2020-01-31 17:03:41 -08:00
//////////////////////////////////////////////////////////////////////
2021-01-05 02:19:46 -08:00
// LibFile: mutators.scad
2020-01-31 17:03:41 -08:00
// Functions and modules to mutate children in various ways.
2021-01-05 01:20:01 -08:00
// Includes:
2020-01-31 17:03:41 -08:00
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
2020-09-13 21:50:39 -07:00
// Section: Volume Division Mutators
2020-01-31 17:03:41 -08:00
//////////////////////////////////////////////////////////////////////
2020-09-13 21:50:39 -07:00
// Module: bounding_box()
// Usage:
// bounding_box() ...
// Description:
2021-01-07 20:16:28 -08:00
// Returns the smallest axis-aligned square (or cube) shape that contains all the 2D (or 3D)
// children given. The module children() is supposed to be a 3d shape when planar=false and
// a 2d shape when planar=true otherwise the system will issue a warning of mixing dimension
// or scaling by 0.
2020-09-13 21:50:39 -07:00
// Arguments:
// excess = The amount that the bounding box should be larger than needed to bound the children, in each axis.
2020-12-29 21:02:46 -08:00
// planar = If true, creates a 2D bounding rectangle. Is false, creates a 3D bounding cube. Default: false
2021-01-07 20:16:28 -08:00
// Example(3D):
// module shapes() {
2020-09-13 21:50:39 -07:00
// translate([10,8,4]) cube(5);
// translate([3,0,12]) cube(2);
// }
2021-01-07 20:16:28 -08:00
// #bounding_box() shapes();
// shapes();
// Example(2D):
// module shapes() {
// translate([10,8]) square(5);
// translate([3,0]) square(2);
// }
// #bounding_box(planar=true) shapes();
// shapes();
2021-01-05 02:06:39 -08:00
module bounding_box ( excess = 0 , planar = false ) {
2021-01-07 20:16:28 -08:00
// a 3d (or 2d when planar=true) approx. of the children projection on X axis
module _xProjection ( ) {
2020-12-29 21:02:46 -08:00
if ( planar ) {
2020-12-18 19:04:28 -08:00
projection ( )
rotate ( [ 90 , 0 , 0 ] )
2021-01-07 20:16:28 -08:00
linear_extrude ( 1 , center = true )
2020-12-29 21:02:46 -08:00
hull ( )
children ( ) ;
} else {
2021-01-07 20:16:28 -08:00
xs = excess < . 1 ? 1 : excess ;
2020-12-29 21:02:46 -08:00
linear_extrude ( xs , center = true )
projection ( )
rotate ( [ 90 , 0 , 0 ] )
linear_extrude ( xs , center = true )
projection ( )
hull ( )
children ( ) ;
}
2021-01-07 20:16:28 -08:00
}
2020-09-13 21:50:39 -07:00
// a bounding box with an offset of 1 in all axis
module _oversize_bbox ( ) {
2020-12-29 22:04:47 -08:00
if ( planar ) {
minkowski ( ) {
_xProjection ( ) children ( ) ; // x axis
rotate ( - 90 ) _xProjection ( ) rotate ( 90 ) children ( ) ; // y axis
}
} else {
minkowski ( ) {
_xProjection ( ) children ( ) ; // x axis
2020-12-29 21:02:46 -08:00
rotate ( - 90 ) _xProjection ( ) rotate ( 90 ) children ( ) ; // y axis
2020-12-29 22:04:47 -08:00
rotate ( [ 0 , - 90 , 0 ] ) _xProjection ( ) rotate ( [ 0 , 90 , 0 ] ) children ( ) ; // z axis
2020-12-29 21:02:46 -08:00
}
2020-09-13 21:50:39 -07:00
}
}
2021-01-07 20:16:28 -08:00
// offsets a cube by `excess`
2020-09-13 21:50:39 -07:00
module _shrink_cube ( ) {
intersection ( ) {
2021-01-07 20:16:28 -08:00
translate ( ( 1 - excess ) * [ 1 , 1 , 1 ] ) children ( ) ;
translate ( ( 1 - excess ) * [ - 1 , - 1 , - 1 ] ) children ( ) ;
2020-09-13 21:50:39 -07:00
}
}
2021-01-07 20:16:28 -08:00
if ( planar ) {
offset ( excess - 1 / 2 ) _oversize_bbox ( ) children ( ) ;
2020-09-13 21:50:39 -07:00
} else {
2021-01-07 20:16:28 -08:00
render ( convexity = 2 )
if ( excess > . 1 ) {
_oversize_bbox ( ) children ( ) ;
} else {
_shrink_cube ( ) _oversize_bbox ( ) children ( ) ;
}
2020-09-13 21:50:39 -07:00
}
}
2020-12-03 01:01:39 +01:00
// Function&Module: half_of()
2020-01-31 17:03:41 -08:00
//
2020-12-03 01:01:39 +01:00
// Usage: as module
2020-12-04 00:10:23 +01:00
// half_of(v, <cp>, <s>) ...
2020-12-03 01:01:39 +01:00
// Usage: as function
2020-12-04 00:10:23 +01:00
// half_of(v, <cp>, p, <s>)...
2020-01-31 17:03:41 -08:00
//
// Description:
// Slices an object at a cut plane, and masks away everything that is on one side.
2020-12-03 01:01:39 +01:00
// * Called as a function with a path in the `p` argument, returns the
2020-12-04 00:10:23 +01:00
// intersection of path `p` and given half-space.
2020-12-03 01:01:39 +01:00
// * Called as a function with a 2D path in the `p` argument
2020-12-04 00:10:23 +01:00
// and a 2D vector `p`, returns the intersection of path `p` and given
// half-plane.
2020-01-31 17:03:41 -08:00
//
// Arguments:
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. This can be used to shift where it slices the object at. Default: [0,0,0]
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// planar = If true, this becomes a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively.
//
// Examples:
// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
// half_of(DOWN+LEFT, s=200) sphere(d=150);
// Example(2D):
// half_of([1,1], planar=true) circle(d=50);
2020-04-29 22:45:41 -07:00
module half_of ( v = UP , cp , s = 1000 , planar = false )
2020-01-31 17:03:41 -08:00
{
2020-05-29 19:04:34 -07:00
cp = is_vector ( v , 4 ) ? assert ( cp = = undef , "Don't use cp with plane definition." ) plane_normal ( v ) * v [ 3 ] :
is_vector ( cp ) ? cp :
is_num ( cp ) ? cp * unit ( v ) :
[ 0 , 0 , 0 ] ;
v = is_vector ( v , 4 ) ? plane_normal ( v ) : v ;
if ( cp ! = [ 0 , 0 , 0 ] ) {
translate ( cp ) half_of ( v = v , s = s , planar = planar ) translate ( - cp ) children ( ) ;
} else if ( planar ) {
v = ( v = = UP ) ? BACK : ( v = = DOWN ) ? FWD : v ;
ang = atan2 ( v . y , v . x ) ;
difference ( ) {
children ( ) ;
rotate ( ang + 90 ) {
back ( s / 2 ) square ( s , center = true ) ;
}
}
} else {
difference ( ) {
children ( ) ;
rot ( from = UP , to = - v ) {
up ( s / 2 ) cube ( s , center = true ) ;
}
}
}
2020-01-31 17:03:41 -08:00
}
2020-12-03 18:00:31 +01:00
function half_of ( _arg1 = _undef , _arg2 = _undef , _arg3 = _undef , _arg4 = _undef ,
v = _undef , cp = _undef , p = _undef , s = _undef ) =
let ( args = get_named_args ( [ _arg1 , _arg2 , _arg3 , _arg4 ] ,
2020-12-04 00:10:23 +01:00
[ [ v , undef , 0 ] , [ cp , 0 , 2 ] , [ p , undef , 1 ] , [ s , 1e4 ] ] ) ,
2020-12-03 18:00:31 +01:00
v = args [ 0 ] , cp0 = args [ 1 ] , p = args [ 2 ] , s = args [ 3 ] ,
2020-12-03 01:01:39 +01:00
cp = is_num ( cp0 ) ? cp0 * unit ( v ) : cp0 )
assert ( is_vector ( v , 2 ) || is_vector ( v , 3 ) ,
"must provide a half-plane or half-space" )
let ( d = len ( v ) )
assert ( len ( cp ) = = d , str ( "cp must have dimension " , d ) )
is_vector ( p ) ?
assert ( len ( p ) = = d , str ( "vector must have dimension " , d ) )
let ( z = ( p - cp ) * v ) ( z >= 0 ? p : p - ( z * v ) / ( v * v ) )
:
p = = [ ] ? [ ] : // special case: empty path remains empty
is_path ( p ) ?
assert ( len ( p [ 0 ] ) = = d , str ( "path must have dimension " , d ) )
let ( z = [ for ( x = p ) ( x - cp ) * v ] )
[ for ( i = [ 0 : len ( p ) - 1 ] ) each concat ( z [ i ] >= 0 ? [ p [ i ] ] : [ ] ,
// we assume a closed path here;
// to make this correct for an open path,
// just replace this by [] when i==len(p)-1:
let ( j = ( i + 1 ) % len ( p ) )
// the remaining path may have flattened sections, but this cannot
// create self-intersection or whiskers:
z [ i ] * z [ j ] >= 0 ? [ ] : [ ( z [ j ] * p [ i ] - z [ i ] * p [ j ] ) / ( z [ j ] - z [ i ] ) ] ) ]
:
2020-12-03 18:00:31 +01:00
is_vnf ( p ) ?
// we must put is_vnf() before is_region(), because most triangulated
// VNFs will pass is_region() test
vnf_halfspace ( halfspace = concat ( v , [ - v * cp ] ) , vnf = p ) :
2020-12-03 17:45:20 +01:00
is_region ( p ) ?
assert ( len ( v ) = = 2 , str ( "3D vector not compatible with region" ) )
let ( u = unit ( v ) , w = [ - u [ 1 ] , u [ 0 ] ] ,
R = [ [ cp + s * w , cp + s * ( v + v ) , cp + s * ( v - w ) , cp - s * w ] ] ) // half-plane
intersection ( R , p )
:
assert ( false , "must pass either a point, a path, a region, or a VNF" ) ;
2020-01-31 17:03:41 -08:00
2020-12-03 21:21:05 +01:00
// Function&Module: left_half()
2020-01-31 17:03:41 -08:00
//
2020-12-03 21:21:05 +01:00
// Usage: as module
2020-12-04 00:10:23 +01:00
// left_half(<s>, <x>) ...
// left_half(planar=true, <s>, <x>) ...
2020-12-03 21:21:05 +01:00
// Usage: as function
2020-12-04 00:10:23 +01:00
// left_half(<s>, <x>, path)
// left_half(<s>, <x>, region)
// left_half(<s>, <x>, vnf)
2020-01-31 17:03:41 -08:00
//
// Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
// x = The X coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples:
// left_half() sphere(r=20);
// left_half(x=-8) sphere(r=20);
// Example(2D):
// left_half(planar=true) circle(r=20);
module left_half ( s = 1000 , x = 0 , planar = false )
{
2020-05-29 19:04:34 -07:00
dir = LEFT ;
difference ( ) {
children ( ) ;
translate ( [ x , 0 , 0 ] - dir * s / 2 ) {
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
}
2020-01-31 17:03:41 -08:00
}
2020-12-03 21:21:05 +01:00
function left_half ( _arg1 = _undef , _arg2 = _undef , _arg3 = _undef ,
x = _undef , p = _undef , s = _undef ) =
let ( args = get_named_args ( [ _arg1 , _arg2 , _arg3 ] ,
2020-12-04 00:10:23 +01:00
[ [ x , 0 , 1 ] , [ p , undef , 0 ] , [ s , 1e4 ] ] ) ,
2020-12-03 21:21:05 +01:00
x = args [ 0 ] , p = args [ 1 ] , s = args [ 2 ] )
half_of ( v = [ 1 , 0 , 0 ] , cp = x , p = p ) ;
2020-01-31 17:03:41 -08:00
2020-12-03 21:21:05 +01:00
// Function&Module: right_half()
2020-01-31 17:03:41 -08:00
//
// Usage:
// right_half([s], [x]) ...
// right_half(planar=true, [s], [x]) ...
//
// Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
// x = The X coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples(FlatSpin):
// right_half() sphere(r=20);
// right_half(x=-5) sphere(r=20);
// Example(2D):
// right_half(planar=true) circle(r=20);
module right_half ( s = 1000 , x = 0 , planar = false )
{
2020-05-29 19:04:34 -07:00
dir = RIGHT ;
difference ( ) {
children ( ) ;
translate ( [ x , 0 , 0 ] - dir * s / 2 ) {
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
}
2020-01-31 17:03:41 -08:00
}
2020-12-03 21:21:05 +01:00
function right_half ( _arg1 = _undef , _arg2 = _undef , _arg3 = _undef ,
x = _undef , p = _undef , s = _undef ) =
let ( args = get_named_args ( [ _arg1 , _arg2 , _arg3 ] ,
2020-12-04 00:10:23 +01:00
[ [ x , 0 , 1 ] , [ p , undef , 0 ] , [ s , 1e4 ] ] ) ,
2020-12-03 21:21:05 +01:00
x = args [ 0 ] , p = args [ 1 ] , s = args [ 2 ] )
half_of ( v = [ - 1 , 0 , 0 ] , cp = x , p = p ) ;
2020-01-31 17:03:41 -08:00
2020-12-03 21:21:05 +01:00
// Function&Module: front_half()
2020-01-31 17:03:41 -08:00
//
// Usage:
// front_half([s], [y]) ...
// front_half(planar=true, [s], [y]) ...
//
// Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
// y = The Y coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples(FlatSpin):
// front_half() sphere(r=20);
// front_half(y=5) sphere(r=20);
// Example(2D):
// front_half(planar=true) circle(r=20);
module front_half ( s = 1000 , y = 0 , planar = false )
{
2020-05-29 19:04:34 -07:00
dir = FWD ;
difference ( ) {
children ( ) ;
translate ( [ 0 , y , 0 ] - dir * s / 2 ) {
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
}
2020-01-31 17:03:41 -08:00
}
2020-12-03 21:21:05 +01:00
function front_half ( _arg1 = _undef , _arg2 = _undef , _arg3 = _undef ,
x = _undef , p = _undef , s = _undef ) =
let ( args = get_named_args ( [ _arg1 , _arg2 , _arg3 ] ,
2020-12-04 00:10:23 +01:00
[ [ x , 0 , 1 ] , [ p , undef , 0 ] , [ s , 1e4 ] ] ) ,
2020-12-03 21:21:05 +01:00
x = args [ 0 ] , p = args [ 1 ] , s = args [ 2 ] )
half_of ( v = [ 0 , 1 , 0 ] , cp = x , p = p ) ;
2020-01-31 17:03:41 -08:00
2020-12-03 21:21:05 +01:00
// Function&Module: back_half()
2020-01-31 17:03:41 -08:00
//
// Usage:
// back_half([s], [y]) ...
// back_half(planar=true, [s], [y]) ...
//
// Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
// y = The Y coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples:
// back_half() sphere(r=20);
// back_half(y=8) sphere(r=20);
// Example(2D):
// back_half(planar=true) circle(r=20);
module back_half ( s = 1000 , y = 0 , planar = false )
{
2020-05-29 19:04:34 -07:00
dir = BACK ;
difference ( ) {
children ( ) ;
translate ( [ 0 , y , 0 ] - dir * s / 2 ) {
if ( planar ) {
square ( s , center = true ) ;
} else {
cube ( s , center = true ) ;
}
}
}
2020-01-31 17:03:41 -08:00
}
2020-12-03 21:21:05 +01:00
function back_half ( _arg1 = _undef , _arg2 = _undef , _arg3 = _undef ,
x = _undef , p = _undef , s = _undef ) =
let ( args = get_named_args ( [ _arg1 , _arg2 , _arg3 ] ,
2020-12-04 00:10:23 +01:00
[ [ x , 0 , 1 ] , [ p , undef , 0 ] , [ s , 1e4 ] ] ) ,
2020-12-03 21:21:05 +01:00
x = args [ 0 ] , p = args [ 1 ] , s = args [ 2 ] )
half_of ( v = [ 0 , - 1 , 0 ] , cp = x , p = p ) ;
2020-01-31 17:03:41 -08:00
2020-12-03 21:21:05 +01:00
// Function&Module: bottom_half()
2020-01-31 17:03:41 -08:00
//
// Usage:
// bottom_half([s], [z]) ...
//
// Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
// z = The Z coordinate of the cut-plane. Default: 0
//
// Examples:
// bottom_half() sphere(r=20);
// bottom_half(z=-10) sphere(r=20);
module bottom_half ( s = 1000 , z = 0 )
{
2020-05-29 19:04:34 -07:00
dir = DOWN ;
difference ( ) {
children ( ) ;
translate ( [ 0 , 0 , z ] - dir * s / 2 ) {
cube ( s , center = true ) ;
}
}
2020-01-31 17:03:41 -08:00
}
2020-12-03 21:21:05 +01:00
function right_half ( _arg1 = _undef , _arg2 = _undef , _arg3 = _undef ,
x = _undef , p = _undef , s = _undef ) =
let ( args = get_named_args ( [ _arg1 , _arg2 , _arg3 ] ,
2020-12-04 00:10:23 +01:00
[ [ x , 0 , 1 ] , [ p , undef , 0 ] , [ s , 1e4 ] ] ) ,
2020-12-03 21:21:05 +01:00
x = args [ 0 ] , p = args [ 1 ] , s = args [ 2 ] )
half_of ( v = [ 0 , 0 , - 1 ] , cp = x , p = p ) ;
2020-01-31 17:03:41 -08:00
2020-12-03 21:21:05 +01:00
// Function&Module: top_half()
2020-01-31 17:03:41 -08:00
//
// Usage:
// top_half([s], [z]) ...
//
// Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
// z = The Z coordinate of the cut-plane. Default: 0
//
// Examples(Spin):
// top_half() sphere(r=20);
// top_half(z=5) sphere(r=20);
module top_half ( s = 1000 , z = 0 )
{
2020-05-29 19:04:34 -07:00
dir = UP ;
difference ( ) {
children ( ) ;
translate ( [ 0 , 0 , z ] - dir * s / 2 ) {
cube ( s , center = true ) ;
}
}
2020-01-31 17:03:41 -08:00
}
2020-12-03 21:21:05 +01:00
function right_half ( _arg1 = _undef , _arg2 = _undef , _arg3 = _undef ,
x = _undef , p = _undef , s = _undef ) =
let ( args = get_named_args ( [ _arg1 , _arg2 , _arg3 ] ,
2020-12-04 00:10:23 +01:00
[ [ x , 0 , 1 ] , [ p , undef , 0 ] , [ s , 1e4 ] ] ) ,
2020-12-03 21:21:05 +01:00
x = args [ 0 ] , p = args [ 1 ] , s = args [ 2 ] )
half_of ( v = [ 0 , 0 , 1 ] , cp = x , p = p ) ;
2020-01-31 17:03:41 -08:00
//////////////////////////////////////////////////////////////////////
2021-01-17 01:36:43 -08:00
// Section: Warp Mutators
2020-01-31 17:03:41 -08:00
//////////////////////////////////////////////////////////////////////
2021-01-17 01:36:43 -08:00
2020-01-31 17:03:41 -08:00
// Module: chain_hull()
//
// Usage:
// chain_hull() ...
//
// Description:
// Performs hull operations between consecutive pairs of children,
// then unions all of the hull results. This can be a very slow
// operation, but it can provide results that are hard to get
// otherwise.
//
// Side Effects:
// `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually.
// `$primary` is set to true when the child is the first in a chain pair.
//
// Example:
// chain_hull() {
// cube(5, center=true);
// translate([30, 0, 0]) sphere(d=15);
// translate([60, 30, 0]) cylinder(d=10, h=20);
// translate([60, 60, 0]) cube([10,1,20], center=false);
// }
// Example: Using `$idx` and `$primary`
// chain_hull() {
// zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// }
module chain_hull ( )
{
2020-05-29 19:04:34 -07:00
union ( ) {
if ( $children = = 1 ) {
children ( ) ;
} else if ( $children > 1 ) {
for ( i = [ 1 : 1 : $children - 1 ] ) {
$ idx = i ;
hull ( ) {
let ( $ primary = true ) children ( i - 1 ) ;
let ( $ primary = false ) children ( i ) ;
}
}
}
}
2020-01-31 17:03:41 -08:00
}
2021-01-17 01:36:43 -08:00
// Module: path_extrude2d()
// Usage:
// path_extrude2d(path, <caps>) {...}
// Description:
// Extrudes 2D children along the given 2D path, with optional rounded endcaps.
// Arguments:
// path = The 2D path to extrude the geometry along.
// caps = If true, caps each end of the path with a `rotate_extrude()`d copy of the children. This may interact oddly when given asymmetric profile children.
// Example:
// path = [
// each right(50, p=arc(d=100,angle=[90,180])),
// each left(50, p=arc(d=100,angle=[0,-90])),
// ];
// path_extrude2d(path,caps=false) {
// fwd(2.5) square([5,6],center=true);
// fwd(6) square([10,5],center=true);
// }
// Example:
// path_extrude2d(arc(d=100,angle=[180,270]))
// trapezoid(w1=10, w2=5, h=10, anchor=BACK);
// Example:
// include <BOSL2/beziers.scad>
// path = bezier_path([
// [-50,0], [-25,50], [0,0], [50,0]
// ]);
// path_extrude2d(path, caps=false)
// trapezoid(w1=10, w2=1, h=5, anchor=BACK);
module path_extrude2d ( path , caps = true ) {
thin = 0.01 ;
path = deduplicate ( path ) ;
for ( p = pair ( path ) ) {
delt = p [ 1 ] - p [ 0 ] ;
translate ( p [ 0 ] ) {
rot ( from = BACK , to = delt ) {
minkowski ( ) {
cube ( [ thin , norm ( delt ) , thin ] , anchor = FRONT ) ;
rotate ( [ 90 , 0 , 0 ] ) linear_extrude ( height = thin , center = true ) children ( ) ;
}
}
}
}
for ( t = triplet ( path ) ) {
ang = vang ( t [ 2 ] - t [ 1 ] ) - vang ( t [ 1 ] - t [ 0 ] ) ;
delt = t [ 2 ] - t [ 1 ] ;
translate ( t [ 1 ] ) {
minkowski ( ) {
cube ( thin , center = true ) ;
if ( ang >= 0 ) {
rotate ( 90 - ang )
rot ( from = LEFT , to = delt )
rotate_extrude ( angle = ang + 0.01 )
right_half ( planar = true ) children ( ) ;
} else {
rotate ( - 90 )
rot ( from = RIGHT , to = delt )
rotate_extrude ( angle = - ang + 0.01 )
left_half ( planar = true ) children ( ) ;
}
}
}
}
if ( caps ) {
move_copies ( [ path [ 0 ] , last ( path ) ] )
rotate_extrude ( )
right_half ( planar = true ) children ( ) ;
}
}
2020-01-31 17:03:41 -08:00
2020-05-15 13:59:27 -07:00
// Module: cylindrical_extrude()
// Usage:
// cylindrical_extrude(size, ir|id, or|od, [convexity]) ...
// Description:
2020-08-26 20:39:45 -07:00
// Extrudes all 2D children outwards, curved around a cylindrical shape.
2020-05-15 13:59:27 -07:00
// Arguments:
// or = The outer radius to extrude to.
// od = The outer diameter to extrude to.
// ir = The inner radius to extrude from.
// id = The inner diameter to extrude from.
// size = The [X,Y] size of the 2D children to extrude. Default: [1000,1000]
// convexity = The max number of times a line could pass though a wall. Default: 10
// spin = Amount in degrees to spin around cylindrical axis. Default: 0
// orient = The orientation of the cylinder to wrap around, given as a vector. Default: UP
// Example:
// cylindrical_extrude(or=50, ir=45)
// text(text="Hello World!", size=10, halign="center", valign="center");
// Example: Spin Around the Cylindrical Axis
// cylindrical_extrude(or=50, ir=45, spin=90)
// text(text="Hello World!", size=10, halign="center", valign="center");
// Example: Orient to the Y Axis.
// cylindrical_extrude(or=40, ir=35, orient=BACK)
// text(text="Hello World!", size=10, halign="center", valign="center");
module cylindrical_extrude ( or , ir , od , id , size = 1000 , convexity = 10 , spin = 0 , orient = UP ) {
2020-05-29 19:04:34 -07:00
assert ( is_num ( size ) || is_vector ( size , 2 ) ) ;
size = is_num ( size ) ? [ size , size ] : size ;
ir = get_radius ( r = ir , d = id ) ;
or = get_radius ( r = or , d = od ) ;
index_r = or ;
circumf = 2 * PI * index_r ;
width = min ( size . x , circumf ) ;
assert ( width < = circumf , "Shape would more than completely wrap around." ) ;
sides = segs ( or ) ;
step = circumf / sides ;
steps = ceil ( width / step ) ;
rot ( from = UP , to = orient ) rot ( spin ) {
for ( i = [ 0 : 1 : steps - 2 ] ) {
x = ( i + 0.5 - steps / 2 ) * step ;
zrot ( 360 * x / circumf ) {
fwd ( or * cos ( 180 / sides ) ) {
xrot ( - 90 ) {
linear_extrude ( height = or - ir , scale = [ ir / or , 1 ] , center = false , convexity = convexity ) {
yflip ( )
intersection ( ) {
left ( x ) children ( ) ;
rect ( [ quantup ( step , pow ( 2 , - 15 ) ) , size . y ] , center = true ) ;
}
}
}
}
}
}
}
2020-05-15 13:59:27 -07:00
}
2020-01-31 17:03:41 -08:00
//////////////////////////////////////////////////////////////////////
// Section: Offset Mutators
//////////////////////////////////////////////////////////////////////
2020-12-29 21:02:46 -08:00
// Module: minkowski_difference()
2020-01-31 17:03:41 -08:00
// Usage:
2020-12-29 21:02:46 -08:00
// minkowski_difference() { base_shape(); diff_shape(); ... }
2020-01-31 17:03:41 -08:00
// Description:
2020-12-29 21:02:46 -08:00
// Takes a 3D base shape and one or more 3D diff shapes, carves out the diff shapes from the
// surface of the base shape, in a way complementary to how `minkowski()` unions shapes to the
// surface of its base shape.
2020-01-31 17:03:41 -08:00
// Arguments:
2020-12-29 21:02:46 -08:00
// planar = If true, performs minkowski difference in 2D. Default: false (3D)
// Example:
// minkowski_difference() {
// union() {
// cube([120,70,70], center=true);
// cube([70,120,70], center=true);
// cube([70,70,120], center=true);
// }
// sphere(r=10);
// }
module minkowski_difference ( planar = false ) {
difference ( ) {
bounding_box ( excess = 0 , planar = planar ) children ( 0 ) ;
render ( convexity = 20 ) {
2020-05-29 19:04:34 -07:00
minkowski ( ) {
difference ( ) {
2020-12-29 21:02:46 -08:00
bounding_box ( excess = 1 , planar = planar ) children ( 0 ) ;
children ( 0 ) ;
2020-05-29 19:04:34 -07:00
}
2020-12-29 21:02:46 -08:00
for ( i = [ 1 : 1 : $children - 1 ] ) children ( i ) ;
2020-05-29 19:04:34 -07:00
}
}
}
2020-01-31 17:03:41 -08:00
}
// Module: round2d()
// Usage:
// round2d(r) ...
// round2d(or) ...
// round2d(ir) ...
// round2d(or, ir) ...
// Description:
// Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
// can let you round to different radii for concave and convex corners. The 2D object must not have
// any parts narrower than twice the `or` radius. Such parts will disappear.
// Arguments:
// r = Radius to round all concave and convex corners to.
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
// Examples(2D):
// round2d(r=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(or=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);}
module round2d ( r , or , ir )
{
2020-05-29 19:04:34 -07:00
or = get_radius ( r1 = or , r = r , dflt = 0 ) ;
ir = get_radius ( r1 = ir , r = r , dflt = 0 ) ;
offset ( or ) offset ( - ir - or ) offset ( delta = ir , chamfer = true ) children ( ) ;
2020-01-31 17:03:41 -08:00
}
// Module: shell2d()
// Usage:
// shell2d(thickness, [or], [ir], [fill], [round])
// Description:
// Creates a hollow shell from 2D children, with optional rounding.
// Arguments:
// thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both.
2020-12-29 21:02:46 -08:00
// or = Radius to round corners on the outside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no outside rounding)
// ir = Radius to round corners on the inside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no inside rounding)
2020-01-31 17:03:41 -08:00
// Examples(2D):
// shell2d(10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(-10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);}
2021-01-05 02:14:04 -08:00
// shell2d(10,or=[10,0]) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,or=[0,10]) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,ir=[10,0]) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,ir=[0,10]) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(8,or=[16,8],ir=[16,8]) {square([40,100], center=true); square([100,40], center=true);}
2020-12-29 21:02:46 -08:00
module shell2d ( thickness , or = 0 , ir = 0 )
2020-01-31 17:03:41 -08:00
{
2020-05-29 19:04:34 -07:00
thickness = is_num ( thickness ) ? (
thickness < 0 ? [ thickness , 0 ] : [ 0 , thickness ]
) : ( thickness [ 0 ] > thickness [ 1 ] ) ? (
[ thickness [ 1 ] , thickness [ 0 ] ]
) : thickness ;
2020-12-29 21:02:46 -08:00
orad = is_finite ( or ) ? [ or , or ] : or ;
irad = is_finite ( ir ) ? [ ir , ir ] : ir ;
2020-05-29 19:04:34 -07:00
difference ( ) {
2020-12-29 21:02:46 -08:00
round2d ( or = orad [ 0 ] , ir = orad [ 1 ] )
2020-05-29 19:04:34 -07:00
offset ( delta = thickness [ 1 ] )
children ( ) ;
2020-12-29 21:02:46 -08:00
round2d ( or = irad [ 1 ] , ir = irad [ 0 ] )
2020-05-29 19:04:34 -07:00
offset ( delta = thickness [ 0 ] )
children ( ) ;
}
2020-01-31 17:03:41 -08:00
}
2020-12-29 21:02:46 -08:00
// Module: offset3d()
2020-09-13 21:50:39 -07:00
// Usage:
2020-12-29 21:02:46 -08:00
// offset3d(r, [size], [convexity]);
2020-09-13 21:50:39 -07:00
// Description:
2020-12-29 21:02:46 -08:00
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
// This is so slow that no example images will be rendered.
// Arguments:
// r = Radius to expand object by. Negative numbers contract the object.
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
module offset3d ( r = 1 , size = 100 , convexity = 10 ) {
n = quant ( max ( 8 , segs ( abs ( r ) ) ) , 4 ) ;
if ( r = = 0 ) {
children ( ) ;
} else if ( r > 0 ) {
render ( convexity = convexity )
minkowski ( ) {
children ( ) ;
sphere ( r , $fn = n ) ;
}
} else {
size2 = size * [ 1 , 1 , 1 ] ;
size1 = size2 * 1.02 ;
render ( convexity = convexity )
difference ( ) {
cube ( size2 , center = true ) ;
2020-09-13 21:50:39 -07:00
minkowski ( ) {
difference ( ) {
2020-12-29 21:02:46 -08:00
cube ( size1 , center = true ) ;
children ( ) ;
2020-09-13 21:50:39 -07:00
}
2020-12-29 21:02:46 -08:00
sphere ( - r , $fn = n ) ;
2020-09-13 21:50:39 -07:00
}
}
}
}
2020-12-29 21:02:46 -08:00
// Module: round3d()
// Usage:
// round3d(r) ...
// round3d(or) ...
// round3d(ir) ...
// round3d(or, ir) ...
// Description:
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
// can let you round to different radii for concave and convex corners. The 3D object must not have
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
// Use this as a last resort. This is so slow that no example images will be rendered.
// Arguments:
// r = Radius to round all concave and convex corners to.
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
module round3d ( r , or , ir , size = 100 )
{
or = get_radius ( r1 = or , r = r , dflt = 0 ) ;
ir = get_radius ( r1 = ir , r = r , dflt = 0 ) ;
offset3d ( or , size = size )
offset3d ( - ir - or , size = size )
offset3d ( ir , size = size )
children ( ) ;
}
2020-09-13 21:50:39 -07:00
2020-01-31 17:03:41 -08:00
//////////////////////////////////////////////////////////////////////
// Section: Colors
//////////////////////////////////////////////////////////////////////
// Function&Module: HSL()
// Usage:
// HSL(h,[s],[l],[a]) ...
// rgb = HSL(h,[s],[l]);
// Description:
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
// When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
// Arguments:
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
// l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
// Example:
// HSL(h=120,s=1,l=0.5) sphere(d=60);
// Example:
// rgb = HSL(h=270,s=0.75,l=0.6);
// color(rgb) cube(60, center=true);
function HSL ( h , s = 1 , l = 0.5 ) =
2020-05-29 19:04:34 -07:00
let (
h = posmod ( h , 360 )
) [
for ( n = [ 0 , 8 , 4 ] ) let (
k = ( n + h / 30 ) % 12
) l - s * min ( l , 1 - l ) * max ( min ( k - 3 , 9 - k , 1 ) , - 1 )
] ;
2020-01-31 17:03:41 -08:00
module HSL ( h , s = 1 , l = 0.5 , a = 1 ) color ( HSL ( h , s , l ) , a ) children ( ) ;
// Function&Module: HSV()
// Usage:
// HSV(h,[s],[v],[a]) ...
// rgb = HSV(h,[s],[v]);
// Description:
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
// When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
// Arguments:
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
// v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
// Example:
// HSV(h=120,s=1,v=1) sphere(d=60);
// Example:
// rgb = HSV(h=270,s=0.75,v=0.9);
// color(rgb) cube(60, center=true);
function HSV ( h , s = 1 , v = 1 ) =
2020-05-29 19:04:34 -07:00
let (
h = posmod ( h , 360 ) ,
v2 = v * ( 1 - s ) ,
r = lookup ( h , [ [ 0 , v ] , [ 60 , v ] , [ 120 , v2 ] , [ 240 , v2 ] , [ 300 , v ] , [ 360 , v ] ] ) ,
g = lookup ( h , [ [ 0 , v2 ] , [ 60 , v ] , [ 180 , v ] , [ 240 , v2 ] , [ 360 , v2 ] ] ) ,
b = lookup ( h , [ [ 0 , v2 ] , [ 120 , v2 ] , [ 180 , v ] , [ 300 , v ] , [ 360 , v2 ] ] )
) [ r , g , b ] ;
2020-01-31 17:03:41 -08:00
module HSV ( h , s = 1 , v = 1 , a = 1 ) color ( HSV ( h , s , v ) , a ) children ( ) ;
// Module: rainbow()
// Usage:
// rainbow(list) ...
// Description:
// Iterates the list, displaying children in different colors for each list item.
// This is useful for debugging lists of paths and such.
// Arguments:
// list = The list of items to iterate through.
// stride = Consecutive colors stride around the color wheel divided into this many parts.
// Side Effects:
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
// Sets `$idx` to the index of the current item in `list` that we want to show.
// Sets `$item` to the current item in `list` that we want to show.
// Example(2D):
// rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center");
// Example(2D):
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
// rainbow(rgn) stroke($item, closed=true);
module rainbow ( list , stride = 1 )
{
2020-05-29 19:04:34 -07:00
ll = len ( list ) ;
huestep = 360 / ll ;
hues = [ for ( i = [ 0 : 1 : ll - 1 ] ) posmod ( i * huestep + i * 360 / stride , 360 ) ] ;
for ( $ idx = idx ( list ) ) {
$ item = list [ $ idx ] ;
HSV ( h = hues [ $ idx ] ) children ( ) ;
}
2020-01-31 17:03:41 -08:00
}
2020-05-29 19:04:34 -07:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap