BOSL2/geometry.scad

894 lines
28 KiB
OpenSCAD
Raw Normal View History

//////////////////////////////////////////////////////////////////////
// LibFile: geometry.scad
// Geometry helpers.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Lines and Triangles
// Function: point_on_segment2d()
// Usage:
// point_on_segment2d(point, edge);
// Description:
// Determine if the point is on the line segment between two points.
// Returns true if yes, and false if not.
// Arguments:
2019-04-30 23:45:05 -07:00
// point = The point to test.
// edge = Array of two points forming the line segment to test against.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_on_segment2d(point, edge, eps=EPSILON) =
approx(point,edge[0],eps=eps) || approx(point,edge[1],eps=eps) || // The point is an endpoint
sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the
&& sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints
2019-06-17 18:55:10 -07:00
&& approx(point_left_of_segment2d(point, edge),0,eps=eps); // and on the line defined by edge
// Function: point_left_of_segment2d()
// Usage:
// point_left_of_segment2d(point, edge);
// Description:
// Return >0 if point is left of the line defined by edge.
// Return =0 if point is on the line.
// Return <0 if point is right of the line.
// Arguments:
// point = The point to check position of.
// edge = Array of two points forming the line segment to test against.
function point_left_of_segment2d(point, edge) =
(edge[1].x-edge[0].x) * (point.y-edge[0].y) - (point.x-edge[0].x) * (edge[1].y-edge[0].y);
// Internal non-exposed function.
2019-06-17 18:55:10 -07:00
function _point_above_below_segment(point, edge, eps=EPSILON) =
edge[0].y <= point.y+eps? (
(edge[1].y > point.y-eps && point_left_of_segment2d(point, edge) > eps)? 1 : 0
) : (
2019-06-17 18:55:10 -07:00
(edge[1].y <= point.y+eps && point_left_of_segment2d(point, edge) < eps)? -1 : 0
);
// Function: right_of_line2d()
// Usage:
// right_of_line2d(line, pt)
// Description:
// Returns true if the given point is to the left of the extended line defined by two points on it.
// Arguments:
// line = A list of two points.
// pt = The point to test.
function right_of_line2d(line, pt) =
triangle_area2d(line[0], line[1], pt) < 0;
// Function: collinear()
// Usage:
// collinear(a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// a = First point.
// b = Second point.
// c = Third point.
2019-04-30 23:45:05 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function collinear(a, b, c, eps=EPSILON) =
2019-04-30 23:45:05 -07:00
distance_from_line([a,b], c) < eps;
// Function: collinear_indexed()
// Usage:
// collinear_indexed(points, a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// points = A list of points.
// a = Index in `points` of first point.
// b = Index in `points` of second point.
// c = Index in `points` of third point.
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
function collinear_indexed(points, a, b, c, eps=EPSILON) =
let(
p1=points[a],
p2=points[b],
p3=points[c]
2019-04-30 23:45:05 -07:00
) collinear(p1, p2, p3, eps);
// Function: distance_from_line()
// Usage:
// distance_from_line(line, pt);
// Description:
// Finds the perpendicular distance of a point `pt` from the line `line`.
// Arguments:
// line = A list of two points, defining a line that both are on.
// pt = A point to find the distance of from the line.
// Example:
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
function distance_from_line(line, pt) =
let(a=line[0], n=normalize(line[1]-a), d=a-pt)
norm(d - ((d * n) * n));
// Function: line_normal()
// Usage:
// line_normal([P1,P2])
// line_normal(p1,p2)
// Description: Returns the 2D normal vector to the given 2D line.
// Arguments:
// p1 = First point on 2D line.
// p2 = Second point on 2D line.
function line_normal(p1,p2) =
is_undef(p2)? line_normal(p1[0],p1[1]) :
normalize([p1.y-p2.y,p2.x-p1.x]);
// 2D Line intersection from two segments.
// This function returns [p,t,u] where p is the intersection point of
// the lines defined by the two segments, t is the bezier parameter
// for the intersection point on s1 and u is the bezier parameter for
// the intersection point on s2. The bezier parameter runs over [0,1]
// for each segment, so if it is in this range, then the intersection
// lies on the segment. Otherwise it lies somewhere on the extension
// of the segment.
2019-06-17 18:55:10 -07:00
function _general_line_intersection(s1,s2,eps=EPSILON) =
let(
denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]])
) approx(denominator,0,eps=eps)? [undef,undef,undef] : let(
t = det2([s1[0],s2[0]]-s2) / denominator,
u = det2([s1[0],s1[0]]-[s1[1],s2[1]]) /denominator
) [s1[0]+t*(s1[1]-s1[0]), t, u];
// Function: line_intersection()
// Usage:
// line_intersection(l1, l2);
// Description:
// Returns the 2D intersection point of two unbounded 2D lines.
// Returns `undef` if the lines are parallel.
// Arguments:
// l1 = First 2D line, given as a list of two 2D points on the line.
// l2 = Second 2D line, given as a list of two 2D points on the line.
2019-06-17 18:55:10 -07:00
function line_intersection(l1,l2,eps=EPSILON) =
let(isect = _general_line_intersection(l1,l2,eps=eps)) isect[0];
// Function: segment_intersection()
// Usage:
// segment_intersection(s1, s2);
// Description:
// Returns the 2D intersection point of two 2D line segments.
// Returns `undef` if they do not intersect.
// Arguments:
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function segment_intersection(s1,s2,eps=EPSILON) =
let(
2019-06-17 18:55:10 -07:00
isect = _general_line_intersection(s1,s2,eps=eps)
) isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
// Function: line_segment_intersection()
// Usage:
// line_segment_intersection(line, segment);
// Description:
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
// Returns `undef` if they do not intersect.
// Arguments:
// line = The unbounded 2D line, defined by two 2D points on the line.
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function line_segment_intersection(line,segment,eps=EPSILON) =
let(
2019-06-17 18:55:10 -07:00
isect = _general_line_intersection(line,segment,eps=eps)
) isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
// Function: find_circle_2tangents()
// Usage:
// find_circle_2tangents(pt1, pt2, pt3, r|d);
// Description:
// Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point.
// Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`.
// If the rays given are 180º apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle.
// Arguments:
// pt1 = A point that the first ray passes though.
// pt2 = The starting point of both rays.
// pt3 = A point that the second ray passes though.
// r = The radius of the circle to find.
// d = The diameter of the circle to find.
function find_circle_2tangents(pt1, pt2, pt3, r=undef, d=undef) =
let(
r = get_radius(r=r, d=d, dflt=undef),
v1 = normalize(pt1 - pt2),
v2 = normalize(pt3 - pt2)
) approx(norm(v1+v2))? undef :
assert(r!=undef, "Must specify either r or d.")
let(
a = vector_angle(v1,v2),
n = vector_axis(v1,v2),
v = normalize(mean([v1,v2])),
s = r/sin(a/2),
cp = pt2 + s*v/norm(v)
) [cp, n];
// Function: triangle_area2d()
// Usage:
// triangle_area2d(a,b,c);
// Description:
// Returns the area of a triangle formed between three vertices.
// Result will be negative if the points are in clockwise order.
// Examples:
// triangle_area2d([0,0], [5,10], [10,0]); // Returns -50
// triangle_area2d([10,0], [5,10], [0,0]); // Returns 50
function triangle_area2d(a,b,c) =
(
a.x * (b.y - c.y) +
b.x * (c.y - a.y) +
c.x * (a.y - b.y)
) / 2;
// Section: Planes
// Function: plane3pt()
// Usage:
// plane3pt(p1, p2, p3);
// Description:
2019-04-30 23:45:05 -07:00
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// p1 = The first point on the plane.
// p2 = The second point on the plane.
// p3 = The third point on the plane.
function plane3pt(p1, p2, p3) =
2019-04-30 23:45:05 -07:00
let(
p1=point3d(p1),
p2=point3d(p2),
p3=point3d(p3),
normal = normalize(cross(p3-p1, p2-p1))
) concat(normal, [normal*p1]);
// Function: plane3pt_indexed()
// Usage:
// plane3pt_indexed(points, i1, i2, i3);
// Description:
// Given a list of points, and the indexes of three of those points,
// generates the cartesian equation of a plane that those points all
// lie on. Requires that the three indexed points be non-collinear.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// points = A list of points.
// i1 = The index into `points` of the first point on the plane.
// i2 = The index into `points` of the second point on the plane.
// i3 = The index into `points` of the third point on the plane.
function plane3pt_indexed(points, i1, i2, i3) =
let(
p1 = points[i1],
p2 = points[i2],
2019-04-30 23:45:05 -07:00
p3 = points[i3]
) plane3pt(p1,p2,p3);
// Function: plane_normal()
// Usage:
// plane_normal(plane);
// Description:
// Returns the normal vector for the given plane.
function plane_normal(plane) = [for (i=[0:2]) plane[i]];
// Function: distance_from_plane()
// Usage:
// distance_from_plane(plane, point)
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
// The returned distance will be positive if the point is in front of the
// plane; on the same side of the plane as the normal of that plane points
// towards. If the point is behind the plane, then the distance returned
// will be negative. The normal of the plane is the same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function distance_from_plane(plane, point) =
[plane.x, plane.y, plane.z] * point - plane[3];
// Function: coplanar()
// Usage:
// coplanar(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
// Returns true if the point is on that plane.
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function coplanar(plane, point) =
abs(distance_from_plane(plane, point)) <= EPSILON;
// Function: in_front_of_plane()
// Usage:
// in_front_of_plane(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
// plane that the normal points towards. The normal of the plane is the
// same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function in_front_of_plane(plane, point) =
distance_from_plane(plane, point) > EPSILON;
// Section: Paths and Polygons
// Function: is_path()
// Usage:
// is_path(x);
// Description:
// Returns true if the given item looks like a path.
function is_path(x) = is_list(x) && is_vector(x.x);
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
// Description:
// Returns true if the first and last points in the given path are coincident.
2019-06-17 18:55:10 -07:00
function is_closed_path(path, eps=EPSILON) = approx(path[0], path[len(path)-1], eps=eps);
// Function: close_path(path)
// Usage:
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
2019-06-17 18:55:10 -07:00
function close_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? path : concat(path,[path[0]]);
// Function path_subselect()
// Usage:
// path_subselect(path,s1,u1,s2,u2):
// Description:
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
// Arguments:
// s1 = The number of the starting segment.
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
// s2 = The number of the ending segment.
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
function path_subselect(path,s1,u1,s2,u2) =
let(
l = len(path)-1,
u1 = s1<0? 0 : s1>l? 1 : u1,
u2 = s2<0? 0 : s2>l? 1 : u2,
s1 = constrain(s1,0,l),
s2 = constrain(s2,0,l),
pathout = concat(
(s1<l)? [lerp(path[s1],path[s1+1],u1)] : [],
[for (i=[s1+1:1:s2]) path[i]],
(s2<l)? [lerp(path[s2],path[s2+1],u2)] : []
)
) pathout;
// Function: assemble_path_fragments()
// Usage:
// assemble_path_fragments(subpaths);
// Description:
// Given a list of incomplete paths, assembles them together into complete closed paths if it can.
2019-06-17 18:55:10 -07:00
function assemble_path_fragments(subpaths,eps=EPSILON,_finished=[]) =
len(subpaths)<=1? concat(_finished, subpaths) :
let(
path = subpaths[0],
matches = [
for (i=[1:1:len(subpaths)-1], rev1=[0,1], rev2=[0,1]) let(
idx1 = rev1? 0 : len(path)-1,
idx2 = rev2? len(subpaths[i])-1 : 0
2019-06-17 18:55:10 -07:00
) if (approx(path[idx1], subpaths[i][idx2], eps=eps)) [
i, concat(
rev1? reverse(path) : path,
select(rev2? reverse(subpaths[i]) : subpaths[i], 1,-1)
)
]
]
) len(matches)==0? (
assemble_path_fragments(
select(subpaths,1,-1),
2019-06-17 18:55:10 -07:00
eps=eps,
_finished=concat(_finished, [path])
)
2019-06-17 18:55:10 -07:00
) : is_closed_path(matches[0][1], eps=eps)? (
assemble_path_fragments(
[for (i=[1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]],
2019-06-17 18:55:10 -07:00
eps=eps,
_finished=concat(_finished, [matches[0][1]])
)
) : (
assemble_path_fragments(
concat(
[matches[0][1]],
[for (i = [1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]]
),
2019-06-17 18:55:10 -07:00
eps=eps,
_finished=_finished
)
);
// Function: simplify_path()
// Description:
// Takes a path and removes unnecessary collinear points.
// Usage:
// simplify_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path(path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
// Function: simplify_path_indexed()
// Description:
// Takes a list of points, and a path as a list of indexes into `points`,
// and removes all path points that are unecessarily collinear.
// Usage:
// simplify_path_indexed(path, eps)
// Arguments:
// points = A list of points.
// path = A list of indexes into `points` that forms a path.
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
function simplify_path_indexed(points, path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
// Function: point_in_polygon()
// Usage:
// point_in_polygon(point, path)
// Description:
// This function tests whether the given point is inside, outside or on the boundary of
// the specified 2D polygon using the Winding Number method.
// The polygon is given as a list of 2D points, not including the repeated end point.
// Returns -1 if the point is outside the polyon.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies in the interior.
// The polygon does not need to be simple: it can have self-intersections.
// But the polygon cannot have holes (it must be simply connected).
// Rounding error may give mixed results for points on or near the boundary.
// Arguments:
// point = The point to check position of.
// path = The list of 2D path points forming the perimeter of the polygon.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_polygon(point, path, eps=EPSILON) =
// Does the point lie on any edges? If so return 0.
2019-06-17 18:55:10 -07:00
sum([for(i=[0:1:len(path)-1]) point_on_segment2d(point, select(path, i, i+1), eps=eps)?1:0])>0 ? 0 :
// Otherwise compute winding number and return 1 for interior, -1 for exterior
2019-06-17 18:55:10 -07:00
sum([for(i=[0:1:len(path)-1]) _point_above_below_segment(point, select(path, i, i+1), eps=eps)]) != 0 ? 1 : -1;
// Function: point_in_region()
// Usage:
// point_in_region(point, region);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against. Given as a list of polygon paths.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
(_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let(
2019-06-17 18:55:10 -07:00
pip = point_in_polygon(point, region[_i], eps=eps)
) approx(pip,0,eps=eps)? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>eps? 1 : 0));
// Function: pointlist_bounds()
// Usage:
// pointlist_bounds(pts);
// Description:
// Finds the bounds containing all the 2D or 3D points in `pts`.
// Returns [[minx, miny, minz], [maxx, maxy, maxz]]
// Arguments:
// pts = List of points.
function pointlist_bounds(pts) = [
[for (a=[0:2]) min([ for (x=pts) point3d(x)[a] ]) ],
[for (a=[0:2]) max([ for (x=pts) point3d(x)[a] ]) ]
];
// Function: polygon_clockwise()
// Usage:
// polygon_clockwise(path);
// Description:
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
// Results for complex (self-intersecting) polygon are indeterminate.
// Arguments:
// path = The list of 2D path points for the perimeter of the polygon.
function polygon_clockwise(path) =
let(
minx = min(subindex(path,0)),
lowind = search(minx, path, 0, 0),
lowpts = select(path, lowind),
miny = min(subindex(lowpts, 1)),
extreme_sub = search(miny, lowpts, 1, 1)[0],
extreme = select(lowind,extreme_sub)
)
det2( [select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0;
// Section: Regions and Boolean 2D Geometry
// Function: is_region()
// Usage:
// is_region(x);
// Description:
// Returns true if the given item looks like a region, which is a list of paths.
function is_region(x) = is_list(x) && is_path(x.x);
// Function: close_region(path)
// Usage:
// close_region(region);
// Description:
// Closes all paths within a given region.
2019-06-17 18:55:10 -07:00
function close_region(region, eps=EPSILON) = [for (path=region) close_path(path, eps=eps)];
// Function: region_path_crossings()
// Usage:
// region_path_crossings(path, region);
// Description:
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
// Arguments:
// path = The path to find crossings on.
// region = Region to test for crossings of.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function region_path_crossings(path, region, eps=EPSILON) = sort([
for (
s1=enumerate(pair(close_path(path))),
p=close_region(region),
s2=pair(p)
) let(
2019-06-17 18:55:10 -07:00
isect = _general_line_intersection(s1[1],s2,eps=eps)
) if (
!is_undef(isect) &&
isect[1] >= 0-eps && isect[1] < 1+eps &&
isect[2] >= 0-eps && isect[2] < 1+eps
)
[s1[0], isect[1]]
]);
2019-06-17 18:55:10 -07:00
function _split_path_at_region_crossings(path, region, eps=EPSILON) =
let(
path = deduplicate(path, eps=eps),
region = [for (path=region) deduplicate(path, eps=eps)],
xings = region_path_crossings(path, region, eps=eps),
2019-06-17 18:55:10 -07:00
crossings = deduplicate(
concat(
[[0,0]],
xings,
2019-06-17 18:55:10 -07:00
[[len(path)-2,1]]
),
eps=eps
),
subpaths = [
for (p = pair(crossings))
deduplicate(eps=eps,
path_subselect(path, p[0][0], p[0][1], p[1][0], p[1][1])
)
]
)
subpaths;
2019-06-17 18:55:10 -07:00
function _tag_subpaths(path, region, eps=EPSILON) =
let(
2019-06-17 18:55:10 -07:00
subpaths = _split_path_at_region_crossings(path, region, eps=eps),
tagged = [
2019-06-17 18:55:10 -07:00
for (sub = subpaths) let(
subpath = deduplicate(sub)
) if (len(sub)>1) let(
midpt = lerp(subpath[0], subpath[1], 0.5),
2019-06-17 18:55:10 -07:00
rel = point_in_region(midpt,region,eps=eps)
) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let(
2019-06-17 18:55:10 -07:00
vec = normalize(subpath[1]-subpath[0]),
perp = rot(90, planar=true, p=vec),
sidept = midpt + perp*0.01,
rel1 = point_in_polygon(sidept,path,eps=eps)>0,
rel2 = point_in_region(sidept,region,eps=eps)>0
) rel1==rel2? ["S", subpath] : ["U", subpath]
]
) tagged;
2019-06-17 18:55:10 -07:00
function _tag_region_subpaths(region1, region2, eps=EPSILON) =
[for (path=region1) each _tag_subpaths(path, region2, eps=eps)];
2019-06-17 18:55:10 -07:00
function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
let(
2019-06-17 18:55:10 -07:00
region1 = close_region(region1, eps=eps),
region2 = close_region(region2, eps=eps),
tagged1 = _tag_region_subpaths(region1, region2, eps=eps),
tagged2 = _tag_region_subpaths(region2, region1, eps=eps),
tagged = concat(
[for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]],
[for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]]
),
2019-06-17 18:55:10 -07:00
outregion = assemble_path_fragments(tagged, eps=eps)
) outregion;
// Function: union()
// Usage:
// union(regions);
// Description:
// Given a list of regions, where each region is a list of closed 2D paths, returns the region boolean union of all given regions.
// Arguments:
// regions = List of regions to union. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
// color("green") region(union(shape1,shape2));
2019-06-17 18:55:10 -07:00
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
len(regions)<=1? regions[0] :
union(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
2019-06-17 18:55:10 -07:00
[_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
2019-06-17 18:55:10 -07:00
),
eps=eps
);
// Function: difference()
// Usage:
// difference(regions);
// Description:
// Given a list of regions, where each region is a list of closed 2D paths, takes the first
// region and differences away all other regions from it. The resulting region is returned.
// Arguments:
// regions = List of regions to difference. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
// color("green") region(difference(shape1,shape2));
2019-06-17 18:55:10 -07:00
function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
len(regions)<=1? regions[0] :
difference(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
2019-06-17 18:55:10 -07:00
[_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
2019-06-17 18:55:10 -07:00
),
eps=eps
);
// Function: intersection()
// Usage:
// intersection(regions);
// Description:
// Given a list of regions, where each region is a list of closed 2D paths, returns the region boolean intersection of all given regions.
// Arguments:
// regions = List of regions to intersection. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
// color("green") region(intersection(shape1,shape2));
2019-06-17 18:55:10 -07:00
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
len(regions)<=1? regions[0] :
intersection(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
2019-06-17 18:55:10 -07:00
[_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
2019-06-17 18:55:10 -07:00
),
eps=eps
);
2019-06-18 00:09:51 -07:00
// Function&Module: exclusive_or()
// Usage:
2019-06-18 00:09:51 -07:00
// exclusive_or() {...}
// foo = exclusive_or(REGION1,REGION2);
// foo = exclusive_or(REGION1,REGION2,REGION3);
// foo = exclusive_or([REGIONS]);
// Description:
2019-06-18 00:09:51 -07:00
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean exclusive_or of all given regions, as a single region.
// When called as a module, performs a boolean exclusive-or of up to 10 children.
// Arguments:
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
// color("green") region(exclusive_or(shape1,shape2));
2019-06-17 18:55:10 -07:00
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
len(regions)<=1? regions[0] :
exclusive_or(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
[union([
2019-06-17 18:55:10 -07:00
difference([regions[0],regions[1]], eps=eps),
difference([regions[1],regions[0]], eps=eps)
], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
2019-06-17 18:55:10 -07:00
),
eps=eps
);
2019-06-18 00:09:51 -07:00
module exclusive_or() {
if ($children==1) {
children();
} else if ($children==2) {
difference() {
children(0);
children(1);
}
difference() {
children(1);
children(0);
}
} else if ($children==3) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
children(2);
}
} else if ($children==4) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
exclusive_or() {
children(2);
children(3);
}
}
} else if ($children==5) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
}
} else if ($children==6) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
}
} else if ($children==7) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
children(6);
}
} else if ($children==8) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
}
} else if ($children==9) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
}
} else if ($children==10) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
children(9);
}
}
}
// Module: region()
// Usage:
// region(r);
// Description:
// Creates 2D polygons for the given region.
// Example(2D):
// shape1 = circle(d=50);
// shape2 = circle(d=30);
// region([shape1,shape2]);
module region(r)
{
points = flatten(r);
paths = [
for (i=[0:1:len(r)-1]) let(
start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0)
) [for (k=[0:1:len(r[i])-1]) start+k]
];
polygon(points=points, paths=paths);
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap