2019-04-16 19:16:50 -07:00
//////////////////////////////////////////////////////////////////////
// LibFile: primitives.scad
// The basic built-in shapes, reworked to integrate better with
2019-04-18 23:45:46 -07:00
// other BOSL2 library shapes and utilities.
2019-04-16 19:16:50 -07:00
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 00:25:10 -07:00
// include <BOSL2/std.scad>
2019-04-16 19:16:50 -07:00
// ```
//////////////////////////////////////////////////////////////////////
2019-04-23 19:13:43 -07:00
// Section: 2D Primitives
2019-05-26 21:14:22 -07:00
// Function&Module: square()
2019-04-23 19:13:43 -07:00
// Usage:
2020-03-22 22:57:08 -07:00
// square(size, [center], [rounding], [chamfer], [anchor], [spin])
2019-04-23 19:13:43 -07:00
// Description:
2020-04-06 18:53:12 -07:00
// When called as a module, creates a 2D square of the given size, with optional rounding or chamfering.
2019-05-26 21:14:22 -07:00
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
2019-04-23 19:13:43 -07:00
// Arguments:
// size = The size of the square to create. If given as a scalar, both X and Y will be the same size.
2020-01-29 01:09:39 -08:00
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
2019-04-23 19:13:43 -07:00
// center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-04-24 03:33:22 -07:00
// Example(2D):
// square(40);
// Example(2D): Centered
// square([40,30], center=true);
2019-12-26 21:43:42 -08:00
// Example(2D): Anchored
2019-04-24 03:33:22 -07:00
// square([40,30], anchor=FRONT);
2019-12-26 21:43:42 -08:00
// Example(2D): Spun
2019-05-26 21:44:28 -07:00
// square([40,30], anchor=FRONT, spin=30);
2019-12-26 21:43:42 -08:00
// Example(2D): Chamferred Rect
2019-12-26 21:49:05 -08:00
// square([40,30], chamfer=5, center=true);
2019-12-26 21:43:42 -08:00
// Example(2D): Rounded Rect
2019-12-26 21:49:05 -08:00
// square([40,30], rounding=5, center=true);
2020-01-29 01:09:39 -08:00
// Example(2D): Mixed Chamferring and Rounding
// square([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
2019-12-26 21:43:42 -08:00
// Example(2D): Called as Function
// path = square([40,30], chamfer=5, anchor=FRONT, spin=30);
// stroke(path, closed=true);
2020-03-24 18:31:22 -07:00
// move_copies(path) color("blue") circle(d=2,$fn=8);
2020-03-04 20:19:21 -08:00
module square ( size = 1 , center , rounding = 0 , chamfer = 0 , anchor , spin = 0 ) {
2019-04-23 19:13:43 -07:00
size = is_num ( size ) ? [ size , size ] : point2d ( size ) ;
2020-02-29 13:16:15 -08:00
anchor = get_anchor ( anchor , center , FRONT + LEFT , FRONT + LEFT ) ;
2020-03-09 19:13:13 -07:00
pts = square ( size = size , rounding = rounding , chamfer = chamfer , center = true ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , two_d = true , size = size ) {
2020-03-09 19:13:13 -07:00
translate ( - size / 2 ) polygon ( move ( size / 2 , p = pts ) ) ; // Extraneous translation works around fine grid quantizing.
2019-04-23 19:13:43 -07:00
children ( ) ;
}
}
2019-11-03 15:02:49 -08:00
2020-03-04 20:19:21 -08:00
function square ( size = 1 , center , rounding = 0 , chamfer = 0 , anchor , spin = 0 ) =
2020-02-29 13:16:15 -08:00
assert ( is_num ( size ) || is_vector ( size ) )
2020-01-29 01:09:39 -08:00
assert ( is_num ( chamfer ) || len ( chamfer ) = = 4 )
assert ( is_num ( rounding ) || len ( rounding ) = = 4 )
2020-02-29 13:16:15 -08:00
let (
size = is_num ( size ) ? [ size , size ] : point2d ( size ) ,
2020-03-06 15:32:53 -08:00
anchor = get_anchor ( anchor , center , FRONT + LEFT , FRONT + LEFT ) ,
complex = rounding ! = 0 || chamfer ! = 0
2020-02-29 13:16:15 -08:00
)
( rounding = = 0 && chamfer = = 0 ) ? let (
path = [
[ size . x / 2 , - size . y / 2 ] ,
[ - size . x / 2 , - size . y / 2 ] ,
[ - size . x / 2 , size . y / 2 ] ,
[ size . x / 2 , size . y / 2 ]
]
) rot ( spin , p = move ( - vmul ( anchor , size / 2 ) , p = path ) ) :
2019-05-26 21:14:22 -07:00
let (
2020-01-29 01:09:39 -08:00
chamfer = is_list ( chamfer ) ? chamfer : [ for ( i = [ 0 : 3 ] ) chamfer ] ,
rounding = is_list ( rounding ) ? rounding : [ for ( i = [ 0 : 3 ] ) rounding ] ,
quadorder = [ 3 , 2 , 1 , 0 ] ,
quadpos = [ [ 1 , 1 ] , [ - 1 , 1 ] , [ - 1 , - 1 ] , [ 1 , - 1 ] ] ,
insets = [ for ( i = [ 0 : 3 ] ) chamfer [ i ] > 0 ? chamfer [ i ] : rounding [ i ] > 0 ? rounding [ i ] : 0 ] ,
insets_x = max ( insets [ 0 ] + insets [ 1 ] , insets [ 2 ] + insets [ 3 ] ) ,
insets_y = max ( insets [ 0 ] + insets [ 3 ] , insets [ 1 ] + insets [ 2 ] )
)
assert ( insets_x < = size . x , "Requested roundings and/or chamfers exceed the square width." )
assert ( insets_y < = size . y , "Requested roundings and/or chamfers exceed the square height." )
let (
path = [
for ( i = [ 0 : 3 ] )
let (
quad = quadorder [ i ] ,
inset = insets [ quad ] ,
cverts = quant ( segs ( inset ) , 4 ) / 4 ,
cp = vmul ( size / 2 - [ inset , inset ] , quadpos [ quad ] ) ,
step = 90 / cverts ,
angs =
chamfer [ quad ] > 0 ? [ 0 , - 90 ] - 90 * [ i , i ] :
rounding [ quad ] > 0 ? [ for ( j = [ 0 : 1 : cverts ] ) 360 - j * step - i * 90 ] :
[ 0 ]
)
each [ for ( a = angs ) cp + inset * [ cos ( a ) , sin ( a ) ] ]
]
2020-03-06 15:32:53 -08:00
) complex ?
reorient ( anchor , spin , two_d = true , path = path , p = path ) :
reorient ( anchor , spin , two_d = true , size = size , p = path ) ;
2019-04-23 19:13:43 -07:00
2019-05-26 21:14:22 -07:00
// Function&Module: circle()
2019-04-23 19:13:43 -07:00
// Usage:
2020-03-04 20:19:21 -08:00
// circle(r|d, [realign], [circum])
2019-04-23 19:13:43 -07:00
// Description:
2019-11-03 18:44:14 -08:00
// When called as a module, creates a 2D polygon that approximates a circle of the given size.
// When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size.
2019-04-23 19:13:43 -07:00
// Arguments:
// r = The radius of the circle to create.
// d = The diameter of the circle to create.
2019-11-03 18:44:14 -08:00
// realign = If true, rotates the polygon that approximates the circle by half of one size.
// circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-04-24 03:33:22 -07:00
// Example(2D): By Radius
// circle(r=25);
// Example(2D): By Diameter
// circle(d=50);
// Example(2D): Anchoring
// circle(d=50, anchor=FRONT);
2019-05-26 21:44:28 -07:00
// Example(2D): Spin
// circle(d=50, anchor=FRONT, spin=45);
// Example(NORENDER): Called as Function
// path = circle(d=50, anchor=FRONT, spin=45);
2019-11-23 18:23:04 -08:00
module circle ( r , d , realign = false , circum = false , anchor = CENTER , spin = 0 ) {
2019-04-23 19:13:43 -07:00
r = get_radius ( r = r , d = d , dflt = 1 ) ;
sides = segs ( r ) ;
2019-11-03 18:44:14 -08:00
rr = circum ? r / cos ( 180 / sides ) : r ;
pts = circle ( r = rr , realign = realign , $fn = sides ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , two_d = true , r = rr ) {
2019-04-23 19:13:43 -07:00
polygon ( pts ) ;
children ( ) ;
}
}
2019-11-23 18:23:04 -08:00
function circle ( r , d , realign = false , circum = false , anchor = CENTER , spin = 0 ) =
2019-05-26 21:14:22 -07:00
let (
r = get_radius ( r = r , d = d , dflt = 1 ) ,
sides = segs ( r ) ,
2019-11-03 18:44:14 -08:00
offset = realign ? 180 / sides : 0 ,
rr = r / ( circum ? cos ( 180 / sides ) : 1 ) ,
pts = [ for ( i = [ 0 : 1 : sides - 1 ] ) let ( a = 360 - offset - i * 360 / sides ) rr * [ cos ( a ) , sin ( a ) ] ]
2020-03-06 15:32:53 -08:00
) reorient ( anchor , spin , two_d = true , r = rr , p = pts ) ;
2019-05-26 21:14:22 -07:00
2019-04-23 19:13:43 -07:00
2020-01-15 14:18:11 -08:00
// Section: Primitive 3D Shapes
2019-04-16 19:16:50 -07:00
2020-04-23 02:35:50 -07:00
// Function&Module: cube()
// Usage: As Module
// cube(size, [center]);
// Usage: As Function
// vnf = cube(size, [center]);
2019-04-16 19:16:50 -07:00
// Description:
2020-04-23 02:35:50 -07:00
// Creates a 3D cubic object with support for anchoring and attachments.
// This can be used as a drop-in replacement for the built-in `cube()` module.
// When called as a function, returns a [VNF](vnf.scad) for a cube.
2019-04-16 19:16:50 -07:00
// Arguments:
// size = The size of the cube.
2019-11-23 18:23:04 -08:00
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=ALLNEG`.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-05-25 23:31:05 -07:00
// Example: Simple cube.
2019-04-16 19:16:50 -07:00
// cube(40);
2019-04-22 01:08:41 -07:00
// Example: Rectangular cube.
2019-05-26 21:44:28 -07:00
// cube([20,40,50]);
// Example: Anchoring.
// cube([20,40,50], anchor=BOTTOM+FRONT);
// Example: Spin.
// cube([20,40,50], anchor=BOTTOM+FRONT, spin=30);
// Example: Orientation.
// cube([20,40,50], anchor=BOTTOM+FRONT, spin=30, orient=FWD);
2019-04-22 01:08:41 -07:00
// Example: Standard Connectors.
2019-04-22 20:55:03 -07:00
// cube(40, center=true) show_anchors();
2020-04-23 02:35:50 -07:00
// Example: Called as Function
// vnf = cube([20,40,50]);
// vnf_polyhedron(vnf);
2020-02-29 13:16:15 -08:00
module cube ( size = 1 , center , anchor , spin = 0 , orient = UP )
2019-04-16 19:16:50 -07:00
{
2020-02-29 13:16:15 -08:00
anchor = get_anchor ( anchor , center , ALLNEG , ALLNEG ) ;
2020-04-23 02:35:50 -07:00
vnf = cube ( size , center = true ) ;
2020-04-23 03:06:17 -07:00
siz = scalar_vec3 ( size ) ;
attachable ( anchor , spin , orient , size = siz ) {
2020-04-23 02:35:50 -07:00
vnf_polyhedron ( vnf , convexity = 2 ) ;
2019-04-16 19:16:50 -07:00
children ( ) ;
}
}
2020-04-23 02:35:50 -07:00
function cube ( size = 1 , center , anchor , spin = 0 , orient = UP ) =
let (
2020-04-23 03:06:17 -07:00
siz = scalar_vec3 ( size ) ,
2020-04-23 02:35:50 -07:00
anchor = get_anchor ( anchor , center , ALLNEG , ALLNEG ) ,
unscaled = [
[ - 1 , - 1 , - 1 ] , [ 1 , - 1 , - 1 ] , [ 1 , 1 , - 1 ] , [ - 1 , 1 , - 1 ] ,
2020-04-23 03:06:17 -07:00
[ - 1 , - 1 , 1 ] , [ 1 , - 1 , 1 ] , [ 1 , 1 , 1 ] , [ - 1 , 1 , 1 ] ,
2020-04-23 02:35:50 -07:00
] / 2 ,
2020-04-23 03:06:17 -07:00
verts = is_num ( size ) ? unscaled * size :
is_vector ( size , 3 ) ? [ for ( p = unscaled ) vmul ( p , size ) ] :
assert ( is_num ( size ) || is_vector ( size , 3 ) ) ,
2020-04-23 02:35:50 -07:00
faces = [
2020-04-23 03:06:17 -07:00
[ 0 , 1 , 2 ] , [ 0 , 2 , 3 ] , //BOTTOM
2020-04-23 02:35:50 -07:00
[ 0 , 4 , 5 ] , [ 0 , 5 , 1 ] , //FRONT
[ 1 , 5 , 6 ] , [ 1 , 6 , 2 ] , //RIGHT
[ 2 , 6 , 7 ] , [ 2 , 7 , 3 ] , //BACK
[ 3 , 7 , 4 ] , [ 3 , 4 , 0 ] , //LEFT
2020-04-23 03:06:17 -07:00
[ 6 , 4 , 7 ] , [ 6 , 5 , 4 ] //TOP
2020-04-23 02:35:50 -07:00
]
2020-04-23 03:06:17 -07:00
) [ reorient ( anchor , spin , orient , size = siz , p = verts ) , faces ] ;
2019-04-16 19:16:50 -07:00
2020-04-23 02:35:50 -07:00
// Function&Module: cylinder()
// Usage: As Module
2019-05-26 13:45:22 -07:00
// cylinder(h, r|d, [center]);
// cylinder(h, r1/d1, r2/d2, [center]);
2020-04-23 02:35:50 -07:00
// Usage: As Function
// vnf = cylinder(h, r|d, [center]);
// vnf = cylinder(h, r1/d1, r2/d2, [center]);
2019-04-16 19:16:50 -07:00
// Description:
2020-04-23 02:35:50 -07:00
// Creates a 3D cylinder or conic object with support for anchoring and attachments.
// This can be used as a drop-in replacement for the built-in `cylinder()` module.
// When called as a function, returns a [VNF](vnf.scad) for a cylinder.
2019-04-16 19:16:50 -07:00
// Arguments:
// l / h = The height of the cylinder.
// r1 = The bottom radius of the cylinder. (Before orientation.)
// r2 = The top radius of the cylinder. (Before orientation.)
2019-11-23 18:23:04 -08:00
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2019-04-16 19:16:50 -07:00
// d1 = The bottom diameter of the cylinder. (Before orientation.)
// d2 = The top diameter of the cylinder. (Before orientation.)
2019-11-23 18:23:04 -08:00
// r = The radius of the cylinder.
// d = The diameter of the cylinder.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-16 19:16:50 -07:00
// Example: By Radius
// xdistribute(30) {
// cylinder(h=40, r=10);
// cylinder(h=40, r1=10, r2=5);
// }
// Example: By Diameter
// xdistribute(30) {
// cylinder(h=40, d=25);
// cylinder(h=40, d1=25, d2=10);
// }
2019-05-26 21:44:28 -07:00
// Example(Med): Anchoring
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT);
// Example(Med): Spin
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45);
// Example(Med): Orient
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45, orient=FWD);
// Example(Big): Standard Connectors
2019-04-22 01:08:41 -07:00
// xdistribute(40) {
2019-04-22 20:55:03 -07:00
// cylinder(h=30, d=25) show_anchors();
// cylinder(h=30, d1=25, d2=10) show_anchors();
2019-04-22 01:08:41 -07:00
// }
2020-02-29 13:16:15 -08:00
module cylinder ( h , r1 , r2 , center , l , r , d , d1 , d2 , anchor , spin = 0 , orient = UP )
2019-04-16 19:16:50 -07:00
{
2020-02-29 13:16:15 -08:00
anchor = get_anchor ( anchor , center , BOTTOM , BOTTOM ) ;
2019-04-16 19:16:50 -07:00
r1 = get_radius ( r1 = r1 , r = r , d1 = d1 , d = d , dflt = 1 ) ;
r2 = get_radius ( r1 = r2 , r = r , d1 = d2 , d = d , dflt = 1 ) ;
2019-10-23 22:52:42 -07:00
l = first_defined ( [ h , l , 1 ] ) ;
2019-04-16 19:16:50 -07:00
sides = segs ( max ( r1 , r2 ) ) ;
2020-04-23 02:35:50 -07:00
vnf = cylinder ( l = l , r1 = r1 , r2 = r2 , center = true ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , r1 = r1 , r2 = r2 , l = l ) {
2020-04-23 02:35:50 -07:00
vnf_polyhedron ( vnf , convexity = 2 ) ;
2019-04-16 19:16:50 -07:00
children ( ) ;
}
}
2020-04-23 02:35:50 -07:00
function cylinder ( h , r1 , r2 , center , l , r , d , d1 , d2 , anchor , spin = 0 , orient = UP ) =
let (
anchor = get_anchor ( anchor , center , BOTTOM , BOTTOM ) ,
r1 = get_radius ( r1 = r1 , r = r , d1 = d1 , d = d , dflt = 1 ) ,
r2 = get_radius ( r1 = r2 , r = r , d1 = d2 , d = d , dflt = 1 ) ,
l = first_defined ( [ h , l , 1 ] ) ,
sides = segs ( max ( r1 , r2 ) ) ,
verts = [
2020-04-23 03:18:28 -07:00
for ( i = [ 0 : 1 : sides - 1 ] ) let ( a = 360 * ( 1 - i / sides ) ) [ r1 * cos ( a ) , r1 * sin ( a ) , - l / 2 ] ,
for ( i = [ 0 : 1 : sides - 1 ] ) let ( a = 360 * ( 1 - i / sides ) ) [ r2 * cos ( a ) , r2 * sin ( a ) , l / 2 ] ,
2020-04-23 02:35:50 -07:00
] ,
faces = [
[ for ( i = [ 0 : 1 : sides - 1 ] ) sides - 1 - i ] ,
for ( i = [ 0 : 1 : sides - 1 ] ) [ i , ( ( i + 1 ) % sides ) + sides , i + sides ] ,
for ( i = [ 0 : 1 : sides - 1 ] ) [ i , ( i + 1 ) % sides , ( ( i + 1 ) % sides ) + sides ] ,
[ for ( i = [ 0 : 1 : sides - 1 ] ) sides + i ]
]
) [ reorient ( anchor , spin , orient , l = l , r1 = r1 , r2 = r2 , p = verts ) , faces ] ;
2019-04-16 19:16:50 -07:00
2020-04-23 02:35:50 -07:00
// Function&Module: sphere()
// Usage: As Module
// sphere(r|d, [circum], [style])
// Usage: As Function
// vnf = sphere(r|d, [circum], [style])
2019-04-16 19:16:50 -07:00
// Description:
2019-04-22 20:55:03 -07:00
// Creates a sphere object, with support for anchoring and attachments.
2019-04-16 19:16:50 -07:00
// This is a drop-in replacement for the built-in `sphere()` module.
2020-04-23 02:35:50 -07:00
// When called as a function, returns a [VNF](vnf.scad) for a sphere.
2019-04-16 19:16:50 -07:00
// Arguments:
// r = Radius of the sphere.
// d = Diameter of the sphere.
2020-04-23 02:35:50 -07:00
// circum = If true, the sphere is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes)
// style = The style of the sphere's construction. One of "orig", "alt", "stagger", or "icosa". Default: "orig"
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-22 01:08:41 -07:00
// Example: By Radius
// sphere(r=50);
// Example: By Diameter
// sphere(d=100);
2020-04-23 02:35:50 -07:00
// Figure(3D): style="orig"
// sphere(d=100, style="orig", $fn=10);
// Figure(3D): style="alt"
// sphere(d=100, style="alt", $fn=10);
// Figure(3D): style="stagger"
// sphere(d=100, style="stagger", $fn=10);
// Figure(3D): style="icosa"
// sphere(d=100, style="icosa", $fn=10);
// // In "icosa" style, $fn is quantized
// // to the nearest multiple of 5.
2019-05-26 21:44:28 -07:00
// Example: Anchoring
// sphere(d=100, anchor=FRONT);
// Example: Spin
// sphere(d=100, anchor=FRONT, spin=45);
// Example: Orientation
// sphere(d=100, anchor=FRONT, spin=45, orient=FWD);
2019-04-22 01:08:41 -07:00
// Example: Standard Connectors
2019-04-22 20:55:03 -07:00
// sphere(d=50) show_anchors();
2020-04-23 02:35:50 -07:00
// Example: Called as Function
// vnf = sphere(d=100, style="icosa");
// vnf_polyhedron(vnf);
module sphere ( r , d , circum = false , style = "orig" , anchor = CENTER , spin = 0 , orient = UP )
2019-04-16 19:16:50 -07:00
{
r = get_radius ( r = r , d = d , dflt = 1 ) ;
sides = segs ( r ) ;
2020-04-23 02:35:50 -07:00
vnf = sphere ( r = r , circum = circum , style = style ) ;
2020-02-29 13:16:15 -08:00
attachable ( anchor , spin , orient , r = r ) {
2020-04-23 02:35:50 -07:00
vnf_polyhedron ( vnf , convexity = 2 ) ;
2019-04-16 19:16:50 -07:00
children ( ) ;
}
}
2020-04-23 02:35:50 -07:00
function sphere ( r , d , circum = false , style = "orig" , anchor = CENTER , spin = 0 , orient = UP ) =
let (
r = get_radius ( r = r , d = d , dflt = 1 ) ,
hsides = segs ( r ) ,
vsides = max ( 2 , ceil ( hsides / 2 ) ) ,
icosa_steps = round ( max ( 5 , hsides ) / 5 ) ,
rr = circum ? ( r / cos ( 90 / vsides ) / cos ( 180 / hsides ) ) : r ,
stagger = style = = "stagger" ,
verts = style = = "orig" ? [
for ( i = [ 0 : 1 : vsides - 1 ] ) let ( phi = ( i + 0.5 ) * 180 / ( vsides ) )
for ( j = [ 0 : 1 : hsides - 1 ] ) let ( theta = j * 360 / hsides )
spherical_to_xyz ( rr , theta , phi ) ,
] : style = = "alt" || style = = "stagger" ? [
spherical_to_xyz ( rr , 0 , 0 ) ,
for ( i = [ 1 : 1 : vsides - 1 ] ) let ( phi = i * 180 / vsides )
for ( j = [ 0 : 1 : hsides - 1 ] ) let ( theta = ( j + ( ( stagger && i % 2 ! = 0 ) ? 0.5 : 0 ) ) * 360 / hsides )
spherical_to_xyz ( rr , theta , phi ) ,
spherical_to_xyz ( rr , 0 , 180 )
] : style = = "icosa" ? [
for ( tb = [ 0 , 1 ] , j = [ 0 , 2 ] , i = [ 0 : 1 : 4 ] ) let (
theta0 = i * 360 / 5 ,
theta1 = ( i - 0.5 ) * 360 / 5 ,
theta2 = ( i + 0.5 ) * 360 / 5 ,
phi0 = 180 / 3 * j ,
phi1 = 180 / 3 ,
v0 = spherical_to_xyz ( 1 , theta0 , phi0 ) ,
v1 = spherical_to_xyz ( 1 , theta1 , phi1 ) ,
v2 = spherical_to_xyz ( 1 , theta2 , phi1 ) ,
ax0 = vector_axis ( v0 , v1 ) ,
ang0 = vector_angle ( v0 , v1 ) ,
ax1 = vector_axis ( v0 , v2 ) ,
ang1 = vector_angle ( v0 , v2 )
)
for ( k = [ 0 : 1 : icosa_steps ] ) let (
u = k / icosa_steps ,
vv0 = rot ( ang0 * u , ax0 , p = v0 ) ,
vv1 = rot ( ang1 * u , ax1 , p = v0 ) ,
ax2 = vector_axis ( vv0 , vv1 ) ,
ang2 = vector_angle ( vv0 , vv1 )
)
for ( l = [ 0 : 1 : k ] ) let (
v = k ? l / k : 0 ,
pt = rot ( ang2 * v , v = ax2 , p = vv0 ) * rr * ( tb ? - 1 : 1 )
) pt
] : assert ( in_list ( style , [ "orig" , "alt" , "stagger" , "icosa" ] ) ) ,
lv = len ( verts ) ,
faces = style = = "orig" ? [
[ for ( i = [ 0 : 1 : hsides - 1 ] ) hsides - i - 1 ] ,
[ for ( i = [ 0 : 1 : hsides - 1 ] ) lv - hsides + i ] ,
2020-04-23 03:53:55 -07:00
for ( i = [ 0 : 1 : vsides - 2 ] , j = [ 0 : 1 : hsides - 1 ] ) each [
2020-04-23 02:35:50 -07:00
[ ( i + 1 ) * hsides + j , i * hsides + j , i * hsides + ( j + 1 ) % hsides ] ,
[ ( i + 1 ) * hsides + j , i * hsides + ( j + 1 ) % hsides , ( i + 1 ) * hsides + ( j + 1 ) % hsides ] ,
]
] : style = = "alt" || style = = "stagger" ? [
for ( i = [ 0 : 1 : hsides - 1 ] ) let (
b2 = lv - 2 - hsides
) each [
[ i + 1 , 0 , ( ( i + 1 ) % hsides ) + 1 ] ,
[ lv - 1 , b2 + i + 1 , b2 + ( ( i + 1 ) % hsides ) + 1 ] ,
] ,
for ( i = [ 0 : 1 : vsides - 3 ] , j = [ 0 : 1 : hsides - 1 ] ) let (
base = 1 + hsides * i
) each (
( stagger && i % 2 ! = 0 ) ? [
[ base + j , base + hsides + j % hsides , base + hsides + ( j + hsides - 1 ) % hsides ] ,
[ base + j , base + ( j + 1 ) % hsides , base + hsides + j ] ,
] : [
[ base + j , base + ( j + 1 ) % hsides , base + hsides + ( j + 1 ) % hsides ] ,
[ base + j , base + hsides + ( j + 1 ) % hsides , base + hsides + j ] ,
]
)
] : style = = "icosa" ? let (
pyr = [ for ( x = [ 0 : 1 : icosa_steps + 1 ] ) x ] ,
tri = sum ( pyr ) ,
soff = cumsum ( pyr )
) [
for ( tb = [ 0 , 1 ] , j = [ 0 , 1 ] , i = [ 0 : 1 : 4 ] ) let (
base = ( ( ( ( tb * 2 ) + j ) * 5 ) + i ) * tri
)
for ( k = [ 0 : 1 : icosa_steps - 1 ] )
for ( l = [ 0 : 1 : k ] ) let (
v1 = base + soff [ k ] + l ,
v2 = base + soff [ k + 1 ] + l ,
v3 = base + soff [ k + 1 ] + ( l + 1 ) ,
faces = [
if ( l > 0 ) [ v1 - 1 , v1 , v2 ] ,
[ v1 , v3 , v2 ] ,
] ,
faces2 = ( tb + j ) % 2 ? [ for ( f = faces ) reverse ( f ) ] : faces
) each faces2
] : [ ]
) [ reorient ( anchor , spin , orient , r = r , p = verts ) , faces ] ;
2019-04-16 19:16:50 -07:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap