2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-22 21:13:18 -07:00
// LibFile: joiners.scad
// Snap-together joiners.
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 00:25:10 -07:00
// include <BOSL2/std.scad>
// include <BOSL2/joiners.scad>
2019-03-22 21:13:18 -07:00
// ```
2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2020-03-28 20:50:04 -07:00
include < rounding.scad >
include < skin.scad >
2020-01-09 18:22:07 -08:00
2019-03-22 21:13:18 -07:00
// Section: Half Joiners
// Module: half_joiner_clear()
// Description:
// Creates a mask to clear an area so that a half_joiner can be placed there.
// Usage:
2019-05-26 13:45:22 -07:00
// half_joiner_clear(h, w, [a], [clearance], [overlap])
2019-03-22 21:13:18 -07:00
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-22 21:13:18 -07:00
// Example:
2019-05-25 23:31:05 -07:00
// half_joiner_clear(spin=-90);
module half_joiner_clear ( h = 20 , w = 10 , a = 30 , clearance = 0 , overlap = 0.01 , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
dmnd_height = h * 1.0 ;
dmnd_width = dmnd_height * tan ( a ) ;
guide_size = w / 3 ;
guide_width = 2 * ( dmnd_height / 2 - guide_size ) * tan ( a ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ w , guide_width , h ] ) {
2019-04-19 17:02:17 -07:00
union ( ) {
2020-03-24 19:11:05 -07:00
ycopies ( overlap , n = overlap > 0 ? 2 : 1 ) {
2019-04-19 17:02:17 -07:00
difference ( ) {
// Diamonds.
scale ( [ w + clearance , dmnd_width / 2 , dmnd_height / 2 ] ) {
xrot ( 45 ) cube ( size = [ 1 , sqrt ( 2 ) , sqrt ( 2 ) ] , center = true ) ;
}
// Blunt point of tab.
2020-03-24 19:11:05 -07:00
ycopies ( guide_width + 4 ) {
2019-04-19 17:02:17 -07:00
cube ( size = [ ( w + clearance ) * 1.05 , 4 , h * 0.99 ] , center = true ) ;
}
2019-03-22 21:13:18 -07:00
}
}
2019-04-19 17:02:17 -07:00
if ( overlap > 0 ) cube ( [ w + clearance , overlap + 0.001 , h ] , center = true ) ;
2017-08-29 17:00:16 -07:00
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Module: half_joiner()
// Usage:
2019-07-17 18:54:35 -07:00
// half_joiner(h, w, l, [a], [screwsize], [guides], [$slop])
2019-03-22 21:13:18 -07:00
// Description:
// Creates a half_joiner object that can be attached to half_joiner2 object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-07-17 18:54:35 -07:00
// $slop = Printer specific slop value to make parts fit more closely.
2019-03-22 21:13:18 -07:00
// Example:
2019-05-25 23:31:05 -07:00
// half_joiner(screwsize=3, spin=-90);
2019-07-17 18:54:35 -07:00
module half_joiner ( h = 20 , w = 10 , l = 10 , a = 30 , screwsize = undef , guides = true , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
dmnd_height = h * 1.0 ;
dmnd_width = dmnd_height * tan ( a ) ;
guide_size = w / 3 ;
guide_width = 2 * ( dmnd_height / 2 - guide_size ) * tan ( a ) ;
2019-03-22 21:13:18 -07:00
render ( convexity = 12 )
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ w , 2 * l , h ] ) {
2019-03-22 21:13:18 -07:00
difference ( ) {
union ( ) {
// Make base.
difference ( ) {
// Solid backing base.
fwd ( l / 2 ) cube ( size = [ w , l , h ] , center = true ) ;
// Clear diamond for tab
2020-03-24 19:11:05 -07:00
xcopies ( 2 * w * 2 / 3 ) {
2019-07-17 18:54:35 -07:00
half_joiner_clear ( h = h + 0.01 , w = w , clearance = $ slop * 2 , a = a ) ;
2019-03-22 21:13:18 -07:00
}
2017-08-29 17:00:16 -07:00
}
2019-03-22 21:13:18 -07:00
difference ( ) {
// Make tab
2019-07-17 18:54:35 -07:00
scale ( [ w / 3 - $ slop * 2 , dmnd_width / 2 , dmnd_height / 2 ] ) xrot ( 45 )
2019-03-22 21:13:18 -07:00
cube ( size = [ 1 , sqrt ( 2 ) , sqrt ( 2 ) ] , center = true ) ;
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Blunt point of tab.
back ( guide_width / 2 + 2 )
cube ( size = [ w * 0.99 , 4 , guide_size * 2 ] , center = true ) ;
}
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Guide ridges.
if ( guides = = true ) {
2020-03-24 19:11:05 -07:00
xcopies ( w / 3 - $ slop * 2 ) {
2019-03-22 21:13:18 -07:00
// Guide ridge.
fwd ( 0.05 / 2 ) {
scale ( [ 0.75 , 1 , 2 ] ) yrot ( 45 )
cube ( size = [ guide_size / sqrt ( 2 ) , guide_width + 0.05 , guide_size / sqrt ( 2 ) ] , center = true ) ;
}
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Snap ridge.
scale ( [ 0.25 , 0.5 , 1 ] ) zrot ( 45 )
cube ( size = [ guide_size / sqrt ( 2 ) , guide_size / sqrt ( 2 ) , dmnd_width ] , center = true ) ;
}
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Make screwholes, if needed.
if ( screwsize ! = undef ) {
yrot ( 90 ) cylinder ( r = screwsize * 1.1 / 2 , h = w + 1 , center = true , $fn = 12 ) ;
}
2017-08-29 17:00:16 -07:00
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-05-25 23:31:05 -07:00
//half_joiner(screwsize=3);
2019-03-22 21:13:18 -07:00
// Module: half_joiner2()
// Usage:
2019-05-26 13:45:22 -07:00
// half_joiner2(h, w, l, [a], [screwsize], [guides])
2019-03-22 21:13:18 -07:00
// Description:
// Creates a half_joiner2 object that can be attached to half_joiner object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-22 21:13:18 -07:00
// Example:
2019-05-25 23:31:05 -07:00
// half_joiner2(screwsize=3, spin=-90);
module half_joiner2 ( h = 20 , w = 10 , l = 10 , a = 30 , screwsize = undef , guides = true , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
2019-03-22 21:13:18 -07:00
dmnd_height = h * 1.0 ;
dmnd_width = dmnd_height * tan ( a ) ;
guide_size = w / 3 ;
guide_width = 2 * ( dmnd_height / 2 - guide_size ) * tan ( a ) ;
render ( convexity = 12 )
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ w , 2 * l , h ] ) {
2019-03-22 21:13:18 -07:00
difference ( ) {
union ( ) {
fwd ( l / 2 ) cube ( size = [ w , l , h ] , center = true ) ;
cube ( [ w , guide_width , h ] , center = true ) ;
}
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Subtract mated half_joiner.
2019-07-17 18:54:35 -07:00
zrot ( 180 ) half_joiner ( h = h + 0.01 , w = w + 0.01 , l = guide_width + 0.01 , a = a , screwsize = undef , guides = guides , $ slop = 0.0 ) ;
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Make screwholes, if needed.
if ( screwsize ! = undef ) {
xcyl ( r = screwsize * 1.1 / 2 , l = w + 1 , $fn = 12 ) ;
}
2017-08-29 17:00:16 -07:00
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Section: Full Joiners
// Module: joiner_clear()
// Description:
// Creates a mask to clear an area so that a joiner can be placed there.
// Usage:
2019-05-26 13:45:22 -07:00
// joiner_clear(h, w, [a], [clearance], [overlap])
2019-03-22 21:13:18 -07:00
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-22 21:13:18 -07:00
// Example:
2019-05-25 23:31:05 -07:00
// joiner_clear(spin=-90);
module joiner_clear ( h = 40 , w = 10 , a = 30 , clearance = 0 , overlap = 0.01 , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
2019-03-22 21:13:18 -07:00
dmnd_height = h * 0.5 ;
dmnd_width = dmnd_height * tan ( a ) ;
guide_size = w / 3 ;
guide_width = 2 * ( dmnd_height / 2 - guide_size ) * tan ( a ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ w , guide_width , h ] ) {
2019-04-19 17:02:17 -07:00
union ( ) {
up ( h / 4 ) half_joiner_clear ( h = h / 2.0 - 0.01 , w = w , a = a , overlap = overlap , clearance = clearance ) ;
down ( h / 4 ) half_joiner_clear ( h = h / 2.0 - 0.01 , w = w , a = a , overlap = overlap , clearance = - 0.01 ) ;
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Module: joiner()
// Usage:
2019-07-17 18:54:35 -07:00
// joiner(h, w, l, [a], [screwsize], [guides], [$slop])
2019-03-22 21:13:18 -07:00
// Description:
// Creates a joiner object that can be attached to another joiner object.
// Arguments:
// h = Height of the joiner.
// w = Width of the joiner.
// l = Length of the backing to the joiner.
// a = Overhang angle of the joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-07-17 18:54:35 -07:00
// $slop = Printer specific slop value to make parts fit more closely.
2019-03-22 21:13:18 -07:00
// Examples:
2019-05-25 23:31:05 -07:00
// joiner(screwsize=3, spin=-90);
// joiner(w=10, l=10, h=40, spin=-90) cuboid([10, 10*2, 40], anchor=RIGHT);
2019-07-17 18:54:35 -07:00
module joiner ( h = 40 , w = 10 , l = 10 , a = 30 , screwsize = undef , guides = true , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ w , 2 * l , h ] ) {
2019-04-19 17:02:17 -07:00
union ( ) {
2019-07-17 18:54:35 -07:00
up ( h / 4 ) half_joiner ( h = h / 2 , w = w , l = l , a = a , screwsize = screwsize , guides = guides ) ;
2019-04-19 17:02:17 -07:00
down ( h / 4 ) half_joiner2 ( h = h / 2 , w = w , l = l , a = a , screwsize = screwsize , guides = guides ) ;
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2019-03-22 21:13:18 -07:00
}
2017-08-29 17:00:16 -07:00
}
2019-03-22 21:13:18 -07:00
// Section: Full Joiners Pairs/Sets
// Module: joiner_pair_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
2019-05-26 13:45:22 -07:00
// joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
2019-03-22 21:13:18 -07:00
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners (2 by default) to clear for.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-22 21:13:18 -07:00
// Examples:
// joiner_pair_clear(spacing=50, n=2);
// joiner_pair_clear(spacing=50, n=3);
2019-05-25 23:31:05 -07:00
module joiner_pair_clear ( spacing = 100 , h = 40 , w = 10 , a = 30 , n = 2 , clearance = 0 , overlap = 0.01 , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
2019-03-22 21:13:18 -07:00
dmnd_height = h * 0.5 ;
dmnd_width = dmnd_height * tan ( a ) ;
guide_size = w / 3 ;
guide_width = 2 * ( dmnd_height / 2 - guide_size ) * tan ( a ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ spacing + w , guide_width , h ] ) {
2020-03-24 19:11:05 -07:00
xcopies ( spacing , n = n ) {
2019-03-22 21:13:18 -07:00
joiner_clear ( h = h , w = w , a = a , clearance = clearance , overlap = overlap ) ;
2017-08-29 17:00:16 -07:00
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Module: joiner_pair()
// Usage:
2019-07-17 18:54:35 -07:00
// joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop])
2019-03-22 21:13:18 -07:00
// Description:
// Creates a joiner_pair object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-07-17 18:54:35 -07:00
// $slop = Printer specific slop value to make parts fit more closely.
2019-03-22 21:13:18 -07:00
// Examples:
2019-05-25 23:31:05 -07:00
// joiner_pair(spacing=50, l=10, spin=-90) cuboid([10, 50+10-0.1, 40], anchor=RIGHT);
// joiner_pair(spacing=50, l=10, n=2, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate=false, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate=true, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate="alt", spin=-90);
2019-07-17 18:54:35 -07:00
module joiner_pair ( spacing = 100 , h = 40 , w = 10 , l = 10 , a = 30 , n = 2 , alternate = true , screwsize = undef , guides = true , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ spacing + w , 2 * l , h ] ) {
2019-03-22 21:13:18 -07:00
left ( ( n - 1 ) * spacing / 2 ) {
2019-05-26 22:34:46 -07:00
for ( i = [ 0 : 1 : n - 1 ] ) {
2019-03-22 21:13:18 -07:00
right ( i * spacing ) {
yrot ( 180 + ( alternate ? ( i * 180 + ( alternate = = "alt" ? 180 : 0 ) ) % 360 : 0 ) ) {
2019-07-17 18:54:35 -07:00
joiner ( h = h , w = w , l = l , a = a , screwsize = screwsize , guides = guides ) ;
2019-03-22 21:13:18 -07:00
}
}
}
2017-08-29 17:00:16 -07:00
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Section: Full Joiners Quads/Sets
// Module: joiner_quad_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
2019-05-26 13:45:22 -07:00
// joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
2019-03-22 21:13:18 -07:00
// Arguments:
// spacing1 = Spacing between joiner centers.
// spacing2 = Spacing between back-to-back pairs/sets of joiners.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners in a row. Default: 2
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-22 21:13:18 -07:00
// Examples:
// joiner_quad_clear(spacing1=50, spacing2=50, n=2);
// joiner_quad_clear(spacing1=50, spacing2=50, n=3);
2019-05-25 23:31:05 -07:00
module joiner_quad_clear ( xspacing = undef , yspacing = undef , spacing1 = undef , spacing2 = undef , n = 2 , h = 40 , w = 10 , a = 30 , clearance = 0 , overlap = 0.01 , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
2019-03-22 21:13:18 -07:00
spacing1 = first_defined ( [ spacing1 , xspacing , 100 ] ) ;
spacing2 = first_defined ( [ spacing2 , yspacing , 50 ] ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ w + spacing1 , spacing2 , h ] ) {
2019-03-22 21:13:18 -07:00
zrot_copies ( n = 2 ) {
back ( spacing2 / 2 ) {
joiner_pair_clear ( spacing = spacing1 , n = n , h = h , w = w , a = a , clearance = clearance , overlap = overlap ) ;
}
2017-08-29 17:00:16 -07:00
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Module: joiner_quad()
// Usage:
2019-07-17 18:54:35 -07:00
// joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop])
2019-03-22 21:13:18 -07:00
// Description:
// Creates a joiner_quad object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-07-17 18:54:35 -07:00
// $slop = Printer specific slop value to make parts fit more closely.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-22 21:13:18 -07:00
// Examples:
2019-05-25 23:31:05 -07:00
// joiner_quad(spacing1=50, spacing2=50, l=10, spin=-90) cuboid([50, 50+10-0.1, 40]);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=2, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt", spin=-90);
2019-07-17 18:54:35 -07:00
module joiner_quad ( spacing1 = undef , spacing2 = undef , xspacing = undef , yspacing = undef , h = 40 , w = 10 , l = 10 , a = 30 , n = 2 , alternate = true , screwsize = undef , guides = true , anchor = CENTER , spin = 0 , orient = UP )
2017-08-29 17:00:16 -07:00
{
2019-03-22 21:13:18 -07:00
spacing1 = first_defined ( [ spacing1 , xspacing , 100 ] ) ;
spacing2 = first_defined ( [ spacing2 , yspacing , 50 ] ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ w + spacing1 , spacing2 , h ] ) {
2019-03-22 21:13:18 -07:00
zrot_copies ( n = 2 ) {
back ( spacing2 / 2 ) {
2019-07-17 18:54:35 -07:00
joiner_pair ( spacing = spacing1 , n = n , h = h , w = w , l = l , a = a , screwsize = screwsize , guides = guides ) ;
2019-03-22 21:13:18 -07:00
}
2017-08-29 17:00:16 -07:00
}
2020-02-29 13:16:15 -08:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2020-01-10 19:30:20 -08:00
// Section: Dovetails
2020-01-09 18:52:08 -05:00
// Module: dovetail()
//
2020-01-10 19:30:20 -08:00
// Usage:
2020-01-21 20:29:43 -05:00
// dovetail(l|length, h|height, w|width, slope|angle, taper|back_width, [chamfer], [r|radius], [round], [$slop])
2020-01-10 19:30:20 -08:00
//
2020-01-09 18:52:08 -05:00
// Description:
// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
// The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until
// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
2020-01-21 20:29:43 -05:00
// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
// parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation
// in the positive Y direction. The default anchor for dovetails is BOTTOM; the default orientation depends on the gender,
// with male dovetails oriented UP and female ones DOWN.
2020-01-09 18:52:08 -05:00
//
// Arguments:
// l / length = Length of the dovetail (amount the joint slides during assembly)
// h / height = Height of the dovetail
// w / width = Width (at the wider, top end) of the dovetail before tapering
// slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6.
// angle = angle (in degrees) of the dovetail. Specify only one of slope and angle.
2020-01-21 20:29:43 -05:00
// taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper
// back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back.
2020-01-09 18:52:08 -05:00
// chamfer = amount to chamfer the corners of the joint (Default: no chamfer)
// r / radius = amount to round over the corners of the joint (Default: no rounding)
2020-01-21 20:29:43 -05:00
// round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false.
// extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01
// Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane)
2020-01-09 18:52:08 -05:00
// dovetail("male", length=30, width=15, height=8);
2020-01-21 20:29:43 -05:00
// right(20) dovetail("female", length=30, width=15, height=8);
2020-01-09 18:52:08 -05:00
// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
2020-01-09 18:22:07 -08:00
// dovetail("male", length=30, width=15, height=8, taper=6);
2020-01-21 20:29:43 -05:00
// right(20) dovetail("female", length=30, width=15, height=8, taper=6);
2020-01-09 18:52:08 -05:00
// Example: A block that can link to itself
// diff("remove")
// cuboid([50,30,10]){
2020-01-21 20:29:43 -05:00
// attach(BACK) dovetail("male", length=10, width=15, height=8);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,$tags="remove");
2020-01-09 18:52:08 -05:00
// }
// Example: Setting the dovetail angle. This is too extreme to be useful.
// diff("remove")
// cuboid([50,30,10]){
2020-01-21 20:29:43 -05:00
// attach(BACK) dovetail("male", length=10, width=15, height=8,angle=30);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,angle=30,$tags="remove");
2020-01-09 18:52:08 -05:00
// }
// Example: Adding a chamfer helps printed parts fit together without problems at the corners
// diff("remove")
// cuboid([50,30,10]){
2020-01-21 20:29:43 -05:00
// attach(BACK) dovetail("male", length=10, width=15, height=8,chamfer=1);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,chamfer=1,$tags="remove");
2020-01-09 18:52:08 -05:00
// }
// Example: Rounding the outside corners is another option
// diff("remove")
// cuboid([50,30,10]){
2020-01-21 20:29:43 -05:00
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1,$fn=32);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1,$tags="remove",$fn=32);
2020-01-09 18:52:08 -05:00
// }
// Example: Or you can make a fully rounded joint
2020-01-21 20:29:43 -05:00
// $fn=32;
2020-01-09 18:52:08 -05:00
// diff("remove")
// cuboid([50,30,10]){
2020-01-21 20:29:43 -05:00
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1.5, round=true);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1.5, round=true, $tags="remove");
2020-01-09 18:52:08 -05:00
// }
2020-01-21 20:29:43 -05:00
// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle.
2020-01-09 18:52:08 -05:00
// cuboid([50,30,10])
2020-01-21 20:29:43 -05:00
// attach(TOP) dovetail("male", length=50, width=18, height=4, back_width=15, spin=90);
2020-01-09 18:52:08 -05:00
// fwd(35)
// diff("remove")
// cuboid([50,30,10])
2020-01-21 20:29:43 -05:00
// attach(TOP) dovetail("female", length=50, width=18, height=4, back_width=15, spin=90,$tags="remove");
2020-01-09 18:52:08 -05:00
// Example: A series of dovtails
// cuboid([50,30,10])
2020-03-24 19:11:05 -07:00
// attach(BACK) xcopies(10,5) dovetail("male", length=10, width=7, height=4);
2020-01-21 20:29:43 -05:00
// Example: Mating pin board for a right angle joint. Note that the anchor method and use of `spin` ensures that the joint works even with a taper.
2020-01-09 18:52:08 -05:00
// diff("remove")
// cuboid([50,30,10])
2020-03-24 19:11:05 -07:00
// position(TOP+BACK) xcopies(10,5) dovetail("female", length=10, width=7, taper=4, height=4, $tags="remove",anchor=BOTTOM+FRONT,spin=180);
2020-01-21 20:29:43 -05:00
module dovetail ( gender , length , l , width , w , height , h , angle , slope , taper , back_width , chamfer , extra = 0.01 , r , radius , round = false , anchor = BOTTOM , spin = 0 , orient )
2020-01-09 18:52:08 -05:00
{
2020-01-09 20:10:46 -08:00
radius = get_radius ( r1 = radius , r2 = r ) ;
lcount = num_defined ( [ l , length ] ) ;
hcount = num_defined ( [ h , height ] ) ;
wcount = num_defined ( [ w , width ] ) ;
assert ( lcount = = 1 , "Must define exactly one of l and length" ) ;
assert ( wcount = = 1 , "Must define exactly one of w and width" ) ;
assert ( hcount = = 1 , "Must define exactly one of h and height" ) ;
h = first_defined ( [ h , height ] ) ;
w = first_defined ( [ w , width ] ) ;
length = first_defined ( [ l , length ] ) ;
orient = is_def ( orient ) ? orient :
gender = = "female" ? DOWN : UP ;
count = num_defined ( [ angle , slope ] ) ;
assert ( count < = 1 , "Do not specify both angle and slope" ) ;
2020-01-21 20:29:43 -05:00
count2 = num_defined ( [ taper , back_width ] ) ;
assert ( count2 < = 1 , "Do not specify both taper and back_width" ) ;
2020-01-09 20:10:46 -08:00
count3 = num_defined ( [ chamfer , radius ] ) ;
assert ( count3 < = 1 || ( radius = = 0 && chamfer = = 0 ) , "Do not specify both chamfer and radius" ) ;
slope = is_def ( slope ) ? slope :
is_def ( angle ) ? 1 / tan ( angle ) : 6 ;
2020-01-10 19:30:20 -08:00
width = gender = = "male" ? w : w + 2 * $ slop ;
height = h + ( gender = = "female" ? 2 * $ slop : 0 ) ;
2020-01-09 20:10:46 -08:00
2020-01-21 20:29:43 -05:00
front_offset = is_def ( taper ) ? - extra * tan ( taper ) :
is_def ( back_width ) ? extra * ( back_width - width ) / length / 2 : 0 ;
2020-01-09 20:10:46 -08:00
size = is_def ( chamfer ) && chamfer > 0 ? chamfer :
is_def ( radius ) && radius > 0 ? radius : 0 ;
type = is_def ( chamfer ) && chamfer > 0 ? "chamfer" : "circle" ;
fullsize = round ? [ 0 , size , size ] :
gender = = "male" ? [ 0 , size , 0 ] : [ 0 , 0 , size ] ;
smallend_half = round_corners (
move (
2020-01-21 20:29:43 -05:00
[ 0 , - length / 2 - extra , 0 ] ,
2020-01-09 20:10:46 -08:00
p = [
2020-01-21 20:29:43 -05:00
[ 0 , 0 , height ] ,
[ width / 2 - front_offset , 0 , height ] ,
[ width / 2 - height / slope - front_offset , 0 , 0 ] ,
[ width / 2 - front_offset + height , 0 , 0 ]
2020-01-09 20:10:46 -08:00
]
) ,
curve = type , size = fullsize , closed = false
) ;
smallend_points = concat ( select ( smallend_half , 1 , - 2 ) , [ down ( extra , p = select ( smallend_half , - 2 ) ) ] ) ;
2020-01-21 20:29:43 -05:00
offset = is_def ( taper ) ? - ( length + extra ) * tan ( taper ) :
is_def ( back_width ) ? ( back_width - width ) / 2 : 0 ;
bigend_points = move ( [ offset , length + 2 * extra , 0 ] , p = smallend_points ) ;
2020-01-09 20:10:46 -08:00
adjustment = gender = = "male" ? - 0.01 : 0.01 ; // Adjustment for default overlap in attach()
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , size = [ width + 2 * offset , length , height ] ) {
2020-01-09 20:10:46 -08:00
down ( height / 2 + adjustment ) {
skin (
[
2020-01-21 20:29:43 -05:00
reverse ( concat ( smallend_points , xflip ( p = reverse ( smallend_points ) ) ) ) ,
reverse ( concat ( bigend_points , xflip ( p = reverse ( bigend_points ) ) ) )
2020-01-09 20:10:46 -08:00
] ,
2020-02-29 19:45:49 -05:00
slices = 0 , convexity = 4
2020-01-09 20:10:46 -08:00
) ;
}
children ( ) ;
}
2020-01-09 18:52:08 -05:00
}
2020-03-03 22:52:19 -05:00
// h is total height above 0 of the nub
// nub extends below xy plane by distance nub/2
module _pin_nub ( r , nub , h )
{
L = h / 4 ;
rotate_extrude ( ) {
polygon (
[ [ 0 , - nub / 2 ] ,
[ - r , - nub / 2 ] ,
[ - r - nub , nub / 2 ] ,
[ - r - nub , nub / 2 + L ] ,
[ - r , h ] ,
[ 0 , h ] ] ) ;
}
}
module _pin_slot ( l , r , t , d , nub , depth , stretch ) {
yscale ( 4 )
intersection ( ) {
translate ( [ t , 0 , d + t / 4 ] )
_pin_nub ( r = r + t , nub = nub , h = l - ( d + t / 4 ) ) ;
translate ( [ - t , 0 , d + t / 4 ] )
_pin_nub ( r = r + t , nub = nub , h = l - ( d + t / 4 ) ) ;
}
cube ( [ 2 * r , depth , 2 * l ] , center = true ) ;
up ( l )
zscale ( stretch )
ycyl ( r = r , h = depth ) ;
}
module _pin_shaft ( r , lStraight , nub , nubscale , stretch , d , pointed )
{
extra = 0.02 ;
rPoint = r / sqrt ( 2 ) ;
down ( extra ) cylinder ( r = r , h = lStraight + extra ) ;
up ( lStraight ) {
zscale ( stretch ) {
sphere ( r = r ) ;
if ( pointed ) up ( rPoint ) cylinder ( r1 = rPoint , r2 = 0 , h = rPoint ) ;
}
}
up ( d ) yscale ( nubscale ) _pin_nub ( r = r , nub = nub , h = lStraight - d ) ;
}
function _pin_size ( size ) =
is_undef ( size ) ? [ ] :
let ( sizeok = in_list ( size , [ "tiny" , "small" , "medium" , "large" , "standard" ] ) )
assert ( sizeok , "Pin size must be one of \"tiny\", \"small\", or \"standard\"" )
size = = "standard" || size = = "large" ?
struct_set ( [ ] , [ "length" , 10.8 ,
"diameter" , 7 ,
"snap" , 0.5 ,
"nub_depth" , 1.8 ,
"thickness" , 1.8 ,
"preload" , 0.2 ] ) :
size = = "medium" ?
struct_set ( [ ] , [ "length" , 8 ,
"diameter" , 4.6 ,
"snap" , 0.45 ,
"nub_depth" , 1.5 ,
"thickness" , 1.4 ,
"preload" , 0.2 ] ) :
size = = "small" ?
struct_set ( [ ] , [ "length" , 6 ,
"diameter" , 3.2 ,
"snap" , 0.4 ,
"nub_depth" , 1.2 ,
"thickness" , 1.0 ,
"preload" , 0.16 ] ) :
size = = "tiny" ?
struct_set ( [ ] , [ "length" , 4 ,
"diameter" , 2.5 ,
"snap" , 0.25 ,
"nub_depth" , 0.9 ,
"thickness" , 0.8 ,
"preload" , 0.1 ] ) :
undef ;
// Module: snap_pin()
// Usage:
// snap_pin(size, [pointed], [anchor], [spin], [orient])
// snap_pin(r|radius|d|diameter, l|length, nub_depth, snap, thickness, [clearance], [preload], [pointed], [anchor], [spin], [orient])
// Description:
// Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard
// pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can
// override the standard parameters by specifying other ones. The pins have flat sides so they can
// be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default
// orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane.
// The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`.
//
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
//
// This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe
// and a modified version at https://www.thingiverse.com/thing:3218332 by acwest
// and distributed under the Creative Commons - Attribution - Share Alike License
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r|radius = radius of the pin
// d|diameter = diameter of the pin
// l|length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// thickness = thickness of the pin walls
// pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true
// clearance = how far to shrink the pin away from the socket walls. Default: 0.2
// preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2
// Example: Pin in native orientation
// snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40);
// Example: Pins oriented for printing
2020-03-24 19:11:05 -07:00
// xcopies(spacing=10, n=4) snap_pin("standard", $fn=40);
2020-03-03 22:52:19 -05:00
module snap_pin ( size , r , radius , d , diameter , l , length , nub_depth , snap , thickness , clearance = 0.2 , preload , pointed = true , anchor = FRONT , spin = 0 , orient = FRONT , center ) {
preload_default = 0.2 ;
sizedat = _pin_size ( size ) ;
radius = get_radius ( r1 = r , r2 = radius , d1 = d , d2 = diameter , dflt = struct_val ( sizedat , "diameter" ) / 2 ) ;
length = first_defined ( [ l , length , struct_val ( sizedat , "length" ) ] ) ;
snap = first_defined ( [ snap , struct_val ( sizedat , "snap" ) ] ) ;
thickness = first_defined ( [ thickness , struct_val ( sizedat , "thickness" ) ] ) ;
nub_depth = first_defined ( [ nub_depth , struct_val ( sizedat , "nub_depth" ) ] ) ;
preload = first_defined ( [ first_defined ( [ preload , struct_val ( sizedat , "preload" ) ] ) , preload_default ] ) ;
nubscale = 0.9 ; // Mysterious arbitrary parameter
// The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight.
// If the point is enabled the cap length is instead 2*r
// preload shrinks the length, bringing the nubs closer together
rInner = radius - clearance ;
stretch = sqrt ( 2 ) * radius / rInner ; // extra stretch factor to make cap have proper length even though r is reduced.
lStraight = length - sqrt ( 2 ) * radius - clearance ;
lPin = lStraight + ( pointed ? 2 * radius : sqrt ( 2 ) * radius ) ;
attachable ( anchor = anchor , spin = spin , orient = orient ,
size = [ nubscale * ( 2 * rInner + 2 * snap + clearance ) , radius * sqrt ( 2 ) - 2 * clearance , 2 * lPin ] ) {
zflip_copy ( )
difference ( ) {
intersection ( ) {
cube ( [ 3 * ( radius + snap ) , radius * sqrt ( 2 ) - 2 * clearance , 2 * length + 3 * radius ] , center = true ) ;
_pin_shaft ( rInner , lStraight , snap + clearance / 2 , nubscale , stretch , nub_depth - preload , pointed ) ;
}
_pin_slot ( l = lStraight , r = rInner - thickness , t = thickness , d = nub_depth - preload , nub = snap , depth = 2 * radius + 0.02 , stretch = stretch ) ;
}
children ( ) ;
}
}
// Module: snap_pin_socket()
// Usage:
// snap_pin_socket(size, [fixed], [fins], [pointed], [anchor], [spin], [orient]);
// snap_pin_socket(r|radius|d|diameter, l|length, nub_depth, snap, [fixed], [pointed], [fins], [anchor], [spin], [orient])
// Description:
// Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the
// pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well
// if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and
// will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up,
// especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object.
//
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r|radius = radius of the pin
// d|diameter = diameter of the pin
// l|length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// fixed = if true the pin cannot rotate, if false it can. Default: true
// pointed = if true the socket has a pointed tip. Default: true
// fins = if true supporting fins are included. Default: false
// Example: The socket shape itself in native orientation.
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40);
// Example: A spinning socket with fins:
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40);
// Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside:
// $fn=40;
// diff("socket") cuboid([20,20,20]) {
// attach(TOP) snap_pin_socket("standard", $tags="socket");
// position(TOP+FRONT)snap_pin_socket("standard", $tags="socket");
// }
module snap_pin_socket ( size , r , radius , l , length , d , diameter , nub_depth , snap , fixed = true , pointed = true , fins = false , anchor = BOTTOM , spin = 0 , orient = DOWN ) {
sizedat = _pin_size ( size ) ;
radius = get_radius ( r1 = r , r2 = radius , d1 = d , d2 = diameter , dflt = struct_val ( sizedat , "diameter" ) / 2 ) ;
length = first_defined ( [ l , length , struct_val ( sizedat , "length" ) ] ) ;
snap = first_defined ( [ snap , struct_val ( sizedat , "snap" ) ] ) ;
nub_depth = first_defined ( [ nub_depth , struct_val ( sizedat , "nub_depth" ) ] ) ;
tip = pointed ? sqrt ( 2 ) * radius : radius ;
lPin = length + ( pointed ? ( 2 - sqrt ( 2 ) ) * radius : 0 ) ;
lStraight = lPin - ( pointed ? sqrt ( 2 ) * radius : radius ) ;
attachable ( anchor = anchor , spin = spin , orient = orient ,
size = [ 2 * ( radius + snap ) , radius * sqrt ( 2 ) , lPin ] )
{
down ( lPin / 2 )
intersection ( ) {
if ( fixed )
cube ( [ 3 * ( radius + snap ) , radius * sqrt ( 2 ) , 3 * lPin + 3 * radius ] , center = true ) ;
union ( ) {
_pin_shaft ( radius , lStraight , snap , 1 , 1 , nub_depth , pointed ) ;
if ( fins )
up ( lStraight ) {
cube ( [ 2 * radius , 0.01 , 2 * tip ] , center = true ) ;
cube ( [ 0.01 , 2 * radius , 2 * tip ] , center = true ) ;
}
}
}
children ( ) ;
}
}
2017-08-29 17:00:16 -07:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap