2019-12-02 15:35:03 -08:00
//////////////////////////////////////////////////////////////////////
// LibFile: regions.scad
// Regions and 2D boolean geometry
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// CommonCode:
// include <BOSL2/rounding.scad>
// Section: Regions
// Function: is_region()
// Usage:
// is_region(x);
// Description:
// Returns true if the given item looks like a region. A region is defined as a list of zero or more paths.
function is_region ( x ) = is_list ( x ) && is_path ( x . x ) ;
// Function: close_region()
// Usage:
// close_region(region);
// Description:
// Closes all paths within a given region.
function close_region ( region , eps = EPSILON ) = [ for ( path = region ) close_path ( path , eps = eps ) ] ;
// Module: region()
// Usage:
// region(r);
// Description:
// Creates 2D polygons for the given region. The region given is a list of closed 2D paths.
// Each path will be effectively exclusive-ORed from all other paths in the region, so if a
// path is inside another path, it will be effectively subtracted from it.
// Example(2D):
// region([circle(d=50), square(25,center=true)]);
// Example(2D):
// rgn = concat(
// [for (d=[50:-10:10]) circle(d=d-5)],
// [square([60,10], center=true)]
// );
// region(rgn);
module region ( r )
{
points = flatten ( r ) ;
paths = [
for ( i = [ 0 : 1 : len ( r ) - 1 ] ) let (
start = default ( sum ( [ for ( j = [ 0 : 1 : i - 1 ] ) len ( r [ j ] ) ] ) , 0 )
) [ for ( k = [ 0 : 1 : len ( r [ i ] ) - 1 ] ) start + k ]
] ;
polygon ( points = points , paths = paths ) ;
}
// Function: check_and_fix_path()
// Usage:
// check_and_fix_path(path, [valid_dim], [closed])
// Description:
// Checks that the input is a path. If it is a region with one component, converts it to a path.
// valid_dim specfies the allowed dimension of the points in the path.
// If the path is closed, removed duplicate endpoint if present.
// Arguments:
// path = path to process
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
// closed = set to true if the path is closed, which enables a check for endpoint duplication
function check_and_fix_path ( path , valid_dim = undef , closed = false ) =
let (
path = is_region ( path ) ? (
assert ( len ( path ) = = 1 , "Region supplied as path does not have exactly one component" )
path [ 0 ]
) : (
assert ( is_path ( path ) , "Input is not a path" )
path
) ,
dim = array_dim ( path )
)
assert ( dim [ 0 ] > 1 , "Path must have at least 2 points" )
assert ( len ( dim ) = = 2 , "Invalid path: path is either a list of scalars or a list of matrices" )
assert ( is_def ( dim [ 1 ] ) , "Invalid path: entries in the path have variable length" )
let ( valid = is_undef ( valid_dim ) || in_list ( dim [ 1 ] , valid_dim ) )
assert (
valid , str (
"The points on the path have length " ,
dim [ 1 ] , " but length must be " ,
len ( valid_dim ) = = 1 ? valid_dim [ 0 ] : str ( "one of " , valid_dim )
)
)
closed && approx ( path [ 0 ] , select ( path , - 1 ) ) ? slice ( path , 0 , - 2 ) : path ;
// Function: cleanup_region()
// Usage:
// cleanup_region(region);
// Description:
// For all paths in the given region, if the last point coincides with the first point, removes the last point.
// Arguments:
// region = The region to clean up. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function cleanup_region ( region , eps = EPSILON ) =
[ for ( path = region ) cleanup_path ( path , eps = eps ) ] ;
// Function: point_in_region()
// Usage:
// point_in_region(point, region);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_region ( point , region , eps = EPSILON , _i = 0 , _cnt = 0 ) =
( _i >= len ( region ) ) ? ( ( _cnt % 2 = = 1 ) ? 1 : - 1 ) : let (
pip = point_in_polygon ( point , region [ _i ] , eps = eps )
) pip = = 0 ? 0 : point_in_region ( point , region , eps = eps , _i = _i + 1 , _cnt = _cnt + ( pip > 0 ? 1 : 0 ) ) ;
// Function: region_path_crossings()
// Usage:
// region_path_crossings(path, region);
// Description:
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
// Arguments:
// path = The path to find crossings on.
// region = Region to test for crossings of.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function region_path_crossings ( path , region , closed = true , eps = EPSILON ) = sort ( [
let (
segs = pair ( closed ? close_path ( path ) : cleanup_path ( path ) )
) for (
si = idx ( segs ) ,
p = close_region ( region ) ,
s2 = pair ( p )
) let (
isect = _general_line_intersection ( segs [ si ] , s2 , eps = eps )
) if (
! is_undef ( isect ) &&
isect [ 1 ] >= 0 - eps && isect [ 1 ] < 1 + eps &&
isect [ 2 ] >= 0 - eps && isect [ 2 ] < 1 + eps
)
[ si , isect [ 1 ] ]
] ) ;
2020-01-31 21:35:04 -08:00
// Function: split_path_at_region_crossings()
// Usage:
// polylines = split_path_at_region_crossings(path, region, [eps]);
// Description:
// Splits a path into polyline sections wherever the path crosses the perimeter of a region.
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
// Arguments:
// path = The path to split up.
// region = The region to check for perimeter crossings of.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = square(50,center=false);
// region = [circle(d=80), circle(d=40)];
// polylines = split_path_at_region_crossings(path, region);
// color("#aaa") region(region);
// rainbow(polylines) stroke($item, closed=false, width=2);
function split_path_at_region_crossings ( path , region , closed = true , eps = EPSILON ) =
let (
path = deduplicate ( path , eps = eps ) ,
region = [ for ( path = region ) deduplicate ( path , eps = eps ) ] ,
xings = region_path_crossings ( path , region , closed = closed , eps = eps ) ,
crossings = deduplicate (
concat ( [ [ 0 , 0 ] ] , xings , [ [ len ( path ) - 1 , 1 ] ] ) ,
eps = eps
) ,
subpaths = [
for ( p = pair ( crossings ) )
deduplicate ( eps = eps ,
path_subselect ( path , p [ 0 ] [ 0 ] , p [ 0 ] [ 1 ] , p [ 1 ] [ 0 ] , p [ 1 ] [ 1 ] , closed = closed )
)
]
)
subpaths ;
2020-02-28 21:39:58 -08:00
// Function: split_nested_region()
// Usage:
// rgns = split_nested_region(region);
// Description:
// Separates the distinct (possibly nested) positive subregions of a larger compound region.
// Returns a list of regions, such that each returned region has exactly one positive outline
// and zero or more void outlines.
function split_nested_region ( region ) =
let (
paths = sort ( idx = 0 , [
for ( i = idx ( region ) ) let (
cnt = sum ( [
for ( j = idx ( region ) ) if ( i ! = j )
let ( pt = lerp ( region [ i ] [ 0 ] , region [ i ] [ 1 ] , 0.5 ) )
point_in_polygon ( pt , region [ j ] ) >= 0 ? 1 : 0
] )
) [ cnt , region [ i ] ]
] ) ,
outs = [
for ( candout = paths ) let (
lev = candout [ 0 ] ,
parent = candout [ 1 ]
) if ( lev % 2 = = 0 ) [
parent ,
for ( path = paths ) if (
path [ 0 ] = = lev + 1 &&
point_in_polygon (
lerp ( path [ 1 ] [ 0 ] , path [ 1 ] [ 1 ] , 0.5 ) ,
parent
) >= 0
) path [ 1 ]
]
]
) outs ;
2019-12-02 15:35:03 -08:00
// Section: Offsets and Boolean 2D Geometry
function _offset_chamfer ( center , points , delta ) =
let (
dist = sign ( delta ) * norm ( center - line_intersection ( select ( points , [ 0 , 2 ] ) , [ center , points [ 1 ] ] ) ) ,
endline = _shift_segment ( select ( points , [ 0 , 2 ] ) , delta - dist )
) [
line_intersection ( endline , select ( points , [ 0 , 1 ] ) ) ,
line_intersection ( endline , select ( points , [ 1 , 2 ] ) )
] ;
function _shift_segment ( segment , d ) =
move ( d * line_normal ( segment ) , segment ) ;
// Extend to segments to their intersection point. First check if the segments already have a point in common,
// which can happen if two colinear segments are input to the path variant of `offset()`
function _segment_extension ( s1 , s2 ) =
norm ( s1 [ 1 ] - s2 [ 0 ] ) < 1e-6 ? s1 [ 1 ] : line_intersection ( s1 , s2 ) ;
function _makefaces ( direction , startind , good , pointcount , closed ) =
let (
lenlist = list_bset ( good , pointcount ) ,
numfirst = len ( lenlist ) ,
numsecond = sum ( lenlist ) ,
prelim_faces = _makefaces_recurse ( startind , startind + len ( lenlist ) , numfirst , numsecond , lenlist , closed )
)
direction ? [ for ( entry = prelim_faces ) reverse ( entry ) ] : prelim_faces ;
function _makefaces_recurse ( startind1 , startind2 , numfirst , numsecond , lenlist , closed , firstind = 0 , secondind = 0 , faces = [ ] ) =
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
( ( firstind = = numfirst - ( closed ? 0 : 1 ) ) && ( secondind = = numsecond - ( closed ? 0 : 1 ) ) ) ? faces :
_makefaces_recurse (
startind1 , startind2 , numfirst , numsecond , lenlist , closed , firstind + 1 , secondind + lenlist [ firstind ] ,
lenlist [ firstind ] = = 0 ? (
// point in original path has been deleted in offset path, so it has no match. We therefore
// make a triangular face using the current point from the offset (second) path
// (The current point in the second path can be equal to numsecond if firstind is the last point)
concat ( faces , [ [ secondind % numsecond + startind2 , firstind + startind1 , ( firstind + 1 ) % numfirst + startind1 ] ] )
// in this case a point or points exist in the offset path corresponding to the original path
) : (
concat ( faces ,
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
[ for ( i = [ 0 : 1 : lenlist [ firstind ] - 2 ] ) [ firstind + startind1 , secondind + i + 1 + startind2 , secondind + i + startind2 ] ] ,
// Finish (unconditionally) with a quadrilateral face
[
[
firstind + startind1 ,
( firstind + 1 ) % numfirst + startind1 ,
( secondind + lenlist [ firstind ] ) % numsecond + startind2 ,
( secondind + lenlist [ firstind ] - 1 ) % numsecond + startind2
]
]
)
)
) ;
// Determine which of the shifted segments are good
function _good_segments ( path , d , shiftsegs , closed , quality ) =
let (
maxind = len ( path ) - ( closed ? 1 : 2 ) ,
pathseg = [ for ( i = [ 0 : maxind ] ) select ( path , i + 1 ) - path [ i ] ] ,
pathseg_len = [ for ( seg = pathseg ) norm ( seg ) ] ,
pathseg_unit = [ for ( i = [ 0 : maxind ] ) pathseg [ i ] / pathseg_len [ i ] ] ,
// Order matters because as soon as a valid point is found, the test stops
// This order works better for circular paths because they succeed in the center
alpha = concat ( [ for ( i = [ 1 : 1 : quality ] ) i / ( quality + 1 ) ] , [ 0 , 1 ] )
) [
for ( i = [ 0 : len ( shiftsegs ) - 1 ] )
( i > maxind ) ? true :
_segment_good ( path , pathseg_unit , pathseg_len , d - 1e-7 , shiftsegs [ i ] , alpha )
] ;
// Determine if a segment is good (approximately)
// Input is the path, the path segments normalized to unit length, the length of each path segment
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
// The last parameter, index, gives the current alpha index.
//
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
//
// This test is approximate because it only samples the points listed in alpha. Listing more points
// will make the test more accurate, but slower.
function _segment_good ( path , pathseg_unit , pathseg_len , d , seg , alpha , index = 0 ) =
index = = len ( alpha ) ? false :
_point_dist ( path , pathseg_unit , pathseg_len , alpha [ index ] * seg [ 0 ] + ( 1 - alpha [ index ] ) * seg [ 1 ] ) > d ? true :
_segment_good ( path , pathseg_unit , pathseg_len , d , seg , alpha , index + 1 ) ;
// Input is the path, the path segments normalized to unit length, the length of each path segment
// and a test point. Computes the (minimum) distance from the path to the point, taking into
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
function _point_dist ( path , pathseg_unit , pathseg_len , pt ) =
min ( [
for ( i = [ 0 : len ( pathseg_unit ) - 1 ] ) let (
v = pt - path [ i ] ,
projection = v * pathseg_unit [ i ] ,
segdist = projection < 0 ? norm ( pt - path [ i ] ) :
projection > pathseg_len [ i ] ? norm ( pt - select ( path , i + 1 ) ) :
norm ( v - projection * pathseg_unit [ i ] )
) segdist
] ) ;
function _offset_region (
paths , r , delta , chamfer , closed ,
maxstep , check_valid , quality ,
return_faces , firstface_index ,
flip_faces , _acc = [ ] , _i = 0
) =
_i >= len ( paths ) ? _acc :
_offset_region (
paths , _i = _i + 1 ,
_acc = ( paths [ _i ] . x % 2 = = 0 ) ? (
union ( _acc , [
offset (
paths [ _i ] . y ,
r = r , delta = delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
] )
) : (
difference ( _acc , [
offset (
paths [ _i ] . y ,
r = - r , delta = - delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
] )
) ,
r = r , delta = delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index , flip_faces = flip_faces
) ;
// Function: offset()
//
// Description:
// Takes an input path and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. Positive offsets shift the path to the left (relative to the direction of the path).
//
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
// segments you wanted included in various situations, so you can disable it if you wish by setting
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
// increases the number of samples on the segment that are checked.) Run time will increase. In
// some situations you may be able to decrease run time by setting quality to 0, which causes only
// segment ends to be checked.
//
// For construction of polyhedra `offset()` can also return face lists. These list faces between
// the original path and the offset path where the vertices are ordered with the original path
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
// value is a list: [offset_path, face_list].
// Arguments:
// path = the path to process. A list of 2d points.
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
// closed = path is a closed curve. Default: False.
// check_valid = perform segment validity check. Default: True.
// quality = validity check quality parameter, a small integer. Default: 1.
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=-10, closed=true));
// Example(2D): This case needs `quality=2` for success
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
// %down(.1)polygon(test);
// Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// star = star(5, r=22, ir=13);
// stroke(star,width=.2,closed=true);
// color("green")
// stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default)
// color("red")
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.2,closed=true);
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
// color("red")
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
// Example(2D): The extra triangles in this example show that the validity check cannot be skipped
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true);
// Example(2D): The triangles are removed by the validity check
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true);
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// #stroke(sinpath);
// stroke(offset(sinpath, r=17.5));
// Example(2D): Region
// rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true)));
// #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p);
// region(offset(rgn, r=-5));
function offset (
path , r = undef , delta = undef , chamfer = false ,
maxstep = 0.1 , closed = false , check_valid = true ,
quality = 1 , return_faces = false , firstface_index = 0 ,
flip_faces = false
) =
is_region ( path ) ? (
assert ( ! return_faces , "return_faces not supported for regions." )
let (
path = [ for ( p = path ) polygon_is_clockwise ( p ) ? p : reverse ( p ) ] ,
rgn = exclusive_or ( [ for ( p = path ) [ p ] ] ) ,
pathlist = sort ( idx = 0 , [
for ( i = [ 0 : 1 : len ( rgn ) - 1 ] ) [
sum ( concat ( [ 0 ] , [
for ( j = [ 0 : 1 : len ( rgn ) - 1 ] ) if ( i ! = j )
point_in_polygon ( rgn [ i ] [ 0 ] , rgn [ j ] ) >= 0 ? 1 : 0
] ) ) ,
rgn [ i ]
]
] )
) _offset_region (
pathlist , r = r , delta = delta , chamfer = chamfer , closed = true ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
) : let ( rcount = num_defined ( [ r , delta ] ) )
assert ( rcount = = 1 , "Must define exactly one of 'delta' and 'r'" )
let (
chamfer = is_def ( r ) ? false : chamfer ,
quality = max ( 0 , round ( quality ) ) ,
flip_dir = closed && ! polygon_is_clockwise ( path ) ? - 1 : 1 ,
d = flip_dir * ( is_def ( r ) ? r : delta ) ,
shiftsegs = [ for ( i = [ 0 : len ( path ) - 1 ] ) _shift_segment ( select ( path , i , i + 1 ) , d ) ] ,
// good segments are ones where no point on the segment is less than distance d from any point on the path
2020-03-04 23:22:39 -05:00
good = check_valid ? _good_segments ( path , abs ( d ) , shiftsegs , closed , quality ) : repeat ( true , len ( shiftsegs ) ) ,
2019-12-02 15:35:03 -08:00
goodsegs = bselect ( shiftsegs , good ) ,
goodpath = bselect ( path , good )
)
assert ( len ( goodsegs ) > 0 , "Offset of path is degenerate" )
let (
// Extend the shifted segments to their intersection points
sharpcorners = [ for ( i = [ 0 : len ( goodsegs ) - 1 ] ) _segment_extension ( select ( goodsegs , i - 1 ) , select ( goodsegs , i ) ) ] ,
// If some segments are parallel then the extended segments are undefined. This case is not handled
// Note if !closed the last corner doesn't matter, so exclude it
parallelcheck =
( len ( sharpcorners ) = = 2 && ! closed ) ||
all_defined ( select ( sharpcorners , closed ? 0 : 1 , - 1 ) )
)
assert ( parallelcheck , "Path turns back on itself (180 deg turn)" )
let (
// This is a boolean array that indicates whether a corner is an outside or inside corner
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
// If either side turns back it is an inside corner---must check both.
// Outside corners can get rounded (if r is specified and there is space to round them)
outsidecorner = [
for ( i = [ 0 : len ( goodsegs ) - 1 ] ) let (
prevseg = select ( goodsegs , i - 1 )
) (
( goodsegs [ i ] [ 1 ] - goodsegs [ i ] [ 0 ] ) *
( goodsegs [ i ] [ 0 ] - sharpcorners [ i ] ) > 0
) && (
( prevseg [ 1 ] - prevseg [ 0 ] ) *
( sharpcorners [ i ] - prevseg [ 1 ] ) > 0
)
] ,
steps = is_def ( delta ) ? [ ] : [
for ( i = [ 0 : len ( goodsegs ) - 1 ] )
ceil (
abs ( r ) * vector_angle (
select ( goodsegs , i - 1 ) [ 1 ] - goodpath [ i ] ,
goodsegs [ i ] [ 0 ] - goodpath [ i ]
) * PI / 180 / maxstep
)
] ,
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
// Otherwise it's the same as sharpcorners
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
// plain sharpcorners back.
newcorners = is_def ( delta ) && ! chamfer ? [ sharpcorners ] : [
for ( i = [ 0 : len ( goodsegs ) - 1 ] ) (
( ! chamfer && steps [ i ] < = 2 ) //Chamfer all points but only round if steps is 3 or more
|| ! outsidecorner [ i ] // Don't round inside corners
|| ( ! closed && ( i = = 0 || i = = len ( goodsegs ) - 1 ) ) // Don't round ends of an open path
) ? [ sharpcorners [ i ] ] : (
chamfer ?
_offset_chamfer (
goodpath [ i ] , [
select ( goodsegs , i - 1 ) [ 1 ] ,
sharpcorners [ i ] ,
goodsegs [ i ] [ 0 ]
] , d
) :
arc (
cp = goodpath [ i ] ,
points = [
select ( goodsegs , i - 1 ) [ 1 ] ,
goodsegs [ i ] [ 0 ]
] ,
N = steps [ i ]
)
)
] ,
pointcount = ( is_def ( delta ) && ! chamfer ) ?
2020-03-04 23:22:39 -05:00
repeat ( 1 , len ( sharpcorners ) ) :
2019-12-02 15:35:03 -08:00
[ for ( i = [ 0 : len ( goodsegs ) - 1 ] ) len ( newcorners [ i ] ) ] ,
start = [ goodsegs [ 0 ] [ 0 ] ] ,
end = [ goodsegs [ len ( goodsegs ) - 2 ] [ 1 ] ] ,
edges = closed ?
flatten ( newcorners ) :
concat ( start , slice ( flatten ( newcorners ) , 1 , - 2 ) , end ) ,
faces = ! return_faces ? [ ] :
_makefaces (
flip_faces , firstface_index , good ,
pointcount , closed
)
) return_faces ? [ edges , faces ] : edges ;
function _tag_subpaths ( path , region , eps = EPSILON ) =
let (
subpaths = split_path_at_region_crossings ( path , region , eps = eps ) ,
tagged = [
for ( sub = subpaths ) let (
subpath = deduplicate ( sub )
) if ( len ( sub ) > 1 ) let (
midpt = lerp ( subpath [ 0 ] , subpath [ 1 ] , 0.5 ) ,
rel = point_in_region ( midpt , region , eps = eps )
) rel < 0 ? [ "O" , subpath ] : rel > 0 ? [ "I" , subpath ] : let (
2020-03-02 19:30:20 -08:00
vec = unit ( subpath [ 1 ] - subpath [ 0 ] ) ,
2019-12-02 15:35:03 -08:00
perp = rot ( 90 , planar = true , p = vec ) ,
sidept = midpt + perp * 0.01 ,
rel1 = point_in_polygon ( sidept , path , eps = eps ) > 0 ,
rel2 = point_in_region ( sidept , region , eps = eps ) > 0
) rel1 = = rel2 ? [ "S" , subpath ] : [ "U" , subpath ]
]
) tagged ;
function _tag_region_subpaths ( region1 , region2 , eps = EPSILON ) =
[ for ( path = region1 ) each _tag_subpaths ( path , region2 , eps = eps ) ] ;
function _tagged_region ( region1 , region2 , keep1 , keep2 , eps = EPSILON ) =
let (
region1 = close_region ( region1 , eps = eps ) ,
region2 = close_region ( region2 , eps = eps ) ,
tagged1 = _tag_region_subpaths ( region1 , region2 , eps = eps ) ,
tagged2 = _tag_region_subpaths ( region2 , region1 , eps = eps ) ,
tagged = concat (
[ for ( tagpath = tagged1 ) if ( in_list ( tagpath [ 0 ] , keep1 ) ) tagpath [ 1 ] ] ,
[ for ( tagpath = tagged2 ) if ( in_list ( tagpath [ 0 ] , keep2 ) ) tagpath [ 1 ] ]
) ,
outregion = assemble_path_fragments ( tagged , eps = eps )
) outregion ;
// Function&Module: union()
// Usage:
// union() {...}
// region = union(regions);
// region = union(REGION1,REGION2);
// region = union(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean union of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean union of the given children.
// Arguments:
// regions = List of regions to union. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(union(shape1,shape2));
function union ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? union ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
len ( regions ) < = 1 ? regions [ 0 ] :
union (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "O" , "S" ] , [ "O" ] , eps = eps ) ] ,
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
) ,
eps = eps
) ;
// Function&Module: difference()
// Usage:
// difference() {...}
// region = difference(regions);
// region = difference(REGION1,REGION2);
// region = difference(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, takes the first region and differences away all other regions from it. The resulting
// region is returned.
// When called as the built-in module, makes the boolean difference of the given children.
// Arguments:
// regions = List of regions to difference. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(difference(shape1,shape2));
function difference ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? difference ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
len ( regions ) < = 1 ? regions [ 0 ] :
difference (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "O" , "U" ] , [ "I" ] , eps = eps ) ] ,
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
) ,
eps = eps
) ;
// Function&Module: intersection()
// Usage:
// intersection() {...}
// region = intersection(regions);
// region = intersection(REGION1,REGION2);
// region = intersection(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean intersection of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean intersection of all the given children.
// Arguments:
// regions = List of regions to intersection. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(intersection(shape1,shape2));
function intersection ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? intersection ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
len ( regions ) < = 1 ? regions [ 0 ] :
intersection (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "I" , "S" ] , [ "I" ] , eps = eps ) ] ,
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
) ,
eps = eps
) ;
// Function&Module: exclusive_or()
// Usage:
// exclusive_or() {...}
// region = exclusive_or(regions);
// region = exclusive_or(REGION1,REGION2);
// region = exclusive_or(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region.
// When called as a module, performs a boolean exclusive-or of up to 10 children.
// Arguments:
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
// Example(2D): As Function
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2])
// color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(exclusive_or(shape1,shape2));
// Example(2D): As Module
// exclusive_or() {
// square(40,center=false);
// circle(d=40);
// }
function exclusive_or ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? exclusive_or ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
len ( regions ) < = 1 ? regions [ 0 ] :
exclusive_or (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
[ union ( [
difference ( [ regions [ 0 ] , regions [ 1 ] ] , eps = eps ) ,
difference ( [ regions [ 1 ] , regions [ 0 ] ] , eps = eps )
] , eps = eps ) ] ,
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
) ,
eps = eps
) ;
module exclusive_or ( ) {
if ( $children = = 1 ) {
children ( ) ;
} else if ( $children = = 2 ) {
difference ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
difference ( ) {
children ( 1 ) ;
children ( 0 ) ;
}
} else if ( $children = = 3 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
children ( 2 ) ;
}
} else if ( $children = = 4 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
exclusive_or ( ) {
children ( 2 ) ;
children ( 3 ) ;
}
}
} else if ( $children = = 5 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
}
} else if ( $children = = 6 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
children ( 5 ) ;
}
} else if ( $children = = 7 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
}
} else if ( $children = = 8 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
}
} else if ( $children = = 9 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
children ( 8 ) ;
}
} else if ( $children = = 10 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
children ( 8 ) ;
children ( 9 ) ;
}
} else {
assert ( $children < = 10 , "exclusive_or() can only handle up to 10 children." ) ;
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap