BOSL2/primitives.scad

446 lines
17 KiB
OpenSCAD
Raw Normal View History

2019-04-16 19:16:50 -07:00
//////////////////////////////////////////////////////////////////////
// LibFile: primitives.scad
// The basic built-in shapes, reworked to integrate better with
2019-04-18 23:45:46 -07:00
// other BOSL2 library shapes and utilities.
2019-04-16 19:16:50 -07:00
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
2019-04-16 19:16:50 -07:00
// ```
//////////////////////////////////////////////////////////////////////
2019-04-23 19:13:43 -07:00
// Section: 2D Primitives
// Function&Module: square()
2019-04-23 19:13:43 -07:00
// Usage:
// square(size, [center], [rounding], [chamfer], [anchor], [spin])
2019-04-23 19:13:43 -07:00
// Description:
2020-04-06 18:53:12 -07:00
// When called as a module, creates a 2D square of the given size, with optional rounding or chamfering.
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
2019-04-23 19:13:43 -07:00
// Arguments:
// size = The size of the square to create. If given as a scalar, both X and Y will be the same size.
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
2019-04-23 19:13:43 -07:00
// center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-04-24 03:33:22 -07:00
// Example(2D):
// square(40);
// Example(2D): Centered
// square([40,30], center=true);
// Example(2D): Anchored
2019-04-24 03:33:22 -07:00
// square([40,30], anchor=FRONT);
// Example(2D): Spun
2019-05-26 21:44:28 -07:00
// square([40,30], anchor=FRONT, spin=30);
// Example(2D): Chamferred Rect
2019-12-26 21:49:05 -08:00
// square([40,30], chamfer=5, center=true);
// Example(2D): Rounded Rect
2019-12-26 21:49:05 -08:00
// square([40,30], rounding=5, center=true);
// Example(2D): Mixed Chamferring and Rounding
// square([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
// Example(2D): Called as Function
// path = square([40,30], chamfer=5, anchor=FRONT, spin=30);
// stroke(path, closed=true);
// move_copies(path) color("blue") circle(d=2,$fn=8);
module square(size=1, center, rounding=0, chamfer=0, anchor, spin=0) {
2019-04-23 19:13:43 -07:00
size = is_num(size)? [size,size] : point2d(size);
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT);
pts = square(size=size, rounding=rounding, chamfer=chamfer, center=true);
attachable(anchor,spin, two_d=true, size=size) {
translate(-size/2) polygon(move(size/2,p=pts)); // Extraneous translation works around fine grid quantizing.
2019-04-23 19:13:43 -07:00
children();
}
}
function square(size=1, center, rounding=0, chamfer=0, anchor, spin=0) =
assert(is_num(size) || is_vector(size))
assert(is_num(chamfer) || len(chamfer)==4)
assert(is_num(rounding) || len(rounding)==4)
let(
size = is_num(size)? [size,size] : point2d(size),
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT),
complex = rounding!=0 || chamfer!=0
)
(rounding==0 && chamfer==0)? let(
path = [
[ size.x/2, -size.y/2],
[-size.x/2, -size.y/2],
[-size.x/2, size.y/2],
[ size.x/2, size.y/2]
]
) rot(spin, p=move(-vmul(anchor,size/2), p=path)) :
let(
chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer],
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
quadorder = [3,2,1,0],
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0],
insets_x = max(insets[0]+insets[1],insets[2]+insets[3]),
insets_y = max(insets[0]+insets[3],insets[1]+insets[2])
)
assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the square width.")
assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the square height.")
let(
path = [
for(i = [0:3])
let(
quad = quadorder[i],
inset = insets[quad],
cverts = quant(segs(inset),4)/4,
cp = vmul(size/2-[inset,inset], quadpos[quad]),
step = 90/cverts,
angs =
chamfer[quad] > 0? [0,-90]-90*[i,i] :
rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] :
[0]
)
each [for (a = angs) cp + inset*[cos(a),sin(a)]]
]
) complex?
reorient(anchor,spin, two_d=true, path=path, p=path) :
reorient(anchor,spin, two_d=true, size=size, p=path);
2019-04-23 19:13:43 -07:00
// Function&Module: circle()
2019-04-23 19:13:43 -07:00
// Usage:
// circle(r|d, [realign], [circum])
2019-04-23 19:13:43 -07:00
// Description:
// When called as a module, creates a 2D polygon that approximates a circle of the given size.
// When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size.
2019-04-23 19:13:43 -07:00
// Arguments:
// r = The radius of the circle to create.
// d = The diameter of the circle to create.
// realign = If true, rotates the polygon that approximates the circle by half of one size.
// circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-04-24 03:33:22 -07:00
// Example(2D): By Radius
// circle(r=25);
// Example(2D): By Diameter
// circle(d=50);
// Example(2D): Anchoring
// circle(d=50, anchor=FRONT);
2019-05-26 21:44:28 -07:00
// Example(2D): Spin
// circle(d=50, anchor=FRONT, spin=45);
// Example(NORENDER): Called as Function
// path = circle(d=50, anchor=FRONT, spin=45);
module circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) {
2019-04-23 19:13:43 -07:00
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
rr = circum? r/cos(180/sides) : r;
pts = circle(r=rr, realign=realign, $fn=sides);
attachable(anchor,spin, two_d=true, r=rr) {
2019-04-23 19:13:43 -07:00
polygon(pts);
children();
}
}
function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=1),
sides = segs(r),
offset = realign? 180/sides : 0,
rr = r / (circum? cos(180/sides) : 1),
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) rr*[cos(a),sin(a)]]
) reorient(anchor,spin, two_d=true, r=rr, p=pts);
2019-04-23 19:13:43 -07:00
// Section: Primitive 3D Shapes
2019-04-16 19:16:50 -07:00
// Function&Module: cube()
// Usage: As Module
// cube(size, [center]);
// Usage: As Function
// vnf = cube(size, [center]);
2019-04-16 19:16:50 -07:00
// Description:
// Creates a 3D cubic object with support for anchoring and attachments.
// This can be used as a drop-in replacement for the built-in `cube()` module.
// When called as a function, returns a [VNF](vnf.scad) for a cube.
2019-04-16 19:16:50 -07:00
// Arguments:
// size = The size of the cube.
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=ALLNEG`.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: Simple cube.
2019-04-16 19:16:50 -07:00
// cube(40);
// Example: Rectangular cube.
2019-05-26 21:44:28 -07:00
// cube([20,40,50]);
// Example: Anchoring.
// cube([20,40,50], anchor=BOTTOM+FRONT);
// Example: Spin.
// cube([20,40,50], anchor=BOTTOM+FRONT, spin=30);
// Example: Orientation.
// cube([20,40,50], anchor=BOTTOM+FRONT, spin=30, orient=FWD);
// Example: Standard Connectors.
2019-04-22 20:55:03 -07:00
// cube(40, center=true) show_anchors();
// Example: Called as Function
// vnf = cube([20,40,50]);
// vnf_polyhedron(vnf);
module cube(size=1, center, anchor, spin=0, orient=UP)
2019-04-16 19:16:50 -07:00
{
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG);
vnf = cube(size, center=true);
2020-04-23 03:06:17 -07:00
siz = scalar_vec3(size);
attachable(anchor,spin,orient, size=siz) {
vnf_polyhedron(vnf, convexity=2);
2019-04-16 19:16:50 -07:00
children();
}
}
function cube(size=1, center, anchor, spin=0, orient=UP) =
let(
2020-04-23 03:06:17 -07:00
siz = scalar_vec3(size),
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG),
unscaled = [
[-1,-1,-1],[1,-1,-1],[1,1,-1],[-1,1,-1],
2020-04-23 03:06:17 -07:00
[-1,-1, 1],[1,-1, 1],[1,1, 1],[-1,1, 1],
]/2,
2020-04-23 03:06:17 -07:00
verts = is_num(size)? unscaled * size :
is_vector(size,3)? [for (p=unscaled) vmul(p,size)] :
assert(is_num(size) || is_vector(size,3)),
faces = [
2020-04-23 03:06:17 -07:00
[0,1,2], [0,2,3], //BOTTOM
[0,4,5], [0,5,1], //FRONT
[1,5,6], [1,6,2], //RIGHT
[2,6,7], [2,7,3], //BACK
[3,7,4], [3,4,0], //LEFT
2020-04-23 03:06:17 -07:00
[6,4,7], [6,5,4] //TOP
]
2020-04-23 03:06:17 -07:00
) [reorient(anchor,spin,orient, size=siz, p=verts), faces];
2019-04-16 19:16:50 -07:00
// Function&Module: cylinder()
// Usage: As Module
2019-05-26 13:45:22 -07:00
// cylinder(h, r|d, [center]);
// cylinder(h, r1/d1, r2/d2, [center]);
// Usage: As Function
// vnf = cylinder(h, r|d, [center]);
// vnf = cylinder(h, r1/d1, r2/d2, [center]);
2019-04-16 19:16:50 -07:00
// Description:
// Creates a 3D cylinder or conic object with support for anchoring and attachments.
// This can be used as a drop-in replacement for the built-in `cylinder()` module.
// When called as a function, returns a [VNF](vnf.scad) for a cylinder.
2019-04-16 19:16:50 -07:00
// Arguments:
// l / h = The height of the cylinder.
// r1 = The bottom radius of the cylinder. (Before orientation.)
// r2 = The top radius of the cylinder. (Before orientation.)
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2019-04-16 19:16:50 -07:00
// d1 = The bottom diameter of the cylinder. (Before orientation.)
// d2 = The top diameter of the cylinder. (Before orientation.)
// r = The radius of the cylinder.
// d = The diameter of the cylinder.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-16 19:16:50 -07:00
// Example: By Radius
// xdistribute(30) {
// cylinder(h=40, r=10);
// cylinder(h=40, r1=10, r2=5);
// }
// Example: By Diameter
// xdistribute(30) {
// cylinder(h=40, d=25);
// cylinder(h=40, d1=25, d2=10);
// }
2019-05-26 21:44:28 -07:00
// Example(Med): Anchoring
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT);
// Example(Med): Spin
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45);
// Example(Med): Orient
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45, orient=FWD);
// Example(Big): Standard Connectors
// xdistribute(40) {
2019-04-22 20:55:03 -07:00
// cylinder(h=30, d=25) show_anchors();
// cylinder(h=30, d1=25, d2=10) show_anchors();
// }
module cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
2019-04-16 19:16:50 -07:00
{
anchor = get_anchor(anchor, center, BOTTOM, BOTTOM);
2019-04-16 19:16:50 -07:00
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
l = first_defined([h, l, 1]);
2019-04-16 19:16:50 -07:00
sides = segs(max(r1,r2));
vnf = cylinder(l=l, r1=r1, r2=r2, center=true);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
vnf_polyhedron(vnf, convexity=2);
2019-04-16 19:16:50 -07:00
children();
}
}
function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP) =
let(
anchor = get_anchor(anchor, center, BOTTOM, BOTTOM),
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1),
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1),
l = first_defined([h, l, 1]),
sides = segs(max(r1,r2)),
verts = [
2020-04-23 03:18:28 -07:00
for (i=[0:1:sides-1]) let(a=360*(1-i/sides)) [r1*cos(a),r1*sin(a),-l/2],
for (i=[0:1:sides-1]) let(a=360*(1-i/sides)) [r2*cos(a),r2*sin(a), l/2],
],
faces = [
[for (i=[0:1:sides-1]) sides-1-i],
for (i=[0:1:sides-1]) [i, ((i+1)%sides)+sides, i+sides],
for (i=[0:1:sides-1]) [i, (i+1)%sides, ((i+1)%sides)+sides],
[for (i=[0:1:sides-1]) sides+i]
]
) [reorient(anchor,spin,orient, l=l, r1=r1, r2=r2, p=verts), faces];
2019-04-16 19:16:50 -07:00
// Function&Module: sphere()
// Usage: As Module
// sphere(r|d, [circum], [style])
// Usage: As Function
// vnf = sphere(r|d, [circum], [style])
2019-04-16 19:16:50 -07:00
// Description:
2019-04-22 20:55:03 -07:00
// Creates a sphere object, with support for anchoring and attachments.
2019-04-16 19:16:50 -07:00
// This is a drop-in replacement for the built-in `sphere()` module.
// When called as a function, returns a [VNF](vnf.scad) for a sphere.
2019-04-16 19:16:50 -07:00
// Arguments:
// r = Radius of the sphere.
// d = Diameter of the sphere.
// circum = If true, the sphere is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes)
// style = The style of the sphere's construction. One of "orig", "alt", "stagger", or "icosa". Default: "orig"
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: By Radius
// sphere(r=50);
// Example: By Diameter
// sphere(d=100);
// Figure(3D): style="orig"
// sphere(d=100, style="orig", $fn=10);
// Figure(3D): style="alt"
// sphere(d=100, style="alt", $fn=10);
// Figure(3D): style="stagger"
// sphere(d=100, style="stagger", $fn=10);
// Figure(3D): style="icosa"
// sphere(d=100, style="icosa", $fn=10);
// // In "icosa" style, $fn is quantized
// // to the nearest multiple of 5.
2019-05-26 21:44:28 -07:00
// Example: Anchoring
// sphere(d=100, anchor=FRONT);
// Example: Spin
// sphere(d=100, anchor=FRONT, spin=45);
// Example: Orientation
// sphere(d=100, anchor=FRONT, spin=45, orient=FWD);
// Example: Standard Connectors
2019-04-22 20:55:03 -07:00
// sphere(d=50) show_anchors();
// Example: Called as Function
// vnf = sphere(d=100, style="icosa");
// vnf_polyhedron(vnf);
module sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP)
2019-04-16 19:16:50 -07:00
{
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
vnf = sphere(r=r, circum=circum, style=style);
attachable(anchor,spin,orient, r=r) {
vnf_polyhedron(vnf, convexity=2);
2019-04-16 19:16:50 -07:00
children();
}
}
function sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP) =
let(
r = get_radius(r=r, d=d, dflt=1),
hsides = segs(r),
vsides = max(2,ceil(hsides/2)),
icosa_steps = round(max(5,hsides)/5),
rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r,
stagger = style=="stagger",
verts = style=="orig"? [
for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides))
for (j=[0:1:hsides-1]) let(theta = j*360/hsides)
spherical_to_xyz(rr, theta, phi),
] : style=="alt" || style=="stagger"? [
spherical_to_xyz(rr, 0, 0),
for (i=[1:1:vsides-1]) let(phi = i*180/vsides)
for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides)
spherical_to_xyz(rr, theta, phi),
spherical_to_xyz(rr, 0, 180)
] : style=="icosa"? [
for (tb=[0,1], j=[0,2], i = [0:1:4]) let(
theta0 = i*360/5,
theta1 = (i-0.5)*360/5,
theta2 = (i+0.5)*360/5,
phi0 = 180/3 * j,
phi1 = 180/3,
v0 = spherical_to_xyz(1,theta0,phi0),
v1 = spherical_to_xyz(1,theta1,phi1),
v2 = spherical_to_xyz(1,theta2,phi1),
ax0 = vector_axis(v0, v1),
ang0 = vector_angle(v0, v1),
ax1 = vector_axis(v0, v2),
ang1 = vector_angle(v0, v2)
)
for (k = [0:1:icosa_steps]) let(
u = k/icosa_steps,
vv0 = rot(ang0*u, ax0, p=v0),
vv1 = rot(ang1*u, ax1, p=v0),
ax2 = vector_axis(vv0, vv1),
ang2 = vector_angle(vv0, vv1)
)
for (l = [0:1:k]) let(
v = k? l/k : 0,
pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1)
) pt
] : assert(in_list(style,["orig","alt","stagger","icosa"])),
lv = len(verts),
faces = style=="orig"? [
[for (i=[0:1:hsides-1]) hsides-i-1],
[for (i=[0:1:hsides-1]) lv-hsides+i],
2020-04-23 03:53:55 -07:00
for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [
[(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides],
[(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides],
]
] : style=="alt" || style=="stagger"? [
for (i=[0:1:hsides-1]) let(
b2 = lv-2-hsides
) each [
[i+1, 0, ((i+1)%hsides)+1],
[lv-1, b2+i+1, b2+((i+1)%hsides)+1],
],
for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let(
base = 1 + hsides*i
) each (
(stagger && i%2!=0)? [
[base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides],
[base+j, base+(j+1)%hsides, base+hsides+j],
] : [
[base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides],
[base+j, base+hsides+(j+1)%hsides, base+hsides+j],
]
)
] : style=="icosa"? let(
pyr = [for (x=[0:1:icosa_steps+1]) x],
tri = sum(pyr),
soff = cumsum(pyr)
) [
for (tb=[0,1], j=[0,1], i = [0:1:4]) let(
base = ((((tb*2) + j) * 5) + i) * tri
)
for (k = [0:1:icosa_steps-1])
for (l = [0:1:k]) let(
v1 = base + soff[k] + l,
v2 = base + soff[k+1] + l,
v3 = base + soff[k+1] + (l + 1),
faces = [
if(l>0) [v1-1,v1,v2],
[v1,v3,v2],
],
faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces
) each faces2
] : []
) [reorient(anchor,spin,orient, r=r, p=verts), faces];
2019-04-16 19:16:50 -07:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap