2 , i + 1 ) ) :
[ [ dist , newq , ang ] ] ;
epsilon = 0.0001 ; // Make segments ever so slightly too long so they overlap.
2018-11-24 01:37:56 -08:00
ptcount = len ( path ) ;
2019-02-02 02:19:05 -08:00
pquats = polyquats ( path ) ;
2019-05-26 22:34:46 -07:00
for ( i = [ 0 : 1 : ptcount - 2 ] ) {
2018-11-24 01:37:56 -08:00
pt1 = path [ i ] ;
pt2 = path [ i + 1 ] ;
2019-02-02 02:19:05 -08:00
dist = pquats [ i ] [ 0 ] ;
q = pquats [ i ] [ 1 ] ;
difference ( ) {
translate ( pt1 ) {
Qrot ( q ) {
down ( clipsize / 2 / 2 ) {
linear_extrude ( height = dist + clipsize / 2 , convexity = convexity ) {
2018-11-24 01:37:56 -08:00
children ( ) ;
}
}
}
2019-02-02 02:19:05 -08:00
}
translate ( pt1 ) {
hq = ( i > 0 ) ? Q_Slerp ( q , pquats [ i - 1 ] [ 1 ] , 0.5 ) : q ;
Qrot ( hq ) down ( clipsize / 2 + epsilon ) cube ( clipsize , center = true ) ;
}
translate ( pt2 ) {
hq = ( i < ptcount - 2 ) ? Q_Slerp ( q , pquats [ i + 1 ] [ 1 ] , 0.5 ) : q ;
Qrot ( hq ) up ( clipsize / 2 + epsilon ) cube ( clipsize , center = true ) ;
2018-11-24 01:37:56 -08:00
}
}
}
}
2019-07-01 19:25:00 -04:00
// Module: path_spread()
//
// Description:
// Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed
// with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false.
// If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths.
2019-08-09 13:07:18 -07:00
// If you specify `sp` then the copies will start at `sp`.
2019-07-01 19:25:00 -04:00
//
// Usage:
// path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ...
//
// Arguments:
// path = the path where children are placed
// n = number of copies
// spacing = space between copies
// sp = if given, copies will start distance sp from the path start and spread beyond that point
//
// Side Effects:
// `$pos` is set to the center of each copy
2019-08-09 13:07:18 -07:00
// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`.
2019-07-01 19:25:00 -04:00
// `$dir` is set to the direction vector of the path at the point where the copy is placed.
// `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point
2019-08-09 13:07:18 -07:00
//
2019-07-01 19:25:00 -04:00
// Example(2D):
// spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100;
// stroke(spiral,width=.25);
// color("red") path_spread(spiral, n=100) circle(r=1);
// Example(2D):
// circle = regular_ngon(n=64, or=10);
2019-07-12 13:11:13 -07:00
// stroke(circle,width=1,closed=true);
2019-07-01 19:25:00 -04:00
// color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3);
2019-08-09 13:07:18 -07:00
// Example(2D):
2019-07-01 19:25:00 -04:00
// heptagon = regular_ngon(n=7, or=10);
2019-07-12 13:11:13 -07:00
// stroke(heptagon, width=1, closed=true);
2019-07-01 19:25:00 -04:00
// color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT);
// Example(2D): Direction at the corners is the average of the two adjacent edges
// heptagon = regular_ngon(n=7, or=10);
2019-07-12 13:11:13 -07:00
// stroke(heptagon, width=1, closed=true);
2019-07-01 19:25:00 -04:00
// color("purple") path_spread(heptagon, n=7, closed=true) square([0.5,3],anchor=FRONT);
// Example(2D): Don't rotate the children
// heptagon = regular_ngon(n=7, or=10);
2019-07-12 13:11:13 -07:00
// stroke(heptagon, width=1, closed=true);
2019-07-01 19:25:00 -04:00
// color("red") path_spread(heptagon, n=9, closed=true, rotate_children=false) square([0.5,3],anchor=FRONT);
// Example(2D): Open path, specify `n`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5) square([.2,1.5],anchor=FRONT);
// Example(2D)): Open path, specify `n` and `spacing`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5, spacing=1) square([.2,1.5],anchor=FRONT);
// Example(2D)): Closed path, specify `n` and `spacing`, copies centered around circle[0]
// circle = regular_ngon(n=64,or=10);
2019-07-12 13:11:13 -07:00
// stroke(circle,width=.1,closed=true);
2019-07-01 19:25:00 -04:00
// color("red")path_spread(circle, n=10, spacing=1, closed=true) square([.2,1.5],anchor=FRONT);
// Example(2D): Open path, specify `spacing`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, spacing=5) square([.2,1.5],anchor=FRONT);
// Example(2D): Open path, specify `sp`
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
// stroke(sinwav,width=.1);
// color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT);
2019-08-09 13:07:18 -07:00
// Example(2D):
2019-07-01 19:25:00 -04:00
// wedge = arc(angle=[0,100], r=10, $fn=64);
// difference(){
// polygon(concat([[0,0]],wedge));
// path_spread(wedge,n=5,spacing=3) fwd(.1)square([1,4],anchor=FRONT);
// }
// Example(Spin): 3d example, with children rotated into the plane of the path
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
// path_spread(tilted_circle, n=15,closed=true) {
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
// }
// Example(Spin): 3d example, with rotate_children set to false
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
// path_spread(tilted_circle, n=25,rotate_children=false,closed=true) {
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
// }
module path_spread ( path , n , spacing , sp = undef , rotate_children = true , closed = false )
{
2019-08-09 13:07:18 -07:00
length = path_length ( path , closed ) ;
distances = is_def ( sp ) ? (
is_def ( n ) && is_def ( spacing ) ? list_range ( s = sp , step = spacing , n = n ) :
is_def ( n ) ? list_range ( s = sp , e = length , n = n ) :
list_range ( s = sp , step = spacing , e = length )
) : is_def ( n ) && is_undef ( spacing ) ? (
closed ?
let ( range = list_range ( s = 0 , e = length , n = n + 1 ) ) slice ( range , 0 , - 2 ) :
list_range ( s = 0 , e = length , n = n )
) : (
let (
n = is_def ( n ) ? n : floor ( length / spacing ) + ( closed ? 0 : 1 ) ,
ptlist = list_range ( s = 0 , step = spacing , n = n ) ,
listcenter = mean ( ptlist )
) closed ?
sort ( [ for ( entry = ptlist ) posmod ( entry - listcenter , length ) ] ) :
[ for ( entry = ptlist ) entry + length / 2 - listcenter ]
) ;
distOK = min ( distances ) >= 0 && max ( distances ) < = length ;
assert ( distOK , "Cannot fit all of the copies" ) ;
cutlist = path_cut ( path , distances , closed , direction = true ) ;
planar = len ( path [ 0 ] ) = = 2 ;
if ( true ) for ( i = [ 0 : 1 : len ( cutlist ) - 1 ] ) {
$ pos = cutlist [ i ] [ 0 ] ;
$ idx = i ;
$ dir = rotate_children ? ( planar ? [ 1 , 0 ] : [ 1 , 0 , 0 ] ) : cutlist [ i ] [ 2 ] ;
$ normal = rotate_children ? ( planar ? [ 0 , 1 ] : [ 0 , 0 , 1 ] ) : cutlist [ i ] [ 3 ] ;
translate ( $ pos ) {
if ( rotate_children ) {
if ( planar ) {
rot ( from = [ 0 , 1 ] , to = cutlist [ i ] [ 3 ] ) children ( ) ;
} else {
multmatrix ( affine2d_to_3d ( transpose ( [ cutlist [ i ] [ 2 ] , cross ( cutlist [ i ] [ 3 ] , cutlist [ i ] [ 2 ] ) , cutlist [ i ] [ 3 ] ] ) ) )
children ( ) ;
}
} else {
children ( ) ;
}
}
}
}
2019-07-01 19:25:00 -04:00
// Function: path_cut()
//
// Usage
// path_cut(path, dists, [closed], [direction])
//
// Description:
2019-08-09 13:07:18 -07:00
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
// points and indices of the next point in the path after that point. So for example, a return
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
// this point is path[5]. If the path is too short then path_cut returns undef. If you set
// `direction` to true then `path_cut` will also return the tangent vector to the path and a normal
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
// direction vectors will be `[point, next_index, tangent, normal]`.
2019-07-01 19:25:00 -04:00
//
// Arguments:
// path = path to cut
2019-08-09 13:07:18 -07:00
// dists = distances where the path should be cut (a list) or a scalar single distance
2019-07-01 19:25:00 -04:00
// closed = set to true if the curve is closed. Default: false
2019-08-09 13:07:18 -07:00
// direction = set to true to return direction vectors. Default: false
2019-07-12 13:21:23 -07:00
//
2019-07-01 19:25:00 -04:00
// Example(NORENDER):
// square=[[0,0],[1,0],[1,1],[0,1]];
// path_cut(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
// path_cut(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
// path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
// path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
function path_cut ( path , dists , closed = false , direction = false ) =
2019-08-09 13:07:18 -07:00
let ( long_enough = len ( path ) >= ( closed ? 3 : 2 ) )
assert ( long_enough , len ( path ) < 2 ? "Two points needed to define a path" : "Closed path must include three points" )
! is_list ( dists ) ? path_cut ( path , [ dists ] , closed , direction ) [ 0 ] :
let ( cuts = _path_cut ( path , dists , closed ) )
! direction ? cuts : let (
dir = _path_cuts_dir ( path , cuts , closed ) ,
normals = _path_cuts_normals ( path , cuts , dir , closed )
) zip ( cuts , array_group ( dir , 1 ) , array_group ( normals , 1 ) ) ;
2019-07-01 19:25:00 -04:00
// Main recursive path cut function
2019-08-09 13:07:18 -07:00
function _path_cut ( path , dists , closed = false , pind = 0 , dtotal = 0 , dind = 0 , result = [ ] ) =
dind = = len ( dists ) ? result :
let (
lastpt = len ( result ) > 0 ? select ( result , - 1 ) [ 0 ] : [ ] ,
dpartial = len ( result ) = = 0 ? 0 : norm ( lastpt - path [ pind ] ) ,
nextpoint = dpartial > dists [ dind ] - dtotal ?
[ lerp ( lastpt , path [ pind ] , ( dists [ dind ] - dtotal ) / dpartial ) , pind ] :
_path_cut_single ( path , dists [ dind ] - dtotal - dpartial , closed , pind )
) is_undef ( nextpoint ) ?
2020-03-04 23:22:39 -05:00
concat ( result , repeat ( undef , len ( dists ) - dind ) ) :
2019-08-09 13:07:18 -07:00
_path_cut ( path , dists , closed , nextpoint [ 1 ] , dists [ dind ] , dind + 1 , concat ( result , [ nextpoint ] ) ) ;
2019-07-01 19:25:00 -04:00
// Search for a single cut point in the path
2019-08-09 13:07:18 -07:00
function _path_cut_single ( path , dist , closed = false , ind = 0 , eps = 1e-7 ) =
ind >= len ( path ) ? undef :
ind = = len ( path ) - 1 && ! closed ? ( dist < eps ? [ path [ ind ] , ind + 1 ] : undef ) :
let ( d = norm ( path [ ind ] - select ( path , ind + 1 ) ) ) d > dist ?
[ lerp ( path [ ind ] , select ( path , ind + 1 ) , dist / d ) , ind + 1 ] :
_path_cut_single ( path , dist - d , closed , ind + 1 , eps ) ;
2019-07-01 19:25:00 -04:00
// Find normal directions to the path, coplanar to local part of the path
// Or return a vector parallel to the x-y plane if the above fails
function _path_cuts_normals ( path , cuts , dirs , closed = false ) =
2019-08-09 13:07:18 -07:00
[ for ( i = [ 0 : len ( cuts ) - 1 ] )
len ( path [ 0 ] ) = = 2 ? [ - dirs [ i ] . y , dirs [ i ] . x ] : (
let (
plane = len ( path ) < 3 ? undef :
let ( start = max ( min ( cuts [ i ] [ 1 ] , len ( path ) - 1 ) , 2 ) ) _path_plane ( path , start , start - 2 )
)
plane = = undef ?
2020-03-02 19:30:20 -08:00
unit ( [ - dirs [ i ] . y , dirs [ i ] . x , 0 ] ) :
unit ( cross ( dirs [ i ] , cross ( plane [ 0 ] , plane [ 1 ] ) ) )
2019-08-09 13:07:18 -07:00
)
] ;
2019-07-01 19:25:00 -04:00
// Scan from the specified point (ind) to find a noncoplanar triple to use
2019-08-09 13:07:18 -07:00
// to define the plane of the path.
2019-07-01 19:25:00 -04:00
function _path_plane ( path , ind , i , closed ) =
2019-08-09 13:07:18 -07:00
i < ( closed ? - 1 : 0 ) ? undef :
! collinear ( path [ ind ] , path [ ind - 1 ] , select ( path , i ) ) ?
[ select ( path , i ) - path [ ind - 1 ] , path [ ind ] - path [ ind - 1 ] ] :
_path_plane ( path , ind , i - 1 ) ;
2019-07-01 19:25:00 -04:00
// Find the direction of the path at the cut points
function _path_cuts_dir ( path , cuts , closed = false , eps = 1e-2 ) =
2019-08-09 13:07:18 -07:00
[ for ( ind = [ 0 : len ( cuts ) - 1 ] )
let (
nextind = cuts [ ind ] [ 1 ] ,
2020-03-02 19:30:20 -08:00
nextpath = unit ( select ( path , nextind + 1 ) - select ( path , nextind ) ) ,
thispath = unit ( select ( path , nextind ) - path [ nextind - 1 ] ) ,
lastpath = unit ( path [ nextind - 1 ] - select ( path , nextind - 2 ) ) ,
2019-08-09 13:07:18 -07:00
nextdir =
nextind = = len ( path ) && ! closed ? lastpath :
( nextind < = len ( path ) - 2 || closed ) && approx ( cuts [ ind ] [ 0 ] , path [ nextind ] , eps ) ?
2020-03-02 19:30:20 -08:00
unit ( nextpath + thispath ) :
2019-08-09 13:07:18 -07:00
( nextind > 1 || closed ) && approx ( cuts [ ind ] [ 0 ] , path [ nextind - 1 ] , eps ) ?
2020-03-02 19:30:20 -08:00
unit ( thispath + lastpath ) :
2019-08-09 13:07:18 -07:00
thispath
) nextdir
] ;
2019-03-22 21:13:18 -07:00
2019-11-19 17:42:11 -05:00
// Input `data` is a list that sums to an integer.
// Returns rounded version of input data so that every
// entry is rounded to an integer and the sum is the same as
// that of the input. Works by rounding an entry in the list
// and passing the rounding error forward to the next entry.
// This will generally distribute the error in a uniform manner.
function _sum_preserving_round ( data , index = 0 ) =
2020-03-01 16:12:51 -08:00
index = = len ( data ) - 1 ? list_set ( data , len ( data ) - 1 , round ( data [ len ( data ) - 1 ] ) ) :
let (
newval = round ( data [ index ] ) ,
error = newval - data [ index ]
) _sum_preserving_round (
list_set ( data , [ index , index + 1 ] , [ newval , data [ index + 1 ] - error ] ) ,
index + 1
) ;
2019-11-19 17:42:11 -05:00
2019-11-19 18:03:47 -08:00
// Function: subdivide_path()
// Usage:
// newpath = subdivide_path(path, N, method);
2019-11-19 17:42:11 -05:00
// Description:
// Takes a path as input (closed or open) and subdivides the path to produce a more
// finely sampled path. The new points can be distributed proportional to length
// (`method="length"`) or they can be divided up evenly among all the path segments
// (`method="segment"`). If the extra points don't fit evenly on the path then the
// algorithm attempts to distribute them uniformly. The `exact` option requires that
// the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output path may have a different number of
// points due to rounding error.
//
// With the `"segment"` method you can also specify a vector of lengths. This vector,
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
// double counting the endpoints, which are shared by pairs of segments, so that for
// a closed polygon the total number of points will be sum(N). Note that with an open
// path there is an extra point at the end, so the number of points will be sum(N)+1.
// Arguments:
2019-11-19 18:03:47 -08:00
// path = path to subdivide
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
// closed = set to false if the path is open. Default: True
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
2019-12-06 19:16:31 -08:00
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
2019-11-19 17:42:11 -05:00
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 12);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.2,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.2,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D):
2019-11-19 18:03:47 -08:00
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D): Specifying different numbers of points on each segment
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
// mypath = subdivide_path(pentagon(side=2), 17);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)circle(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
// Example(FlatSpin): Three-dimensional paths also work
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
2020-03-24 18:31:22 -07:00
// move_copies(mypath)sphere(r=.1,$fn=32);
2019-11-19 17:42:11 -05:00
function subdivide_path ( path , N , closed = true , exact = true , method = "length" ) =
2020-03-01 16:12:51 -08:00
assert ( is_path ( path ) )
assert ( method = = "length" || method = = "segment" )
assert ( ( is_num ( N ) && N > 0 ) || is_vector ( N ) , "Parameter N to subdivide_path must be postive number or vector" )
let (
count = len ( path ) - ( closed ? 0 : 1 ) ,
add_guess = method = = "segment" ? (
is_list ( N ) ? (
assert ( len ( N ) = = count , "Vector parameter N to subdivide_path has the wrong length" )
add_scalar ( N , - 1 )
2020-03-04 23:22:39 -05:00
) : repeat ( ( N - len ( path ) ) / count , count )
2020-03-01 16:12:51 -08:00
) : // method=="length"
assert ( is_num ( N ) , "Parameter N to subdivide path must be a number when method=\"length\"" )
let (
path_lens = concat (
[ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ,
closed ? [ norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) ] : [ ]
) ,
add_density = ( N - len ( path ) ) / sum ( path_lens )
)
path_lens * add_density ,
add = exact ? _sum_preserving_round ( add_guess ) :
[ for ( val = add_guess ) round ( val ) ]
) concat (
[
for ( i = [ 0 : 1 : count ] ) each [
for ( j = [ 0 : 1 : add [ i ] ] )
lerp ( path [ i ] , select ( path , i + 1 ) , j / ( add [ i ] + 1 ) )
]
] ,
closed ? [ ] : [ select ( path , - 1 ) ]
) ;
2019-11-19 17:42:11 -05:00
2020-02-27 17:32:03 -05:00
// Function: path_length_fractions()
// Usage: path_length_fractions(path, [closed])
// Description:
// Returns the distance fraction of each point in the path along the path, so the first
// point is zero and the final point is 1. If the path is closed the length of the output
// will have one extra point because of the final connecting segment that connects the last
// point of the path to the first point.
function path_length_fractions ( path , closed = false ) =
2020-03-01 16:12:51 -08:00
assert ( is_path ( path ) )
assert ( is_bool ( closed ) )
let (
lengths = [
0 ,
for ( i = [ 0 : 1 : len ( path ) - ( closed ? 1 : 2 ) ] )
norm ( select ( path , i + 1 ) - path [ i ] )
] ,
partial_len = cumsum ( lengths ) ,
total_len = select ( partial_len , - 1 )
) partial_len / total_len ;
2020-02-27 17:32:03 -05:00
2017-08-29 17:00:16 -07:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap