BOSL2/walls.scad

521 lines
19 KiB
OpenSCAD
Raw Normal View History

2019-04-26 02:15:53 -07:00
//////////////////////////////////////////////////////////////////////
// LibFile: walls.scad
// Various wall constructions.
// Includes:
2019-04-26 02:15:53 -07:00
// include <BOSL2/std.scad>
// include <BOSL2/walls.scad>
//////////////////////////////////////////////////////////////////////
// Section: Walls
// Module: narrowing_strut()
//
// Description:
// Makes a rectangular strut with the top side narrowing in a triangle.
// The shape created may be likened to an extruded home plate from baseball.
// This is useful for constructing parts that minimize the need to support
// overhangs.
//
// Usage:
2019-05-26 13:45:22 -07:00
// narrowing_strut(w, l, wall, [ang]);
2019-04-26 02:15:53 -07:00
//
// Arguments:
// w = Width (thickness) of the strut.
// l = Length of the strut.
// wall = height of rectangular portion of the strut.
// ang = angle that the trianglar side will converge at.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-26 02:15:53 -07:00
//
// Example:
// narrowing_strut(w=10, l=100, wall=5, ang=30);
module narrowing_strut(w=10, l=100, wall=5, ang=30, anchor=BOTTOM, spin=0, orient=UP)
2019-04-26 02:15:53 -07:00
{
h = wall + w/2/tan(ang);
size = [w, l, h];
attachable(anchor,spin,orient, size=size) {
xrot(90)
fwd(h/2) {
linear_extrude(height=l, center=true, slices=2) {
back(wall/2) square([w, wall], center=true);
back(wall-0.001) {
yscale(1/tan(ang)) {
difference() {
zrot(45) square(w/sqrt(2), center=true);
fwd(w/2) square(w, center=true);
}
}
}
}
}
children();
}
2019-04-26 02:15:53 -07:00
}
// Module: thinning_wall()
//
// Description:
// Makes a rectangular wall which thins to a smaller width in the center,
// with angled supports to prevent critical overhangs.
//
// Usage:
2019-05-26 13:45:22 -07:00
// thinning_wall(h, l, thick, [ang], [strut], [wall]);
2019-04-26 02:15:53 -07:00
//
// Arguments:
// h = Height of wall.
// l = Length of wall. If given as a vector of two numbers, specifies bottom and top lengths, respectively.
// thick = Thickness of wall.
2020-05-18 21:51:25 -07:00
// wall = The thickness of the thinned portion of the wall. Default: `thick/2`
// ang = Maximum overhang angle of diagonal brace.
// braces = If true, adds diagonal crossbraces for strength.
2020-05-18 21:51:25 -07:00
// strut = The width of the borders and diagonal braces. Default: `thick/2`
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-26 02:15:53 -07:00
//
// Example: Typical Shape
// thinning_wall(h=50, l=80, thick=4);
// Example: Trapezoidal
// thinning_wall(h=50, l=[80,50], thick=4);
// Example: Trapezoidal with Braces
// thinning_wall(h=50, l=[80,50], thick=4, strut=4, wall=2, braces=true);
2020-05-18 21:51:25 -07:00
module thinning_wall(h=50, l=100, thick=5, ang=30, braces=false, strut, wall, anchor=CENTER, spin=0, orient=UP)
2019-04-26 02:15:53 -07:00
{
l1 = (l[0] == undef)? l : l[0];
l2 = (l[1] == undef)? l : l[1];
strut = is_num(strut)? strut : min(h,l1,l2,thick)/2;
wall = is_num(wall)? wall : thick/2;
bevel_h = strut + (thick-wall)/2/tan(ang);
2020-09-25 00:01:45 -07:00
cp1 = circle_2tangents([0,0,h/2], [l2/2,0,h/2], [l1/2,0,-h/2], r=strut)[0];
cp2 = circle_2tangents([0,0,h/2], [l2/2,0,h/2], [l1/2,0,-h/2], r=bevel_h)[0];
cp3 = circle_2tangents([0,0,-h/2], [l1/2,0,-h/2], [l2/2,0,h/2], r=bevel_h)[0];
cp4 = circle_2tangents([0,0,-h/2], [l1/2,0,-h/2], [l2/2,0,h/2], r=strut)[0];
z1 = h/2;
z2 = cp1.z;
z3 = cp2.z;
x1 = l2/2;
x2 = cp1.x;
x3 = cp2.x;
x4 = l1/2;
x5 = cp4.x;
x6 = cp3.x;
y1 = thick/2;
y2 = wall/2;
corner1 = [ x2, 0, z2];
corner2 = [-x5, 0, -z2];
brace_len = norm(corner1-corner2);
size = [l1, thick, h];
attachable(anchor,spin,orient, size=size, size2=[l2,thick]) {
union() {
polyhedron(
points=[
[-x4, -y1, -z1],
[ x4, -y1, -z1],
[ x1, -y1, z1],
[-x1, -y1, z1],
[-x5, -y1, -z2],
[ x5, -y1, -z2],
[ x2, -y1, z2],
[-x2, -y1, z2],
[-x6, -y2, -z3],
[ x6, -y2, -z3],
[ x3, -y2, z3],
[-x3, -y2, z3],
[-x4, y1, -z1],
[ x4, y1, -z1],
[ x1, y1, z1],
[-x1, y1, z1],
[-x5, y1, -z2],
[ x5, y1, -z2],
[ x2, y1, z2],
[-x2, y1, z2],
[-x6, y2, -z3],
[ x6, y2, -z3],
[ x3, y2, z3],
[-x3, y2, z3],
],
faces=[
[ 4, 5, 1],
[ 5, 6, 2],
[ 6, 7, 3],
[ 7, 4, 0],
[ 4, 1, 0],
[ 5, 2, 1],
[ 6, 3, 2],
[ 7, 0, 3],
[ 8, 9, 5],
[ 9, 10, 6],
[10, 11, 7],
[11, 8, 4],
[ 8, 5, 4],
[ 9, 6, 5],
[10, 7, 6],
[11, 4, 7],
[11, 10, 9],
[20, 21, 22],
[11, 9, 8],
[20, 22, 23],
[16, 17, 21],
[17, 18, 22],
[18, 19, 23],
[19, 16, 20],
[16, 21, 20],
[17, 22, 21],
[18, 23, 22],
[19, 20, 23],
[12, 13, 17],
[13, 14, 18],
[14, 15, 19],
[15, 12, 16],
[12, 17, 16],
[13, 18, 17],
[14, 19, 18],
[15, 16, 19],
[ 0, 1, 13],
[ 1, 2, 14],
[ 2, 3, 15],
[ 3, 0, 12],
[ 0, 13, 12],
[ 1, 14, 13],
[ 2, 15, 14],
[ 3, 12, 15],
],
convexity=6
);
if(braces) {
bracepath = [
[-strut*0.33,thick/2],
[ strut*0.33,thick/2],
[ strut*0.33+(thick-wall)/2/tan(ang), wall/2],
[ strut*0.33+(thick-wall)/2/tan(ang),-wall/2],
[ strut*0.33,-thick/2],
[-strut*0.33,-thick/2],
[-strut*0.33-(thick-wall)/2/tan(ang),-wall/2],
[-strut*0.33-(thick-wall)/2/tan(ang), wall/2]
];
xflip_copy() {
intersection() {
extrude_from_to(corner1,corner2) {
polygon(bracepath);
}
prismoid([l1,thick],[l2,thick],h=h,anchor=CENTER);
}
}
}
}
children();
}
2019-04-26 02:15:53 -07:00
}
// Module: thinning_triangle()
//
// Description:
// Makes a triangular wall with thick edges, which thins to a smaller width in
// the center, with angled supports to prevent critical overhangs.
//
// Usage:
2019-05-26 13:45:22 -07:00
// thinning_triangle(h, l, thick, [ang], [strut], [wall], [diagonly], [center]);
2019-04-26 02:15:53 -07:00
//
// Arguments:
// h = height of wall.
// l = length of wall.
// thick = thickness of wall.
// ang = maximum overhang angle of diagonal brace.
// strut = the width of the diagonal brace.
// wall = the thickness of the thinned portion of the wall.
// diagonly = boolean, which denotes only the diagonal side (hypotenuse) should be thick.
// center = If true, centers shape. If false, overrides `anchor` with `UP+BACK`.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-26 02:15:53 -07:00
//
// Example: Centered
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=true);
// Example: All Braces
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=false);
// Example: Diagonal Brace Only
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, diagonly=true, center=false);
module thinning_triangle(h=50, l=100, thick=5, ang=30, strut=5, wall=3, diagonly=false, center, anchor, spin=0, orient=UP)
2019-04-26 02:15:53 -07:00
{
dang = atan(h/l);
dlen = h/sin(dang);
size = [thick, l, h];
anchor = get_anchor(anchor, center, BOT+FRONT, CENTER);
attachable(anchor,spin,orient, size=size) {
difference() {
union() {
if (!diagonly) {
translate([0, 0, -h/2])
narrowing_strut(w=thick, l=l, wall=strut, ang=ang);
translate([0, -l/2, 0])
xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang);
}
intersection() {
cube(size=[thick, l, h], center=true);
xrot(-dang) yrot(180) {
narrowing_strut(w=thick, l=dlen*1.2, wall=strut, ang=ang);
}
}
cube(size=[wall, l-0.1, h-0.1], center=true);
}
xrot(-dang) {
translate([0, 0, h/2]) {
cube(size=[thick+0.1, l*2, h], center=true);
}
}
}
children();
}
2019-04-26 02:15:53 -07:00
}
// Module: sparse_strut()
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce
// the need for support material in 3D printing.
//
// Usage:
2019-05-26 13:45:22 -07:00
// sparse_strut(h, l, thick, [strut], [maxang], [max_bridge])
2019-04-26 02:15:53 -07:00
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// maxang = maximum overhang angle of cross-braces.
// max_bridge = maximum bridging distance between cross-braces.
// strut = the width of the cross-braces.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-26 02:15:53 -07:00
//
// Example: Typical Shape
// sparse_strut(h=40, l=100, thick=3);
// Example: Thinner Strut
// sparse_strut(h=40, l=100, thick=3, strut=2);
// Example: Larger maxang
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45);
// Example: Longer max_bridge
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45, max_bridge=30);
module sparse_strut(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, anchor=CENTER, spin=0, orient=UP)
2019-04-26 02:15:53 -07:00
{
zoff = h/2 - strut/2;
yoff = l/2 - strut/2;
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
maxz = 2 * maxhyp * cos(maxang);
zreps = ceil(2*zoff/maxz);
zstep = 2*zoff / zreps;
hyp = zstep/2 / cos(maxang);
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
yreps = ceil(2*yoff/maxy);
ystep = 2*yoff / yreps;
ang = atan(ystep/zstep);
len = zstep / cos(ang);
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
yrot(90)
linear_extrude(height=thick, convexity=4*yreps, center=true) {
difference() {
square([h, l], center=true);
square([h-2*strut, l-2*strut], center=true);
}
ycopies(ystep, n=yreps) {
xcopies(zstep, n=zreps) {
skew(syx=tan(-ang)) square([(h-strut)/zreps, strut], center=true);
skew(syx=tan( ang)) square([(h-strut)/zreps, strut], center=true);
}
}
}
children();
}
2019-04-26 02:15:53 -07:00
}
// Module: sparse_strut3d()
//
// Usage:
2019-05-26 13:45:22 -07:00
// sparse_strut3d(h, w, l, [thick], [maxang], [max_bridge], [strut]);
2019-04-26 02:15:53 -07:00
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce the
// need for support material in 3D printing.
//
// Arguments:
// h = Z size of strut.
// w = X size of strut.
// l = Y size of strut.
// thick = thickness of strut walls.
// maxang = maximum overhang angle of cross-braces.
// max_bridge = maximum bridging distance between cross-braces.
// strut = the width of the cross-braces.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-26 02:15:53 -07:00
//
// Example(Med): Typical Shape
2019-04-26 02:15:53 -07:00
// sparse_strut3d(h=30, w=30, l=100);
// Example(Med): Thinner strut
2019-04-26 02:15:53 -07:00
// sparse_strut3d(h=30, w=30, l=100, strut=2);
// Example(Med): Larger maxang
2019-04-26 02:15:53 -07:00
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50);
// Example(Med): Smaller max_bridge
2019-04-26 02:15:53 -07:00
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50, max_bridge=20);
module sparse_strut3d(h=50, l=100, w=50, thick=3, maxang=40, strut=3, max_bridge=30, anchor=CENTER, spin=0, orient=UP)
2019-04-26 02:15:53 -07:00
{
xoff = w - thick;
yoff = l - thick;
zoff = h - thick;
xreps = ceil(xoff/yoff);
yreps = ceil(yoff/xoff);
zreps = ceil(zoff/min(xoff, yoff));
xstep = xoff / xreps;
ystep = yoff / yreps;
zstep = zoff / zreps;
cross_ang = atan2(xstep, ystep);
cross_len = hypot(xstep, ystep);
supp_ang = min(maxang, min(atan2(max_bridge, zstep), atan2(cross_len/2, zstep)));
supp_reps = floor(cross_len/2/(zstep*sin(supp_ang)));
supp_step = cross_len/2/supp_reps;
size = [w, l, h];
attachable(anchor,spin,orient, size=size) {
intersection() {
union() {
ybridge = (l - (yreps+1) * strut) / yreps;
xcopies(xoff) sparse_strut(h=h, l=l, thick=thick, maxang=maxang, strut=strut, max_bridge=ybridge/ceil(ybridge/max_bridge));
ycopies(yoff) zrot(90) sparse_strut(h=h, l=w, thick=thick, maxang=maxang, strut=strut, max_bridge=max_bridge);
for(zs = [0:1:zreps-1]) {
for(xs = [0:1:xreps-1]) {
for(ys = [0:1:yreps-1]) {
translate([(xs+0.5)*xstep-xoff/2, (ys+0.5)*ystep-yoff/2, (zs+0.5)*zstep-zoff/2]) {
zflip_copy(offset=-(zstep-strut)/2) {
xflip_copy() {
zrot(cross_ang) {
down(strut/2) {
cube([strut, cross_len, strut], center=true);
}
if (zreps>1) {
back(cross_len/2) {
zrot(-cross_ang) {
down(strut) cube([strut, strut, zstep+strut], anchor=BOTTOM);
}
}
}
for (soff = [0:1:supp_reps-1] ) {
yflip_copy() {
back(soff*supp_step) {
skew(syz=tan(supp_ang)) {
cube([strut, strut, zstep], anchor=BOTTOM);
}
}
}
}
}
}
}
}
}
}
}
}
cube([w,l,h], center=true);
}
children();
}
2019-04-26 02:15:53 -07:00
}
// Module: corrugated_wall()
//
// Description:
// Makes a corrugated wall which relieves contraction stress while still
// providing support strength. Designed with 3D printing in mind.
//
// Usage:
2019-05-26 13:45:22 -07:00
// corrugated_wall(h, l, thick, [strut], [wall]);
2019-04-26 02:15:53 -07:00
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// strut = the width of the cross-braces.
// wall = thickness of corrugations.
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-26 02:15:53 -07:00
//
// Example: Typical Shape
// corrugated_wall(h=50, l=100);
// Example: Wider Strut
// corrugated_wall(h=50, l=100, strut=8);
// Example: Thicker Wall
// corrugated_wall(h=50, l=100, strut=8, wall=3);
module corrugated_wall(h=50, l=100, thick=5, strut=5, wall=2, anchor=CENTER, spin=0, orient=UP)
2019-04-26 02:15:53 -07:00
{
amplitude = (thick - wall) / 2;
period = min(15, thick * 2);
steps = quantup(segs(thick/2),4);
step = period/steps;
il = l - 2*strut + 2*step;
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
union() {
linear_extrude(height=h-2*strut+0.1, slices=2, convexity=ceil(2*il/period), center=true) {
polygon(
points=concat(
[for (y=[-il/2:step:il/2]) [amplitude*sin(y/period*360)-wall/2, y] ],
[for (y=[il/2:-step:-il/2]) [amplitude*sin(y/period*360)+wall/2, y] ]
)
);
}
difference() {
cube([thick, l, h], center=true);
cube([thick+0.5, l-2*strut, h-2*strut], center=true);
}
}
children();
}
2019-04-26 02:15:53 -07:00
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap