2019-04-19 17:02:17 -07:00
//////////////////////////////////////////////////////////////////////
// LibFile: vectors.scad
// Vector math functions.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Vector Manipulation
2019-05-15 21:07:27 -07:00
// Function: is_vector()
// Usage:
// is_vector(v)
// Description:
// Returns true if the given value is a list, and at least the first item is a number.
2019-07-04 23:40:24 -07:00
// Example:
// is_vector([1,2,3]); // Returns: true
// is_vector([[1,2,3]]); // Returns: false
// is_vector(["foo"]); // Returns: false
// is_vector([]); // Returns: false
// is_vector(1); // Returns: false
// is_vector("foo"); // Returns: false
// is_vector(true); // Returns: false
2019-05-15 21:07:27 -07:00
function is_vector ( v ) = is_list ( v ) && is_num ( v [ 0 ] ) ;
2019-07-04 23:40:24 -07:00
// Function: add_scalar()
// Usage:
// add_scalar(v,s);
// Description:
// Given a vector and a scalar, returns the vector with the scalar added to each item in it.
// If given a list of vectors, recursively adds the scalar to the each vector.
// Arguments:
// v = The initial list of values.
// s = A scalar value to add to every item in the vector.
// Example:
// add_scalar([1,2,3],3); // Returns: [4,5,6]
// add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
function add_scalar ( v , s ) = [ for ( x = v ) is_list ( x ) ? add_scalar ( x , s ) : x + s ] ;
2019-12-26 21:42:23 -08:00
// Function: vang()
// Usage:
// theta = vang([X,Y]);
// theta_phi = vang([X,Y,Z]);
// Description:
// Given a 2D vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
// Given a 3D vector, returns [THETA,PHI] where THETA is the number of degrees counter-clockwise from X+ on the XY plane, and PHI is the number of degrees up from the X+ axis along the XZ plane.
function vang ( v ) =
len ( v ) = = 2 ? atan2 ( v . y , v . x ) :
let ( res = xyz_to_spherical ( v ) ) [ res [ 1 ] , 90 - res [ 2 ] ] ;
2019-04-19 17:02:17 -07:00
// Function: vmul()
// Description:
// Element-wise vector multiplication. Multiplies each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the products.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
2019-05-26 22:34:46 -07:00
function vmul ( v1 , v2 ) = [ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] * v2 [ i ] ] ;
2019-04-19 17:02:17 -07:00
// Function: vdiv()
// Description:
// Element-wise vector division. Divides each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the quotients.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
2019-05-26 22:34:46 -07:00
function vdiv ( v1 , v2 ) = [ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] / v2 [ i ] ] ;
2019-04-19 17:02:17 -07:00
// Function: vabs()
// Description: Returns a vector of the absolute value of each element of vector `v`.
// Arguments:
// v = The vector to get the absolute values of.
2019-07-04 23:40:24 -07:00
// Example:
// vabs([-1,3,-9]); // Returns: [1,3,9]
2019-04-19 17:02:17 -07:00
function vabs ( v ) = [ for ( x = v ) abs ( x ) ] ;
// Function: normalize()
// Description:
// Returns unit length normalized version of vector v.
2019-05-29 16:27:35 -07:00
// If passed a zero-length vector, returns the unchanged vector.
2019-04-19 17:02:17 -07:00
// Arguments:
// v = The vector to normalize.
2019-07-04 23:40:24 -07:00
// Examples:
// normalize([10,0,0]); // Returns: [1,0,0]
// normalize([0,10,0]); // Returns: [0,1,0]
// normalize([0,0,10]); // Returns: [0,0,1]
// normalize([0,-10,0]); // Returns: [0,-1,0]
// normalize([0,0,0]); // Returns: [0,0,0]
function normalize ( v ) = norm ( v ) < = EPSILON ? v : v / norm ( v ) ;
2019-04-19 17:02:17 -07:00
// Function: vector_angle()
// Usage:
// vector_angle(v1,v2);
2019-05-14 19:36:32 -07:00
// vector_angle(PT1,PT2,PT3);
2019-05-14 19:44:00 -07:00
// vector_angle([PT1,PT2,PT3]);
2019-04-19 17:02:17 -07:00
// Description:
2019-05-14 19:36:32 -07:00
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
2019-07-04 23:40:24 -07:00
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
2019-05-14 19:36:32 -07:00
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
2019-04-19 17:02:17 -07:00
// Arguments:
2019-05-14 19:36:32 -07:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-04 23:40:24 -07:00
// Examples:
// vector_angle(UP,LEFT); // Returns: 90
// vector_angle(RIGHT,LEFT); // Returns: 180
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
2019-05-14 19:36:32 -07:00
function vector_angle ( v1 , v2 = undef , v3 = undef ) =
( is_list ( v1 ) && is_list ( v1 [ 0 ] ) && is_undef ( v2 ) && is_undef ( v3 ) ) ? (
assert ( is_vector ( v1 . x ) )
assert ( is_vector ( v1 . y ) )
len ( v1 ) = = 3 ? assert ( is_vector ( v1 . z ) ) vector_angle ( v1 . x , v1 . y , v1 . z ) :
len ( v1 ) = = 2 ? vector_angle ( v1 . x , v1 . y ) :
assert ( false , "Bad arguments." )
) :
( is_vector ( v1 ) && is_vector ( v2 ) && is_vector ( v3 ) ) ? vector_angle ( v1 - v2 , v3 - v2 ) :
2019-07-04 23:40:24 -07:00
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
2019-05-14 19:36:32 -07:00
( is_vector ( v1 ) && is_vector ( v2 ) && is_undef ( v3 ) ) ? acos ( constrain ( ( v1 * v2 ) / ( norm ( v1 ) * norm ( v2 ) ) , - 1 , 1 ) ) :
assert ( false , "Bad arguments." ) ;
2019-04-19 17:02:17 -07:00
// Function: vector_axis()
// Usage:
2019-05-14 19:36:32 -07:00
// vector_axis(v1,v2);
2019-05-14 19:44:00 -07:00
// vector_axis(PT1,PT2,PT3);
// vector_axis([PT1,PT2,PT3]);
2019-04-19 17:02:17 -07:00
// Description:
2019-05-14 19:44:00 -07:00
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular the line segments AB and BC.
// If given two vectors, like `vector_axis(V1,V1)`, returns the vector perpendicular the two vectors V1 and V2.
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular the line segments AB and BC.
2019-04-19 17:02:17 -07:00
// Arguments:
2019-05-14 19:44:00 -07:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-04 23:40:24 -07:00
// Examples:
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
2019-05-14 19:36:32 -07:00
function vector_axis ( v1 , v2 = undef , v3 = undef ) =
( is_list ( v1 ) && is_list ( v1 [ 0 ] ) && is_undef ( v2 ) && is_undef ( v3 ) ) ? (
assert ( is_vector ( v1 . x ) )
assert ( is_vector ( v1 . y ) )
len ( v1 ) = = 3 ? assert ( is_vector ( v1 . z ) ) vector_axis ( v1 . x , v1 . y , v1 . z ) :
len ( v1 ) = = 2 ? vector_axis ( v1 . x , v1 . y ) :
assert ( false , "Bad arguments." )
) :
( is_vector ( v1 ) && is_vector ( v2 ) && is_vector ( v3 ) ) ? vector_axis ( v1 - v2 , v3 - v2 ) :
( is_vector ( v1 ) && is_vector ( v2 ) && is_undef ( v3 ) ) ? let (
2019-04-19 17:02:17 -07:00
eps = 1e-6 ,
v1 = point3d ( v1 / norm ( v1 ) ) ,
v2 = point3d ( v2 / norm ( v2 ) ) ,
v3 = ( norm ( v1 - v2 ) > eps && norm ( v1 + v2 ) > eps ) ? v2 :
( norm ( vabs ( v2 ) - UP ) > eps ) ? UP :
RIGHT
2019-05-14 19:36:32 -07:00
) normalize ( cross ( v1 , v3 ) ) : assert ( false , "Bad arguments." ) ;
2019-04-19 17:02:17 -07:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap