2019-05-13 23:11:55 -07:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
2019-05-17 14:41:45 -07:00
|
|
|
// LibFile: affine.scad
|
2019-05-13 23:11:55 -07:00
|
|
|
// Matrix math and affine transformation matrices.
|
|
|
|
// To use, add the following lines to the beginning of your file:
|
|
|
|
// ```
|
|
|
|
// use <BOSL2/std.scad>
|
|
|
|
// ```
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Matrix Manipulation
|
|
|
|
|
|
|
|
// Function: ident()
|
|
|
|
// Description: Create an `n` by `n` identity matrix.
|
|
|
|
// Arguments:
|
|
|
|
// n = The size of the identity matrix square, `n` by `n`.
|
2019-05-26 22:34:46 -07:00
|
|
|
function ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?1:0]];
|
2019-05-13 23:11:55 -07:00
|
|
|
|
|
|
|
|
2019-08-09 13:07:18 -07:00
|
|
|
// Function: affine2d_to_3d()
|
2019-05-13 23:11:55 -07:00
|
|
|
// Description: Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent.
|
2019-08-09 13:07:18 -07:00
|
|
|
function affine2d_to_3d(m) = concat(
|
2019-05-13 23:11:55 -07:00
|
|
|
[for (r = [0:2])
|
|
|
|
concat(
|
|
|
|
[for (c = [0:2]) m[r][c]],
|
|
|
|
[0]
|
|
|
|
)
|
|
|
|
],
|
|
|
|
[[0, 0, 0, 1]]
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Affine2d 3x3 Transformation Matrices
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine2d_identity()
|
|
|
|
// Description: Create a 3x3 affine2d identity matrix.
|
|
|
|
function affine2d_identity() = ident(3);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine2d_translate()
|
|
|
|
// Description:
|
|
|
|
// Returns the 3x3 affine2d matrix to perform a 2D translation.
|
|
|
|
// Arguments:
|
|
|
|
// v = 2D Offset to translate by. [X,Y]
|
|
|
|
function affine2d_translate(v) = [
|
|
|
|
[1, 0, v.x],
|
|
|
|
[0, 1, v.y],
|
|
|
|
[0 ,0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine2d_scale()
|
|
|
|
// Description:
|
|
|
|
// Returns the 3x3 affine2d matrix to perform a 2D scaling transformation.
|
|
|
|
// Arguments:
|
|
|
|
// v = 2D vector of scaling factors. [X,Y]
|
|
|
|
function affine2d_scale(v) = [
|
|
|
|
[v.x, 0, 0],
|
|
|
|
[ 0, v.y, 0],
|
|
|
|
[ 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine2d_zrot()
|
|
|
|
// Description:
|
|
|
|
// Returns the 3x3 affine2d matrix to perform a rotation of a 2D vector around the Z axis.
|
|
|
|
// Arguments:
|
|
|
|
// ang = Number of degrees to rotate.
|
|
|
|
function affine2d_zrot(ang) = [
|
|
|
|
[cos(ang), -sin(ang), 0],
|
|
|
|
[sin(ang), cos(ang), 0],
|
|
|
|
[ 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-12-03 19:04:56 -08:00
|
|
|
// Function: affine2d_mirror()
|
|
|
|
// Usage:
|
|
|
|
// mat = affine2d_mirror(v);
|
|
|
|
// Description:
|
|
|
|
// Returns the 3x3 affine2d matrix to perform a reflection of a 2D vector across the line given by its normal vector.
|
|
|
|
// Arguments:
|
|
|
|
// v = The normal vector of the line to reflect across.
|
|
|
|
function affine2d_mirror(v) =
|
|
|
|
let(v=normalize(point2d(v)), a=v.x, b=v.y)
|
|
|
|
[
|
|
|
|
[1-2*a*a, 0-2*a*b, 0],
|
|
|
|
[0-2*a*b, 1-2*b*b, 0],
|
|
|
|
[ 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-05-13 23:11:55 -07:00
|
|
|
// Function: affine2d_skew()
|
|
|
|
// Usage:
|
|
|
|
// affine2d_skew(xa, ya)
|
|
|
|
// Description:
|
|
|
|
// Returns the 3x3 affine2d matrix to skew a 2D vector along the XY plane.
|
|
|
|
// Arguments:
|
|
|
|
// xa = Skew angle, in degrees, in the direction of the X axis.
|
|
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis.
|
|
|
|
function affine2d_skew(xa, ya) = [
|
|
|
|
[1, tan(xa), 0],
|
|
|
|
[tan(ya), 1, 0],
|
|
|
|
[0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-05-14 14:38:54 -07:00
|
|
|
// Function: affine2d_chain()
|
2019-05-13 23:11:55 -07:00
|
|
|
// Usage:
|
2019-05-14 14:38:54 -07:00
|
|
|
// affine2d_chain(affines)
|
2019-05-13 23:11:55 -07:00
|
|
|
// Description:
|
|
|
|
// Returns a 3x3 affine2d transformation matrix which results from applying each matrix in `affines` in order.
|
|
|
|
// Arguments:
|
|
|
|
// affines = A list of 3x3 affine2d matrices.
|
2019-05-14 14:38:54 -07:00
|
|
|
function affine2d_chain(affines, _m=undef, _i=0) =
|
2019-05-13 23:11:55 -07:00
|
|
|
(_i>=len(affines))? (is_undef(_m)? ident(3) : _m) :
|
2019-05-14 14:38:54 -07:00
|
|
|
affine2d_chain(affines, _m=(is_undef(_m)? affines[_i] : affines[_i] * _m), _i=_i+1);
|
2019-05-13 23:11:55 -07:00
|
|
|
|
|
|
|
|
|
|
|
// Function: affine2d_apply()
|
|
|
|
// Usage:
|
|
|
|
// affine2d_apply(pts, affines)
|
|
|
|
// Description:
|
|
|
|
// Given a list of 3x3 affine2d transformation matrices, applies them in order to the points in the point list.
|
|
|
|
// Arguments:
|
|
|
|
// pts = A list of 2D points to transform.
|
|
|
|
// affines = A list of 3x3 affine2d matrices to apply, in order.
|
|
|
|
// Example:
|
|
|
|
// npts = affine2d_apply(
|
|
|
|
// pts = [for (x=[0:3]) [5*x,0]],
|
|
|
|
// affines =[
|
|
|
|
// affine2d_scale([3,1]),
|
|
|
|
// affine2d_rot(90),
|
|
|
|
// affine2d_translate([5,5])
|
|
|
|
// ]
|
|
|
|
// ); // Returns [[5,5], [5,20], [5,35], [5,50]]
|
|
|
|
function affine2d_apply(pts, affines) =
|
2019-05-14 14:38:54 -07:00
|
|
|
let(m = affine2d_chain(affines))
|
2019-05-13 23:11:55 -07:00
|
|
|
[for (p = pts) point2d(m * concat(point2d(p),[1]))];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Affine3d 4x4 Transformation Matrices
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_identity()
|
|
|
|
// Description: Create a 4x4 affine3d identity matrix.
|
|
|
|
function affine3d_identity() = ident(4);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_translate()
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a 3D translation.
|
|
|
|
// Arguments:
|
|
|
|
// v = 3D offset to translate by. [X,Y,Z]
|
|
|
|
function affine3d_translate(v) = [
|
|
|
|
[1, 0, 0, v.x],
|
|
|
|
[0, 1, 0, v.y],
|
|
|
|
[0, 0, 1, v.z],
|
|
|
|
[0 ,0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_scale()
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a 3D scaling transformation.
|
|
|
|
// Arguments:
|
|
|
|
// v = 3D vector of scaling factors. [X,Y,Z]
|
|
|
|
function affine3d_scale(v) = [
|
|
|
|
[v.x, 0, 0, 0],
|
|
|
|
[ 0, v.y, 0, 0],
|
|
|
|
[ 0, 0, v.z, 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_xrot()
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the X axis.
|
|
|
|
// Arguments:
|
|
|
|
// ang = number of degrees to rotate.
|
|
|
|
function affine3d_xrot(ang) = [
|
|
|
|
[1, 0, 0, 0],
|
|
|
|
[0, cos(ang), -sin(ang), 0],
|
|
|
|
[0, sin(ang), cos(ang), 0],
|
|
|
|
[0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_yrot()
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Y axis.
|
|
|
|
// Arguments:
|
|
|
|
// ang = Number of degrees to rotate.
|
|
|
|
function affine3d_yrot(ang) = [
|
|
|
|
[ cos(ang), 0, sin(ang), 0],
|
|
|
|
[ 0, 1, 0, 0],
|
|
|
|
[-sin(ang), 0, cos(ang), 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_zrot()
|
|
|
|
// Usage:
|
|
|
|
// affine3d_zrot(ang)
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Z axis.
|
|
|
|
// Arguments:
|
|
|
|
// ang = number of degrees to rotate.
|
|
|
|
function affine3d_zrot(ang) = [
|
|
|
|
[cos(ang), -sin(ang), 0, 0],
|
|
|
|
[sin(ang), cos(ang), 0, 0],
|
|
|
|
[ 0, 0, 1, 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_rot_by_axis()
|
|
|
|
// Usage:
|
|
|
|
// affine3d_rot_by_axis(u, ang);
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around an axis.
|
|
|
|
// Arguments:
|
|
|
|
// u = 3D axis vector to rotate around.
|
|
|
|
// ang = number of degrees to rotate.
|
|
|
|
function affine3d_rot_by_axis(u, ang) = let(
|
|
|
|
u = normalize(u),
|
|
|
|
c = cos(ang),
|
|
|
|
c2 = 1-c,
|
|
|
|
s = sin(ang)
|
|
|
|
) [
|
|
|
|
[u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0],
|
|
|
|
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0],
|
|
|
|
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-05-25 23:31:05 -07:00
|
|
|
// Function: affine3d_rot_from_to()
|
|
|
|
// Usage:
|
|
|
|
// affine3d_rot_from_to(from, to);
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector from one vector direction to another.
|
|
|
|
// Arguments:
|
|
|
|
// from = 3D axis vector to rotate from.
|
|
|
|
// to = 3D axis vector to rotate to.
|
|
|
|
function affine3d_rot_from_to(from, to) = let(
|
|
|
|
u = vector_axis(from,to),
|
|
|
|
ang = vector_angle(from,to),
|
|
|
|
c = cos(ang),
|
|
|
|
c2 = 1-c,
|
|
|
|
s = sin(ang)
|
|
|
|
) [
|
|
|
|
[u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0],
|
|
|
|
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0],
|
|
|
|
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-12-03 19:04:56 -08:00
|
|
|
// Function: affine3d_mirror()
|
|
|
|
// Usage:
|
|
|
|
// mat = affine3d_mirror(v);
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a reflection of a 3D vector across the plane given by its normal vector.
|
|
|
|
// Arguments:
|
|
|
|
// v = The normal vector of the plane to reflect across.
|
|
|
|
function affine3d_mirror(v) =
|
|
|
|
let(v=normalize(point3d(v)), a=v.x, b=v.y, c=v.z)
|
|
|
|
[
|
|
|
|
[1-2*a*a, -2*a*b, -2*a*c, 0],
|
|
|
|
[ -2*b*a, 1-2*b*b, -2*b*c, 0],
|
|
|
|
[ -2*c*a, -2*c*b, 1-2*c*c, 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-12-19 23:26:54 -08:00
|
|
|
// Function: affine3d_skew()
|
|
|
|
// Usage:
|
|
|
|
// mat = affine3d_skew([sxy], [sxz], [syx], [xyz], [szx], [szy]);
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation.
|
|
|
|
// Arguments:
|
|
|
|
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
|
|
|
|
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
|
|
|
|
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
|
|
|
|
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
|
|
|
|
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
|
|
|
|
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
|
2020-01-06 16:55:22 -08:00
|
|
|
function affine3d_skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) = [
|
2019-12-19 23:26:54 -08:00
|
|
|
[ 1, sxy, sxz, 0],
|
|
|
|
[syx, 1, syz, 0],
|
|
|
|
[szx, szy, 1, 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-05-13 23:11:55 -07:00
|
|
|
// Function: affine3d_skew_xy()
|
|
|
|
// Usage:
|
|
|
|
// affine3d_skew_xy(xa, ya)
|
|
|
|
// Description:
|
2019-12-19 23:26:54 -08:00
|
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XY plane.
|
2019-05-13 23:11:55 -07:00
|
|
|
// Arguments:
|
|
|
|
// xa = Skew angle, in degrees, in the direction of the X axis.
|
|
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis.
|
|
|
|
function affine3d_skew_xy(xa, ya) = [
|
|
|
|
[1, 0, tan(xa), 0],
|
|
|
|
[0, 1, tan(ya), 0],
|
|
|
|
[0, 0, 1, 0],
|
|
|
|
[0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_skew_xz()
|
|
|
|
// Usage:
|
|
|
|
// affine3d_skew_xz(xa, za)
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XZ plane.
|
|
|
|
// Arguments:
|
|
|
|
// xa = Skew angle, in degrees, in the direction of the X axis.
|
|
|
|
// za = Skew angle, in degrees, in the direction of the Z axis.
|
|
|
|
function affine3d_skew_xz(xa, za) = [
|
|
|
|
[1, tan(xa), 0, 0],
|
|
|
|
[0, 1, 0, 0],
|
|
|
|
[0, tan(za), 1, 0],
|
|
|
|
[0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_skew_yz()
|
|
|
|
// Usage:
|
|
|
|
// affine3d_skew_yz(ya, za)
|
|
|
|
// Description:
|
|
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the YZ plane.
|
|
|
|
// Arguments:
|
|
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis.
|
|
|
|
// za = Skew angle, in degrees, in the direction of the Z axis.
|
|
|
|
function affine3d_skew_yz(ya, za) = [
|
|
|
|
[ 1, 0, 0, 0],
|
|
|
|
[tan(ya), 1, 0, 0],
|
|
|
|
[tan(za), 0, 1, 0],
|
|
|
|
[ 0, 0, 0, 1]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-05-14 14:38:54 -07:00
|
|
|
// Function: affine3d_chain()
|
2019-05-13 23:11:55 -07:00
|
|
|
// Usage:
|
2019-05-14 14:38:54 -07:00
|
|
|
// affine3d_chain(affines)
|
2019-05-13 23:11:55 -07:00
|
|
|
// Description:
|
|
|
|
// Returns a 4x4 affine3d transformation matrix which results from applying each matrix in `affines` in order.
|
|
|
|
// Arguments:
|
|
|
|
// affines = A list of 4x4 affine3d matrices.
|
2019-05-14 14:38:54 -07:00
|
|
|
function affine3d_chain(affines, _m=undef, _i=0) =
|
2019-05-13 23:11:55 -07:00
|
|
|
(_i>=len(affines))? (is_undef(_m)? ident(4) : _m) :
|
2019-05-14 14:38:54 -07:00
|
|
|
affine3d_chain(affines, _m=(is_undef(_m)? affines[_i] : affines[_i] * _m), _i=_i+1);
|
2019-05-13 23:11:55 -07:00
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_apply()
|
|
|
|
// Usage:
|
|
|
|
// affine3d_apply(pts, affines)
|
|
|
|
// Description:
|
|
|
|
// Given a list of affine3d transformation matrices, applies them in order to the points in the point list.
|
|
|
|
// Arguments:
|
|
|
|
// pts = A list of 3D points to transform.
|
|
|
|
// affines = A list of 4x4 matrices to apply, in order.
|
|
|
|
// Example:
|
|
|
|
// npts = affine3d_apply(
|
|
|
|
// pts = [for (x=[0:3]) [5*x,0,0]],
|
|
|
|
// affines =[
|
|
|
|
// affine3d_scale([2,1,1]),
|
|
|
|
// affine3d_zrot(90),
|
|
|
|
// affine3d_translate([5,5,10])
|
|
|
|
// ]
|
|
|
|
// ); // Returns [[5,5,10], [5,15,10], [5,25,10], [5,35,10]]
|
|
|
|
function affine3d_apply(pts, affines) =
|
2019-05-14 14:38:54 -07:00
|
|
|
let(m = affine3d_chain(affines))
|
2019-05-13 23:11:55 -07:00
|
|
|
[for (p = pts) point3d(m * concat(point3d(p),[1]))];
|
|
|
|
|
|
|
|
|
|
|
|
|
2020-02-27 17:32:03 -05:00
|
|
|
// Function: apply()
|
|
|
|
// Usage: apply(transform, points)
|
|
|
|
// Description:
|
|
|
|
// Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed
|
|
|
|
// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling.
|
|
|
|
// Examples:
|
|
|
|
// transformed = apply(xrot(45), path3d(circle(r=3))); // Rotates 3d circle data around x axis
|
|
|
|
// transformed = apply(rot(45), circle(r=3)); // Rotates 2d circle data by 45 deg
|
|
|
|
// transformed = apply(rot(45)*right(4)*scale(3), circle(r=3)); // Scales, translates and rotates 2d circle data
|
|
|
|
function apply(transform,points) =
|
|
|
|
is_vector(points) ? apply(transform, [points])[0] :
|
|
|
|
let(
|
|
|
|
tdim = len(transform[0])-1,
|
|
|
|
datadim = len(points[0])
|
|
|
|
)
|
|
|
|
tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] :
|
|
|
|
tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] :
|
|
|
|
tdim == 3 && datadim == 2 ?
|
|
|
|
assert(is_2d_transform(transform),str("Transforms is 3d but points are 2d"))
|
|
|
|
[for(p=points) point2d(transform*concat(p,[0,1]))] :
|
|
|
|
assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
|
|
|
|
|
|
|
|
|
|
|
// Function: apply_list()
|
|
|
|
// Usage: apply_list(points, transform_list)
|
|
|
|
// Description:
|
|
|
|
// Transforms the specified point list (or single point) using a list of transformation matrices. Transformations on
|
|
|
|
// the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be
|
|
|
|
// 2d or 3d, and it is also allowed to supply 3d transformations with 2d data as long as the the only action on the z coordinate
|
|
|
|
// is a simple scaling. All transformations on `transform_list` must have the same dimension: you cannot mix 2d and 3d transformations
|
|
|
|
// even when acting on 2d data.
|
|
|
|
// Examples:
|
|
|
|
// transformed = apply_list(path3d(circle(r=3)),[xrot(45)]); // Rotates 3d circle data around x axis
|
|
|
|
// transformed = apply_list(circle(r=3), [scale(3), right(4), rot(45)]); // Scales, then translates, and then rotates 2d circle data
|
|
|
|
function apply_list(points,transform_list) =
|
|
|
|
is_vector(points) ? apply_list([points],transform_list)[0] :
|
|
|
|
let(
|
|
|
|
tdims = array_dim(transform_list),
|
|
|
|
datadim = len(points[0])
|
|
|
|
)
|
|
|
|
assert(len(tdims)==3 || tdims[1]!=tdims[2], "Invalid transformation list")
|
|
|
|
let( tdim = tdims[1]-1 )
|
|
|
|
tdim==2 && datadim == 2 ? apply(affine2d_chain(transform_list), points) :
|
|
|
|
tdim==3 && datadim == 3 ? apply(affine3d_chain(transform_list), points) :
|
|
|
|
tdim==3 && datadim == 2 ?
|
|
|
|
let(
|
|
|
|
badlist = [for(i=idx(transform_list)) if (!is_2d_transform(transform_list[i])) i]
|
|
|
|
)
|
|
|
|
assert(badlist==[],str("Transforms with indices ",badlist," are 3d but points are 2d"))
|
|
|
|
apply(affine3d_chain(transform_list), points) :
|
|
|
|
assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
|
|
|
|
|
|
|
|
|
|
|
// Function: is_2d_transform()
|
|
|
|
// Usage: is_2d_transform(t)
|
|
|
|
// Description: Checks if the input is a 3d transform that does not act on the z coordinate, except
|
|
|
|
// possibly for a simple scaling of z. Note that an input which is only a zscale returns false.
|
|
|
|
function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
|
|
|
|
t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 &&
|
|
|
|
(t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale()
|
|
|
|
|
|
|
|
|
2019-05-13 23:11:55 -07:00
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|