2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-22 21:13:18 -07:00
// LibFile: paths.scad
2020-11-16 17:50:08 -08:00
// Support for polygons and paths.
2021-01-05 01:20:01 -08:00
// Includes:
2019-04-19 00:25:10 -07:00
// include <BOSL2/std.scad>
2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-22 21:13:18 -07:00
// Section: Functions
2020-01-30 14:00:10 -08:00
// Function: is_path()
// Usage:
2020-03-02 13:47:43 -08:00
// is_path(list, [dim], [fast])
2020-01-30 14:00:10 -08:00
// Description:
2020-03-02 13:47:43 -08:00
// Returns true if `list` is a path. A path is a list of two or more numeric vectors (AKA points).
// All vectors must of the same size, and may only contain numbers that are not inf or nan.
2020-03-02 21:39:57 -05:00
// By default the vectors in a path must be 2d or 3d. Set the `dim` parameter to specify a list
// of allowed dimensions, or set it to `undef` to allow any dimension.
2020-03-02 13:47:43 -08:00
// Examples:
// is_path([[3,4],[5,6]]); // Returns true
// is_path([[3,4]]); // Returns false
// is_path([[3,4],[4,5]],2); // Returns true
// is_path([[3,4,3],[5,4,5]],2); // Returns false
// is_path([[3,4,3],[5,4,5]],2); // Returns false
// is_path([[3,4,5],undef,[4,5,6]]); // Returns false
// is_path([[3,5],[undef,undef],[4,5]]); // Returns false
// is_path([[3,4],[5,6],[5,3]]); // Returns true
// is_path([3,4,5,6,7,8]); // Returns false
// is_path([[3,4],[5,6]], dim=[2,3]);// Returns true
// is_path([[3,4],[5,6]], dim=[1,3]);// Returns false
// is_path([[3,4],"hello"], fast=true); // Returns true
// is_path([[3,4],[3,4,5]]); // Returns false
// is_path([[1,2,3,4],[2,3,4,5]]); // Returns false
2020-03-02 21:39:57 -05:00
// is_path([[1,2,3,4],[2,3,4,5]],undef);// Returns true
2020-03-02 13:47:43 -08:00
// Arguments:
// list = list to check
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
// fast = set to true for fast check that only looks at first entry. Default: false
function is_path ( list , dim = [ 2 , 3 ] , fast = false ) =
2020-08-11 15:15:49 +01:00
fast
? is_list ( list ) && is_vector ( list [ 0 ] )
: is_matrix ( list )
&& len ( list ) > 1
&& len ( list [ 0 ] ) > 0
&& ( is_undef ( dim ) || in_list ( len ( list [ 0 ] ) , force_list ( dim ) ) ) ;
2020-01-30 14:00:10 -08:00
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
2019-03-22 21:13:18 -07:00
// Description:
2020-01-30 14:00:10 -08:00
// Returns true if the first and last points in the given path are coincident.
function is_closed_path ( path , eps = EPSILON ) = approx ( path [ 0 ] , path [ len ( path ) - 1 ] , eps = eps ) ;
// Function: close_path()
2019-03-22 21:13:18 -07:00
// Usage:
2020-01-30 14:00:10 -08:00
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
2021-03-20 01:37:46 -07:00
function close_path ( path , eps = EPSILON ) =
is_closed_path ( path , eps = eps ) ? path : concat ( path , [ path [ 0 ] ] ) ;
2020-01-30 14:00:10 -08:00
// Function: cleanup_path()
// Usage:
// cleanup_path(path);
// Description:
// If a path's last point coincides with its first point, deletes the last point in the path.
2021-03-20 01:37:46 -07:00
function cleanup_path ( path , eps = EPSILON ) =
is_closed_path ( path , eps = eps ) ? [ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) path [ i ] ] : path ;
2020-01-30 14:00:10 -08:00
// Function: path_subselect()
// Usage:
// path_subselect(path,s1,u1,s2,u2,[closed]):
// Description:
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
// Arguments:
// path = The path to get a section of.
// s1 = The number of the starting segment.
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
// s2 = The number of the ending segment.
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
// closed = If true, treat path as a closed polygon.
function path_subselect ( path , s1 , u1 , s2 , u2 , closed = false ) =
2020-05-29 19:04:34 -07:00
let (
lp = len ( path ) ,
l = lp - ( closed ? 0 : 1 ) ,
u1 = s1 < 0 ? 0 : s1 > l ? 1 : u1 ,
u2 = s2 < 0 ? 0 : s2 > l ? 1 : u2 ,
s1 = constrain ( s1 , 0 , l ) ,
s2 = constrain ( s2 , 0 , l ) ,
pathout = concat (
( s1 < l && u1 < 1 ) ? [ lerp ( path [ s1 ] , path [ ( s1 + 1 ) % lp ] , u1 ) ] : [ ] ,
[ for ( i = [ s1 + 1 : 1 : s2 ] ) path [ i ] ] ,
( s2 < l && u2 > 0 ) ? [ lerp ( path [ s2 ] , path [ ( s2 + 1 ) % lp ] , u2 ) ] : [ ]
)
) pathout ;
2020-01-30 14:00:10 -08:00
// Function: simplify_path()
// Description:
2020-08-11 15:15:49 +01:00
// Takes a path and removes unnecessary subsequent collinear points.
2020-01-30 14:00:10 -08:00
// Usage:
// simplify_path(path, [eps])
2019-03-22 21:13:18 -07:00
// Arguments:
2020-08-11 15:15:49 +01:00
// path = A list of path points of any dimension.
2020-01-30 14:00:10 -08:00
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path ( path , eps = EPSILON ) =
2020-08-11 15:15:49 +01:00
assert ( is_path ( path ) , "Invalid path." )
assert ( is_undef ( eps ) || ( is_finite ( eps ) && ( eps >= 0 ) ) , "Invalid tolerance." )
2021-03-06 02:26:39 -08:00
len ( path ) < = 2 ? path :
let (
indices = [
0 ,
for ( i = [ 1 : 1 : len ( path ) - 2 ] )
2021-09-15 19:01:34 -04:00
if ( ! is_collinear ( path [ i - 1 ] , path [ i ] , path [ i + 1 ] , eps = eps ) ) i ,
2021-03-06 02:26:39 -08:00
len ( path ) - 1
]
) [ for ( i = indices ) path [ i ] ] ;
2019-03-22 21:13:18 -07:00
2020-01-30 14:00:10 -08:00
// Function: simplify_path_indexed()
2019-03-22 21:13:18 -07:00
// Description:
2020-08-11 15:15:49 +01:00
// Takes a list of points, and a list of indices into `points`,
// and removes from the list all indices of subsequent indexed points that are unecessarily collinear.
// Returns the list of the remained indices.
2019-03-22 21:13:18 -07:00
// Usage:
2020-08-11 15:15:49 +01:00
// simplify_path_indexed(points,indices, eps)
2019-03-22 21:13:18 -07:00
// Arguments:
2020-01-30 14:00:10 -08:00
// points = A list of points.
2020-08-11 15:15:49 +01:00
// indices = A list of indices into `points` that forms a path.
2020-01-30 14:00:10 -08:00
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
2020-08-11 15:15:49 +01:00
function simplify_path_indexed ( points , indices , eps = EPSILON ) =
2021-03-06 02:26:39 -08:00
len ( indices ) < = 2 ? indices :
let (
indices = concat (
indices [ 0 ] ,
[
for ( i = [ 1 : 1 : len ( indices ) - 2 ] ) let (
i1 = indices [ i - 1 ] ,
i2 = indices [ i ] ,
i3 = indices [ i + 1 ]
2021-09-15 19:01:34 -04:00
) if ( ! is_collinear ( points [ i1 ] , points [ i2 ] , points [ i3 ] , eps = eps ) )
2021-03-06 02:26:39 -08:00
indices [ i ]
] ,
indices [ len ( indices ) - 1 ]
)
) indices ;
2019-03-22 21:13:18 -07:00
2019-03-26 23:22:38 -07:00
// Function: path_length()
// Usage:
2019-07-01 19:25:00 -04:00
// path_length(path,[closed])
2019-03-26 23:22:38 -07:00
// Description:
// Returns the length of the path.
// Arguments:
// path = The list of points of the path to measure.
2019-08-09 13:07:18 -07:00
// closed = true if the path is closed. Default: false
2019-03-26 23:22:38 -07:00
// Example:
// path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path));
2019-07-01 19:25:00 -04:00
function path_length ( path , closed = false ) =
2020-05-29 19:04:34 -07:00
len ( path ) < 2 ? 0 :
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ) + ( closed ? norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) : 0 ) ;
2019-03-26 23:22:38 -07:00
2020-06-13 22:35:22 -04:00
// Function: path_segment_lengths()
// Usage:
// path_segment_lengths(path,[closed])
// Description:
// Returns list of the length of each segment in a path
// Arguments:
// path = path to measure
// closed = true if the path is closed. Default: false
function path_segment_lengths ( path , closed = false ) =
[
2021-03-06 02:26:39 -08:00
for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ,
2021-03-30 00:46:59 -07:00
if ( closed ) norm ( path [ 0 ] - last ( path ) )
2021-03-06 02:26:39 -08:00
] ;
2020-06-13 22:35:22 -04:00
2020-01-28 19:13:56 -08:00
// Function: path_pos_from_start()
// Usage:
// pos = path_pos_from_start(path,length,[closed]);
// Description:
// Finds the segment and relative position along that segment that is `length` distance from the
// front of the given `path`. Returned as [SEGNUM, U] where SEGNUM is the segment number, and U is
// the relative distance along that segment, a number from 0 to 1. If the path is shorter than the
// asked for length, this returns `undef`.
// Arguments:
// path = The path to find the position on.
// length = The length from the start of the path to find the segment and position of.
// Example(2D):
// path = circle(d=50,$fn=18);
// pos = path_pos_from_start(path,20,closed=false);
// stroke(path,width=1,endcaps=false);
// pt = lerp(path[pos[0]], path[(pos[0]+1)%len(path)], pos[1]);
// color("red") translate(pt) circle(d=2,$fn=12);
function path_pos_from_start ( path , length , closed = false , _d = 0 , _i = 0 ) =
2020-05-29 19:04:34 -07:00
let ( lp = len ( path ) )
_i >= lp - ( closed ? 0 : 1 ) ? undef :
let ( l = norm ( path [ ( _i + 1 ) % lp ] - path [ _i ] ) )
_d + l < = length ? path_pos_from_start ( path , length , closed , _d + l , _i + 1 ) :
[ _i , ( length - _d ) / l ] ;
2020-01-28 19:13:56 -08:00
// Function: path_pos_from_end()
// Usage:
// pos = path_pos_from_end(path,length,[closed]);
// Description:
// Finds the segment and relative position along that segment that is `length` distance from the
// end of the given `path`. Returned as [SEGNUM, U] where SEGNUM is the segment number, and U is
// the relative distance along that segment, a number from 0 to 1. If the path is shorter than the
// asked for length, this returns `undef`.
// Arguments:
// path = The path to find the position on.
// length = The length from the end of the path to find the segment and position of.
// Example(2D):
// path = circle(d=50,$fn=18);
// pos = path_pos_from_end(path,20,closed=false);
// stroke(path,width=1,endcaps=false);
// pt = lerp(path[pos[0]], path[(pos[0]+1)%len(path)], pos[1]);
// color("red") translate(pt) circle(d=2,$fn=12);
function path_pos_from_end ( path , length , closed = false , _d = 0 , _i = undef ) =
2020-05-29 19:04:34 -07:00
let (
lp = len ( path ) ,
_i = _i ! = undef ? _i : lp - ( closed ? 1 : 2 )
)
_i < 0 ? undef :
let ( l = norm ( path [ ( _i + 1 ) % lp ] - path [ _i ] ) )
_d + l < = length ? path_pos_from_end ( path , length , closed , _d + l , _i - 1 ) :
[ _i , 1 - ( length - _d ) / l ] ;
2020-01-28 19:13:56 -08:00
// Function: path_trim_start()
// Usage:
// path_trim_start(path,trim);
// Description:
// Returns the `path`, with the start shortened by the length `trim`.
// Arguments:
// path = The path to trim.
// trim = The length to trim from the start.
// Example(2D):
// path = circle(d=50,$fn=18);
// path2 = path_trim_start(path,5);
// path3 = path_trim_start(path,20);
// color("blue") stroke(path3,width=5,endcaps=false);
// color("cyan") stroke(path2,width=3,endcaps=false);
// color("red") stroke(path,width=1,endcaps=false);
function path_trim_start ( path , trim , _d = 0 , _i = 0 ) =
2020-05-29 19:04:34 -07:00
_i >= len ( path ) - 1 ? [ ] :
let ( l = norm ( path [ _i + 1 ] - path [ _i ] ) )
_d + l < = trim ? path_trim_start ( path , trim , _d + l , _i + 1 ) :
let ( v = unit ( path [ _i + 1 ] - path [ _i ] ) )
concat (
[ path [ _i + 1 ] - v * ( l - ( trim - _d ) ) ] ,
[ for ( i = [ _i + 1 : 1 : len ( path ) - 1 ] ) path [ i ] ]
) ;
2020-01-28 19:13:56 -08:00
// Function: path_trim_end()
// Usage:
// path_trim_end(path,trim);
// Description:
// Returns the `path`, with the end shortened by the length `trim`.
// Arguments:
// path = The path to trim.
// trim = The length to trim from the end.
// Example(2D):
// path = circle(d=50,$fn=18);
// path2 = path_trim_end(path,5);
// path3 = path_trim_end(path,20);
// color("blue") stroke(path3,width=5,endcaps=false);
// color("cyan") stroke(path2,width=3,endcaps=false);
// color("red") stroke(path,width=1,endcaps=false);
function path_trim_end ( path , trim , _d = 0 , _i = undef ) =
2020-05-29 19:04:34 -07:00
let ( _i = _i ! = undef ? _i : len ( path ) - 1 )
_i < = 0 ? [ ] :
let ( l = norm ( path [ _i ] - path [ _i - 1 ] ) )
_d + l < = trim ? path_trim_end ( path , trim , _d + l , _i - 1 ) :
let ( v = unit ( path [ _i ] - path [ _i - 1 ] ) )
concat (
[ for ( i = [ 0 : 1 : _i - 1 ] ) path [ i ] ] ,
[ path [ _i - 1 ] + v * ( l - ( trim - _d ) ) ]
) ;
2020-01-28 19:13:56 -08:00
2019-08-16 21:22:41 -07:00
// Function: path_closest_point()
// Usage:
// path_closest_point(path, pt);
// Description:
// Finds the closest path segment, and point on that segment to the given point.
// Returns `[SEGNUM, POINT]`
// Arguments:
// path = The path to find the closest point on.
// pt = the point to find the closest point to.
// Example(2D):
// path = circle(d=100,$fn=6);
// pt = [20,10];
// closest = path_closest_point(path, pt);
// stroke(path, closed=true);
// color("blue") translate(pt) circle(d=3, $fn=12);
// color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point ( path , pt ) =
2020-05-29 19:04:34 -07:00
let (
2021-09-09 18:32:58 -04:00
pts = [ for ( seg = idx ( path ) ) line_closest_point ( select ( path , seg , seg + 1 ) , pt , SEGMENT ) ] ,
2020-05-29 19:04:34 -07:00
dists = [ for ( p = pts ) norm ( p - pt ) ] ,
min_seg = min_index ( dists )
) [ min_seg , pts [ min_seg ] ] ;
2019-08-16 21:22:41 -07:00
2020-03-01 16:12:51 -08:00
// Function: path_tangents()
2020-10-03 20:29:35 -07:00
// Usage:
2021-06-26 20:59:33 -07:00
// tangs = path_tangents(path, [closed], [uniform]);
2020-03-01 16:12:51 -08:00
// Description:
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
2020-06-13 22:35:22 -04:00
// The returns vectors will be normalized to length 1. If any derivatives are zero then
// the function fails with an error. If you set `uniform` to false then the sampling is
// assumed to be non-uniform and the derivative is computed with adjustments to produce corrected
// values.
// Arguments:
// path = path to find the tagent vectors for
// closed = set to true of the path is closed. Default: false
// uniform = set to false to correct for non-uniform sampling. Default: true
2021-09-07 18:47:08 -04:00
// Example(3D): A shape with non-uniform sampling gives distorted derivatives that may be undesirable
2020-06-13 22:35:22 -04:00
// rect = square([10,3]);
// tangents = path_tangents(rect,closed=true);
// stroke(rect,closed=true, width=0.1);
// color("purple")
// for(i=[0:len(tangents)-1])
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.1, endcap2="arrow2");
2021-09-07 18:47:08 -04:00
// Example(3D): A shape with non-uniform sampling gives distorted derivatives that may be undesirable
2020-06-13 22:35:22 -04:00
// rect = square([10,3]);
// tangents = path_tangents(rect,closed=true,uniform=false);
// stroke(rect,closed=true, width=0.1);
// color("purple")
// for(i=[0:len(tangents)-1])
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.1, endcap2="arrow2");
function path_tangents ( path , closed = false , uniform = true ) =
2020-05-29 19:04:34 -07:00
assert ( is_path ( path ) )
2020-06-13 22:35:22 -04:00
! uniform ? [ for ( t = deriv ( path , closed = closed , h = path_segment_lengths ( path , closed ) ) ) unit ( t ) ]
: [ for ( t = deriv ( path , closed = closed ) ) unit ( t ) ] ;
2020-03-01 16:12:51 -08:00
// Function: path_normals()
2020-10-03 20:29:35 -07:00
// Usage:
2021-06-26 20:59:33 -07:00
// norms = path_normals(path, [tangents], [closed]);
2020-03-01 16:12:51 -08:00
// Description:
// Compute the normal vector to the input path. This vector is perpendicular to the
2021-02-24 16:56:21 -05:00
// path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve
// at path point i to be the plane defined by point i and its two neighbors. At the endpoints of open paths
2021-09-04 22:10:25 -04:00
// we use the three end points. For 3d paths the computed normal is the one lying in this plane that points
// towards the center of curvature at that path point. For 2d paths, which lie in the xy plane, the normal
// is the path pointing to the right of the direction the path is traveling. If points are collinear then
// a 3d path has no center of curvature, and hence the
// normal is not uniquely defined. In this case the function issues an error.
2021-02-24 16:56:21 -05:00
// For 2d paths the plane is always defined so the normal fails to exist only
// when the derivative is zero (in the case of repeated points).
2020-03-01 16:12:51 -08:00
function path_normals ( path , tangents , closed = false ) =
2021-02-24 16:56:21 -05:00
assert ( is_path ( path , [ 2 , 3 ] ) )
2020-05-29 19:04:34 -07:00
assert ( is_bool ( closed ) )
2021-02-24 16:56:21 -05:00
let (
tangents = default ( tangents , path_tangents ( path , closed ) ) ,
dim = len ( path [ 0 ] )
)
assert ( is_path ( tangents ) && len ( tangents [ 0 ] ) = = dim , "Dimensions of path and tangents must match" )
2020-05-29 19:04:34 -07:00
[
2021-02-24 16:56:21 -05:00
for ( i = idx ( path ) )
let (
pts = i = = 0 ? ( closed ? select ( path , - 1 , 1 ) : select ( path , 0 , 2 ) )
: i = = len ( path ) - 1 ? ( closed ? select ( path , i - 1 , i + 1 ) : select ( path , i - 2 , i ) )
: select ( path , i - 1 , i + 1 )
)
dim = = 2 ? [ tangents [ i ] . y , - tangents [ i ] . x ]
2021-09-04 22:10:25 -04:00
: let ( fff = i = = 10 ? echo ( pts = pts , tangent = tangents [ 10 ] , cp = cross ( pts [ 1 ] - pts [ 0 ] , pts [ 2 ] - pts [ 0 ] ) ) : 0 ,
v = cross ( cross ( pts [ 1 ] - pts [ 0 ] , pts [ 2 ] - pts [ 0 ] ) , tangents [ i ] ) )
2021-02-24 16:56:21 -05:00
assert ( norm ( v ) > EPSILON , "3D path contains collinear points" )
2021-04-13 19:27:42 -04:00
unit ( v )
2020-05-29 19:04:34 -07:00
] ;
2020-03-01 16:12:51 -08:00
// Function: path_curvature()
2020-10-03 20:29:35 -07:00
// Usage:
2021-06-26 20:59:33 -07:00
// curvs = path_curvature(path, [closed]);
2020-03-01 16:12:51 -08:00
// Description:
// Numerically estimate the curvature of the path (in any dimension).
function path_curvature ( path , closed = false ) =
2020-05-29 19:04:34 -07:00
let (
d1 = deriv ( path , closed = closed ) ,
d2 = deriv2 ( path , closed = closed )
) [
for ( i = idx ( path ) )
sqrt (
sqr ( norm ( d1 [ i ] ) * norm ( d2 [ i ] ) ) -
sqr ( d1 [ i ] * d2 [ i ] )
) / pow ( norm ( d1 [ i ] ) , 3 )
] ;
2020-03-01 16:12:51 -08:00
// Function: path_torsion()
2020-10-03 20:29:35 -07:00
// Usage:
2021-06-26 20:59:33 -07:00
// tortions = path_torsion(path, [closed]);
2020-03-01 16:12:51 -08:00
// Description:
// Numerically estimate the torsion of a 3d path.
function path_torsion ( path , closed = false ) =
2020-05-29 19:04:34 -07:00
let (
d1 = deriv ( path , closed = closed ) ,
d2 = deriv2 ( path , closed = closed ) ,
d3 = deriv3 ( path , closed = closed )
) [
for ( i = idx ( path ) ) let (
crossterm = cross ( d1 [ i ] , d2 [ i ] )
) crossterm * d3 [ i ] / sqr ( norm ( crossterm ) )
] ;
2020-03-01 16:12:51 -08:00
2019-08-16 21:22:41 -07:00
2020-12-30 00:34:25 -08:00
// Function: path_chamfer_and_rounding()
// Usage:
// path2 = path_chamfer_and_rounding(path, [closed], [chamfer], [rounding]);
// Description:
// Rounds or chamfers corners in the given path.
// Arguments:
// path = The path to chamfer and/or round.
// closed = If true, treat path like a closed polygon. Default: true
// chamfer = The length of the chamfer faces at the corners. If given as a list of numbers, gives individual chamfers for each corner, from first to last. Default: 0 (no chamfer)
// rounding = The rounding radius for the corners. If given as a list of numbers, gives individual radii for each corner, from first to last. Default: 0 (no rounding)
// Example(2D): Chamfering a Path
// path = star(5, step=2, d=100);
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=5);
// stroke(path2, closed=true);
// Example(2D): Per-Corner Chamfering
// path = star(5, step=2, d=100);
// chamfs = [for (i=[0:1:4]) each 3*[i,i]];
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs);
// stroke(path2, closed=true);
// Example(2D): Rounding a Path
// path = star(5, step=2, d=100);
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=5);
// stroke(path2, closed=true);
// Example(2D): Per-Corner Chamfering
// path = star(5, step=2, d=100);
2020-12-30 00:38:24 -08:00
// rs = [for (i=[0:1:4]) each 2*[i,i]];
2020-12-30 00:34:25 -08:00
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=rs);
// stroke(path2, closed=true);
// Example(2D): Mixing Chamfers and Roundings
// path = star(5, step=2, d=100);
// chamfs = [for (i=[0:4]) each [5,0]];
// rs = [for (i=[0:4]) each [0,10]];
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs, rounding=rs);
// stroke(path2, closed=true);
2021-07-10 21:39:56 -07:00
function path_chamfer_and_rounding ( path , closed = true , chamfer , rounding ) =
2021-04-11 12:34:59 +01:00
let (
path = deduplicate ( path , closed = true ) ,
lp = len ( path ) ,
chamfer = is_undef ( chamfer ) ? repeat ( 0 , lp ) :
is_vector ( chamfer ) ? list_pad ( chamfer , lp , 0 ) :
is_num ( chamfer ) ? repeat ( chamfer , lp ) :
assert ( false , "Bad chamfer value." ) ,
rounding = is_undef ( rounding ) ? repeat ( 0 , lp ) :
is_vector ( rounding ) ? list_pad ( rounding , lp , 0 ) :
is_num ( rounding ) ? repeat ( rounding , lp ) :
assert ( false , "Bad rounding value." ) ,
corner_paths = [
for ( i = ( closed ? [ 0 : 1 : lp - 1 ] : [ 1 : 1 : lp - 2 ] ) ) let (
p1 = select ( path , i - 1 ) ,
p2 = select ( path , i ) ,
p3 = select ( path , i + 1 )
)
chamfer [ i ] > 0 ? _corner_chamfer_path ( p1 , p2 , p3 , side = chamfer [ i ] ) :
rounding [ i ] > 0 ? _corner_roundover_path ( p1 , p2 , p3 , r = rounding [ i ] ) :
[ p2 ]
] ,
out = [
if ( ! closed ) path [ 0 ] ,
for ( i = ( closed ? [ 0 : 1 : lp - 1 ] : [ 1 : 1 : lp - 2 ] ) ) let (
p1 = select ( path , i - 1 ) ,
p2 = select ( path , i ) ,
crn1 = select ( corner_paths , i - 1 ) ,
crn2 = corner_paths [ i ] ,
l1 = norm ( last ( crn1 ) - p1 ) ,
l2 = norm ( crn2 [ 0 ] - p2 ) ,
needed = l1 + l2 ,
seglen = norm ( p2 - p1 ) ,
check = assert ( seglen >= needed , str ( "Path segment " , i , " is too short to fulfill rounding/chamfering for the adjacent corners." ) )
) each crn2 ,
if ( ! closed ) last ( path )
]
) deduplicate ( out ) ;
2020-12-30 00:34:25 -08:00
function _corner_chamfer_path ( p1 , p2 , p3 , dist1 , dist2 , side , angle ) =
2021-04-11 12:34:59 +01:00
let (
v1 = unit ( p1 - p2 ) ,
v2 = unit ( p3 - p2 ) ,
n = vector_axis ( v1 , v2 ) ,
ang = vector_angle ( v1 , v2 ) ,
path = ( is_num ( dist1 ) && is_undef ( dist2 ) && is_undef ( side ) ) ? (
// dist1 & optional angle
assert ( dist1 > 0 )
let ( angle = default ( angle , ( 180 - ang ) / 2 ) )
assert ( is_num ( angle ) )
assert ( angle > 0 && angle < 180 )
let (
pta = p2 + dist1 * v1 ,
a3 = 180 - angle - ang
) assert ( a3 > 0 , "Angle too extreme." )
let (
side = sin ( angle ) * dist1 / sin ( a3 ) ,
ptb = p2 + side * v2
) [ pta , ptb ]
) : ( is_undef ( dist1 ) && is_num ( dist2 ) && is_undef ( side ) ) ? (
// dist2 & optional angle
assert ( dist2 > 0 )
let ( angle = default ( angle , ( 180 - ang ) / 2 ) )
assert ( is_num ( angle ) )
assert ( angle > 0 && angle < 180 )
let (
ptb = p2 + dist2 * v2 ,
a3 = 180 - angle - ang
) assert ( a3 > 0 , "Angle too extreme." )
let (
side = sin ( angle ) * dist2 / sin ( a3 ) ,
pta = p2 + side * v1
) [ pta , ptb ]
) : ( is_undef ( dist1 ) && is_undef ( dist2 ) && is_num ( side ) ) ? (
// side & optional angle
assert ( side > 0 )
let ( angle = default ( angle , ( 180 - ang ) / 2 ) )
assert ( is_num ( angle ) )
assert ( angle > 0 && angle < 180 )
let (
a3 = 180 - angle - ang
) assert ( a3 > 0 , "Angle too extreme." )
let (
dist1 = sin ( a3 ) * side / sin ( ang ) ,
dist2 = sin ( angle ) * side / sin ( ang ) ,
pta = p2 + dist1 * v1 ,
ptb = p2 + dist2 * v2
) [ pta , ptb ]
) : ( is_num ( dist1 ) && is_num ( dist2 ) && is_undef ( side ) && is_undef ( side ) ) ? (
// dist1 & dist2
assert ( dist1 > 0 )
assert ( dist2 > 0 )
let (
pta = p2 + dist1 * v1 ,
ptb = p2 + dist2 * v2
) [ pta , ptb ]
) : (
assert ( false , "Bad arguments." )
)
) path ;
2020-12-30 00:34:25 -08:00
function _corner_roundover_path ( p1 , p2 , p3 , r , d ) =
2021-04-11 12:34:59 +01:00
let (
r = get_radius ( r = r , d = d , dflt = undef ) ,
res = circle_2tangents ( p1 , p2 , p3 , r = r , tangents = true ) ,
cp = res [ 0 ] ,
n = res [ 1 ] ,
tp1 = res [ 2 ] ,
ang = res [ 4 ] + res [ 5 ] ,
steps = floor ( segs ( r ) * ang / 360 + 0.5 ) ,
step = ang / steps ,
path = [ for ( i = [ 0 : 1 : steps ] ) move ( cp , p = rot ( a = - i * step , v = n , p = tp1 - cp ) ) ]
) path ;
2020-12-30 00:34:25 -08:00
2021-03-17 18:27:10 -07:00
// Function: path_add_jitter()
// Topics: Paths
// See Also: jittered_poly(), subdivide_long_segments()
// Usage:
2021-06-26 20:59:33 -07:00
// jpath = path_add_jitter(path, [dist], [closed=]);
2021-03-17 18:27:10 -07:00
// Description:
// Adds tiny jitter offsets to collinear points in the given path so that they
// are no longer collinear. This is useful for preserving subdivision on long
// straight segments, when making geometry with `polygon()`, for use with
// `linear_exrtrude()` with a `twist()`.
// Arguments:
// path = The path to add jitter to.
// dist = The amount to jitter points by. Default: 1/512 (0.00195)
// ---
// closed = If true, treat path like a closed polygon. Default: true
2021-09-07 18:47:08 -04:00
// Example(3D):
2021-03-17 18:27:10 -07:00
// d = 100; h = 75; quadsize = 5;
// path = pentagon(d=d);
// spath = subdivide_long_segments(path, quadsize, closed=true);
// jpath = path_add_jitter(spath, closed=true);
// linear_extrude(height=h, twist=72, slices=h/quadsize)
// polygon(jpath);
function path_add_jitter ( path , dist = 1 / 512 , closed = true ) =
assert ( is_path ( path ) )
assert ( is_finite ( dist ) )
assert ( is_bool ( closed ) )
[
path [ 0 ] ,
for ( i = idx ( path , s = 1 , e = closed ? - 1 : - 2 ) ) let (
n = line_normal ( [ path [ i - 1 ] , path [ i ] ] )
2021-09-15 19:01:34 -04:00
) path [ i ] + n * ( is_collinear ( select ( path , i - 1 , i + 1 ) ) ? ( dist * ( ( i % 2 ) * 2 - 1 ) ) : 0 ) ,
2021-03-17 18:27:10 -07:00
if ( ! closed ) last ( path )
] ;
2019-03-22 21:13:18 -07:00
2020-01-30 14:00:10 -08:00
// Function: path_self_intersections()
// Usage:
// isects = path_self_intersections(path, [eps]);
// Description:
// Locates all self intersections of the given path. Returns a list of intersections, where
// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
// of the segment, and a proportion of 1.0 indicates the end of the segment.
// Arguments:
// path = The path to find self intersections of.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// isects = path_self_intersections(path, closed=true);
// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
// stroke(path, closed=true, width=1);
// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
function path_self_intersections ( path , closed = true , eps = EPSILON ) =
2020-05-29 19:04:34 -07:00
let (
path = cleanup_path ( path , eps = eps ) ,
plen = len ( path )
) [
2021-06-19 23:21:52 -07:00
for ( i = [ 0 : 1 : plen - ( closed ? 2 : 3 ) ] , j = [ i + 2 : 1 : plen - ( closed ? 1 : 2 ) ] ) let (
2020-05-29 19:04:34 -07:00
a1 = path [ i ] ,
a2 = path [ ( i + 1 ) % plen ] ,
b1 = path [ j ] ,
b2 = path [ ( j + 1 ) % plen ] ,
isect =
( max ( a1 . x , a2 . x ) < min ( b1 . x , b2 . x ) ) ? undef :
( min ( a1 . x , a2 . x ) > max ( b1 . x , b2 . x ) ) ? undef :
( max ( a1 . y , a2 . y ) < min ( b1 . y , b2 . y ) ) ? undef :
( min ( a1 . y , a2 . y ) > max ( b1 . y , b2 . y ) ) ? undef :
let (
c = a1 - a2 ,
d = b1 - b2 ,
denom = ( c . x * d . y ) - ( c . y * d . x )
2021-06-19 23:21:52 -07:00
) abs ( denom ) < eps ? undef :
let (
2020-05-29 19:04:34 -07:00
e = a1 - b1 ,
t = ( ( e . x * d . y ) - ( e . y * d . x ) ) / denom ,
u = ( ( e . x * c . y ) - ( e . y * c . x ) ) / denom
) [ a1 + t * ( a2 - a1 ) , t , u ]
) if (
2021-06-21 00:37:31 -07:00
( ! closed || i ! = 0 || j ! = plen - 1 ) &&
2020-05-29 19:04:34 -07:00
isect ! = undef &&
2021-06-19 23:21:52 -07:00
isect [ 1 ] >= - eps && isect [ 1 ] < = 1 + eps &&
isect [ 2 ] >= - eps && isect [ 2 ] < = 1 + eps
2020-05-29 19:04:34 -07:00
) [ isect [ 0 ] , i , isect [ 1 ] , j , isect [ 2 ] ]
] ;
2020-01-30 14:00:10 -08:00
2020-01-31 16:37:27 -08:00
// Function: split_path_at_self_crossings()
// Usage:
2020-11-16 17:50:08 -08:00
// paths = split_path_at_self_crossings(path, [closed], [eps]);
2020-01-31 16:37:27 -08:00
// Description:
2020-11-16 17:50:08 -08:00
// Splits a path into sub-paths wherever the original path crosses itself.
2020-01-31 16:37:27 -08:00
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
// Arguments:
// path = The path to split up.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
2020-11-16 17:50:08 -08:00
// paths = split_path_at_self_crossings(path);
// rainbow(paths) stroke($item, closed=false, width=2);
2020-01-31 16:37:27 -08:00
function split_path_at_self_crossings ( path , closed = true , eps = EPSILON ) =
2020-05-29 19:04:34 -07:00
let (
path = cleanup_path ( path , eps = eps ) ,
isects = deduplicate (
eps = eps ,
concat (
[ [ 0 , 0 ] ] ,
sort ( [
for (
a = path_self_intersections ( path , closed = closed , eps = eps ) ,
ss = [ [ a [ 1 ] , a [ 2 ] ] , [ a [ 3 ] , a [ 4 ] ] ]
) if ( ss [ 0 ] ! = undef ) ss
] ) ,
[ [ len ( path ) - ( closed ? 1 : 2 ) , 1 ] ]
)
)
) [
for ( p = pair ( isects ) )
let (
s1 = p [ 0 ] [ 0 ] ,
u1 = p [ 0 ] [ 1 ] ,
s2 = p [ 1 ] [ 0 ] ,
u2 = p [ 1 ] [ 1 ] ,
section = path_subselect ( path , s1 , u1 , s2 , u2 , closed = closed ) ,
outpath = deduplicate ( eps = eps , section )
)
outpath
] ;
2020-01-31 16:37:27 -08:00
2020-01-30 14:00:10 -08:00
function _tag_self_crossing_subpaths ( path , closed = true , eps = EPSILON ) =
2020-05-29 19:04:34 -07:00
let (
subpaths = split_path_at_self_crossings (
path , closed = closed , eps = eps
)
) [
for ( subpath = subpaths ) let (
seg = select ( subpath , 0 , 1 ) ,
mp = mean ( seg ) ,
n = line_normal ( seg ) / 2048 ,
p1 = mp + n ,
p2 = mp - n ,
p1in = point_in_polygon ( p1 , path ) >= 0 ,
p2in = point_in_polygon ( p2 , path ) >= 0 ,
tag = ( p1in && p2in ) ? "I" : "O"
) [ tag , subpath ]
] ;
2020-01-30 14:00:10 -08:00
// Function: decompose_path()
// Usage:
// splitpaths = decompose_path(path, [closed], [eps]);
// Description:
// Given a possibly self-crossing path, decompose it into non-crossing paths that are on the perimeter
// of the areas bounded by that path.
// Arguments:
// path = The path to split up.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// splitpaths = decompose_path(path, closed=true);
// rainbow(splitpaths) stroke($item, closed=true, width=3);
function decompose_path ( path , closed = true , eps = EPSILON ) =
2020-05-29 19:04:34 -07:00
let (
path = cleanup_path ( path , eps = eps ) ,
tagged = _tag_self_crossing_subpaths ( path , closed = closed , eps = eps ) ,
kept = [ for ( sub = tagged ) if ( sub [ 0 ] = = "O" ) sub [ 1 ] ] ,
2021-09-12 19:12:48 -07:00
outregion = assemble_path_fragments ( kept , eps = eps )
2021-09-12 19:15:05 -07:00
) outregion ;
2020-01-30 14:00:10 -08:00
function _extreme_angle_fragment ( seg , fragments , rightmost = true , eps = EPSILON ) =
2020-05-29 19:04:34 -07:00
! fragments ? [ undef , [ ] ] :
let (
delta = seg [ 1 ] - seg [ 0 ] ,
segang = atan2 ( delta . y , delta . x ) ,
frags = [
for ( i = idx ( fragments ) ) let (
fragment = fragments [ i ] ,
fwdmatch = approx ( seg [ 1 ] , fragment [ 0 ] , eps = eps ) ,
2021-03-30 00:46:59 -07:00
bakmatch = approx ( seg [ 1 ] , last ( fragment ) , eps = eps )
2020-05-29 19:04:34 -07:00
) [
fwdmatch ,
bakmatch ,
bakmatch ? reverse ( fragment ) : fragment
]
] ,
angs = [
for ( frag = frags )
( frag [ 0 ] || frag [ 1 ] ) ? let (
delta2 = frag [ 2 ] [ 1 ] - frag [ 2 ] [ 0 ] ,
segang2 = atan2 ( delta2 . y , delta2 . x )
) modang ( segang2 - segang ) : (
rightmost ? 999 : - 999
)
] ,
fi = rightmost ? min_index ( angs ) : max_index ( angs )
) abs ( angs [ fi ] ) > 360 ? [ undef , fragments ] : let (
remainder = [ for ( i = idx ( fragments ) ) if ( i ! = fi ) fragments [ i ] ] ,
frag = frags [ fi ] ,
foundfrag = frag [ 2 ]
) [ foundfrag , remainder ] ;
2020-01-30 14:00:10 -08:00
// Function: assemble_a_path_from_fragments()
// Usage:
// assemble_a_path_from_fragments(subpaths);
// Description:
2020-11-16 17:50:08 -08:00
// Given a list of paths, assembles them together into one complete closed polygon path, and
2020-01-30 14:00:10 -08:00
// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
2020-11-16 17:50:08 -08:00
// unused path fragments.
2020-01-30 14:00:10 -08:00
// Arguments:
2020-11-16 17:50:08 -08:00
// fragments = List of paths to be assembled into complete polygons.
2020-01-30 14:00:10 -08:00
// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
2020-04-01 01:36:48 -07:00
// startfrag = The fragment to start with. Default: 0
2020-01-30 14:00:10 -08:00
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
2020-04-01 01:36:48 -07:00
function assemble_a_path_from_fragments ( fragments , rightmost = true , startfrag = 0 , eps = EPSILON ) =
2020-05-29 19:04:34 -07:00
len ( fragments ) = = 0 ? _finished :
let (
path = fragments [ startfrag ] ,
newfrags = [ for ( i = idx ( fragments ) ) if ( i ! = startfrag ) fragments [ i ] ]
) is_closed_path ( path , eps = eps ) ? (
// starting fragment is already closed
[ path , newfrags ]
) : let (
// Find rightmost/leftmost continuation fragment
seg = select ( path , - 2 , - 1 ) ,
extrema = _extreme_angle_fragment ( seg = seg , fragments = newfrags , rightmost = rightmost , eps = eps ) ,
foundfrag = extrema [ 0 ] ,
remainder = extrema [ 1 ]
) is_undef ( foundfrag ) ? (
// No remaining fragments connect! INCOMPLETE PATH!
// Treat it as complete.
[ path , remainder ]
) : is_closed_path ( foundfrag , eps = eps ) ? (
// Found fragment is already closed
[ foundfrag , concat ( [ path ] , remainder ) ]
) : let (
2021-03-30 00:46:59 -07:00
fragend = last ( foundfrag ) ,
2021-01-24 23:26:39 -08:00
hits = [ for ( i = idx ( path , e = - 2 ) ) if ( approx ( path [ i ] , fragend , eps = eps ) ) i ]
2020-05-29 19:04:34 -07:00
) hits ? (
let (
// Found fragment intersects with initial path
2021-03-30 00:46:59 -07:00
hitidx = last ( hits ) ,
2021-03-25 00:29:52 -07:00
newpath = list_head ( path , hitidx ) ,
2020-05-29 19:04:34 -07:00
newfrags = concat ( len ( newpath ) > 1 ? [ newpath ] : [ ] , remainder ) ,
outpath = concat ( slice ( path , hitidx , - 2 ) , foundfrag )
)
[ outpath , newfrags ]
) : let (
// Path still incomplete. Continue building it.
2021-03-25 00:23:36 -07:00
newpath = concat ( path , list_tail ( foundfrag ) ) ,
2020-05-29 19:04:34 -07:00
newfrags = concat ( [ newpath ] , remainder )
)
assemble_a_path_from_fragments (
fragments = newfrags ,
rightmost = rightmost ,
eps = eps
) ;
2020-01-30 14:00:10 -08:00
// Function: assemble_path_fragments()
// Usage:
// assemble_path_fragments(subpaths);
// Description:
2020-11-16 17:50:08 -08:00
// Given a list of paths, assembles them together into complete closed polygon paths if it can.
2020-01-30 14:00:10 -08:00
// Arguments:
2020-11-16 17:50:08 -08:00
// fragments = List of paths to be assembled into complete polygons.
2020-01-30 14:00:10 -08:00
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
2020-03-11 22:14:16 -07:00
function assemble_path_fragments ( fragments , eps = EPSILON , _finished = [ ] ) =
2020-05-29 19:04:34 -07:00
len ( fragments ) = = 0 ? _finished :
let (
minxidx = min_index ( [
for ( frag = fragments ) min ( subindex ( frag , 0 ) )
] ) ,
result_l = assemble_a_path_from_fragments (
fragments = fragments ,
startfrag = minxidx ,
rightmost = false ,
eps = eps
) ,
result_r = assemble_a_path_from_fragments (
fragments = fragments ,
startfrag = minxidx ,
rightmost = true ,
eps = eps
) ,
l_area = abs ( polygon_area ( result_l [ 0 ] ) ) ,
r_area = abs ( polygon_area ( result_r [ 0 ] ) ) ,
result = l_area < r_area ? result_l : result_r ,
newpath = cleanup_path ( result [ 0 ] ) ,
remainder = result [ 1 ] ,
finished = concat ( _finished , [ newpath ] )
) assemble_path_fragments (
fragments = remainder ,
eps = eps ,
_finished = finished
) ;
2020-01-30 14:00:10 -08:00
2021-09-04 22:10:25 -04:00
// Function: path_cut_points()
//
2020-08-26 20:39:45 -07:00
// Usage:
2021-09-04 22:10:25 -04:00
// cuts = path_cut_points(path, dists, [closed=], [direction=]);
//
2019-03-22 21:13:18 -07:00
// Description:
2021-09-04 22:10:25 -04:00
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
// points and indices of the next point in the path after that point. So for example, a return
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
// this point is path[5]. If the path is too short then path_cut_points returns undef. If you set
// `direction` to true then `path_cut_points` will also return the tangent vector to the path and a normal
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
// direction vectors will be `[point, next_index, tangent, normal]`.
// .
// If you give the very last point of the path as a cut point then the returned index will be
// one larger than the last index (so it will not be a valid index). If you use the closed
// option then the returned index will be equal to the path length for cuts along the closing
// path segment, and if you give a point equal to the path length you will get an
// index of len(path)+1 for the index.
//
2019-03-22 21:13:18 -07:00
// Arguments:
2021-09-04 22:10:25 -04:00
// path = path to cut
// dists = distances where the path should be cut (a list) or a scalar single distance
// ---
// closed = set to true if the curve is closed. Default: false
// direction = set to true to return direction vectors. Default: false
//
// Example(NORENDER):
// square=[[0,0],[1,0],[1,1],[0,1]];
// path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
// path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
// path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
// path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
function path_cut_points ( path , dists , closed = false , direction = false ) =
let ( long_enough = len ( path ) >= ( closed ? 3 : 2 ) )
assert ( long_enough , len ( path ) < 2 ? "Two points needed to define a path" : "Closed path must include three points" )
is_num ( dists ) ? path_cut_points ( path , [ dists ] , closed , direction ) [ 0 ] :
assert ( is_vector ( dists ) )
assert ( list_increasing ( dists ) , "Cut distances must be an increasing list" )
let ( cuts = _path_cut_points ( path , dists , closed ) )
! direction
? cuts
: let (
dir = _path_cuts_dir ( path , cuts , closed ) ,
normals = _path_cuts_normals ( path , cuts , dir , closed )
)
hstack ( cuts , array_group ( dir , 1 ) , array_group ( normals , 1 ) ) ;
2017-08-29 17:00:16 -07:00
2021-09-04 22:10:25 -04:00
// Main recursive path cut function
function _path_cut_points ( path , dists , closed = false , pind = 0 , dtotal = 0 , dind = 0 , result = [ ] ) =
dind = = len ( dists ) ? result :
let (
lastpt = len ( result ) = = 0 ? [ ] : last ( result ) [ 0 ] , // location of last cut point
dpartial = len ( result ) = = 0 ? 0 : norm ( lastpt - select ( path , pind ) ) , // remaining length in segment
nextpoint = dists [ dind ] < dpartial + dtotal // Do we have enough length left on the current segment?
? [ lerp ( lastpt , select ( path , pind ) , ( dists [ dind ] - dtotal ) / dpartial ) , pind ]
: _path_cut_single ( path , dists [ dind ] - dtotal - dpartial , closed , pind )
)
_path_cut_points ( path , dists , closed , nextpoint [ 1 ] , dists [ dind ] , dind + 1 , concat ( result , [ nextpoint ] ) ) ;
2017-08-29 17:00:16 -07:00
2021-03-17 18:27:10 -07:00
2021-09-04 22:10:25 -04:00
// Search for a single cut point in the path
function _path_cut_single ( path , dist , closed = false , ind = 0 , eps = 1e-7 ) =
// If we get to the very end of the path (ind is last point or wraparound for closed case) then
// check if we are within epsilon of the final path point. If not we're out of path, so we fail
ind = = len ( path ) - ( closed ? 0 : 1 ) ?
assert ( dist < eps , "Path is too short for specified cut distance" )
[ select ( path , ind ) , ind + 1 ]
: let ( d = norm ( path [ ind ] - select ( path , ind + 1 ) ) ) d > dist ?
[ lerp ( path [ ind ] , select ( path , ind + 1 ) , dist / d ) , ind + 1 ] :
_path_cut_single ( path , dist - d , closed , ind + 1 , eps ) ;
2021-03-17 18:27:10 -07:00
2021-09-04 22:10:25 -04:00
// Find normal directions to the path, coplanar to local part of the path
// Or return a vector parallel to the x-y plane if the above fails
function _path_cuts_normals ( path , cuts , dirs , closed = false ) =
[ for ( i = [ 0 : len ( cuts ) - 1 ] )
len ( path [ 0 ] ) = = 2 ? [ - dirs [ i ] . y , dirs [ i ] . x ]
:
let (
plane = len ( path ) < 3 ? undef :
let ( start = max ( min ( cuts [ i ] [ 1 ] , len ( path ) - 1 ) , 2 ) ) _path_plane ( path , start , start - 2 )
)
plane = = undef ?
( dirs [ i ] . x = = 0 && dirs [ i ] . y = = 0 ? [ 1 , 0 , 0 ] // If it's z direction return x vector
: unit ( [ - dirs [ i ] . y , dirs [ i ] . x , 0 ] ) ) // otherwise perpendicular to projection
: unit ( cross ( dirs [ i ] , cross ( plane [ 0 ] , plane [ 1 ] ) ) )
] ;
2021-03-17 18:27:10 -07:00
2021-09-04 22:10:25 -04:00
// Scan from the specified point (ind) to find a noncoplanar triple to use
// to define the plane of the path.
function _path_plane ( path , ind , i , closed ) =
i < ( closed ? - 1 : 0 ) ? undef :
2021-09-15 19:01:34 -04:00
! is_collinear ( path [ ind ] , path [ ind - 1 ] , select ( path , i ) ) ?
2021-09-04 22:10:25 -04:00
[ select ( path , i ) - path [ ind - 1 ] , path [ ind ] - path [ ind - 1 ] ] :
_path_plane ( path , ind , i - 1 ) ;
2021-03-17 18:27:10 -07:00
2021-09-04 22:10:25 -04:00
// Find the direction of the path at the cut points
function _path_cuts_dir ( path , cuts , closed = false , eps = 1e-2 ) =
[ for ( ind = [ 0 : len ( cuts ) - 1 ] )
let (
zeros = path [ 0 ] * 0 ,
nextind = cuts [ ind ] [ 1 ] ,
nextpath = unit ( select ( path , nextind + 1 ) - select ( path , nextind ) , zeros ) ,
thispath = unit ( select ( path , nextind ) - select ( path , nextind - 1 ) , zeros ) ,
lastpath = unit ( select ( path , nextind - 1 ) - select ( path , nextind - 2 ) , zeros ) ,
nextdir =
nextind = = len ( path ) && ! closed ? lastpath :
( nextind < = len ( path ) - 2 || closed ) && approx ( cuts [ ind ] [ 0 ] , path [ nextind ] , eps )
? unit ( nextpath + thispath )
: ( nextind > 1 || closed ) && approx ( cuts [ ind ] [ 0 ] , select ( path , nextind - 1 ) , eps )
? unit ( thispath + lastpath )
: thispath
) nextdir
] ;
2019-03-22 21:13:18 -07:00
2021-09-04 22:10:25 -04:00
// Function: path_cut()
// Topics: Paths
// See Also: path_cut_points()
// Usage:
// path_list = path_cut(path, cutdist, [closed=]);
2019-03-22 21:13:18 -07:00
// Description:
2021-09-04 22:10:25 -04:00
// Given a list of distances in `cutdist`, cut the path into
// subpaths at those lengths, returning a list of paths.
// If the input path is closed then the final path will include the
// original starting point. The list of cut distances must be
// in ascending order. If you repeat a distance you will get an
// empty list in that position in the output.
2019-03-22 21:13:18 -07:00
// Arguments:
2021-09-04 22:10:25 -04:00
// path = The original path to split.
// cutdist = Distance or list of distances where path is cut
// closed = If true, treat the path as a closed polygon.
// Example(2D):
// path = circle(d=100);
// segs = path_cut(path, [50, 200], closed=true);
// rainbow(segs) stroke($item);
function path_cut ( path , cutdist , closed ) =
is_num ( cutdist ) ? path_cut ( path , [ cutdist ] , closed ) :
assert ( is_vector ( cutdist ) )
assert ( last ( cutdist ) < path_length ( path , closed = closed ) , "Cut distances must be smaller than the path length" )
assert ( cutdist [ 0 ] > 0 , "Cut distances must be strictly positive" )
let (
cutlist = path_cut_points ( path , cutdist , closed = closed ) ,
cuts = len ( cutlist )
)
[
[ each list_head ( path , cutlist [ 0 ] [ 1 ] - 1 ) ,
if ( ! approx ( cutlist [ 0 ] [ 0 ] , path [ cutlist [ 0 ] [ 1 ] - 1 ] ) ) cutlist [ 0 ] [ 0 ]
] ,
for ( i = [ 0 : 1 : cuts - 2 ] )
cutlist [ i ] [ 0 ] = = cutlist [ i + 1 ] [ 0 ] ? [ ]
:
[ if ( ! approx ( cutlist [ i ] [ 0 ] , select ( path , cutlist [ i ] [ 1 ] ) ) ) cutlist [ i ] [ 0 ] ,
each slice ( path , cutlist [ i ] [ 1 ] , cutlist [ i + 1 ] [ 1 ] - 1 ) ,
if ( ! approx ( cutlist [ i + 1 ] [ 0 ] , select ( path , cutlist [ i + 1 ] [ 1 ] - 1 ) ) ) cutlist [ i + 1 ] [ 0 ] ,
] ,
[
if ( ! approx ( cutlist [ cuts - 1 ] [ 0 ] , select ( path , cutlist [ cuts - 1 ] [ 1 ] ) ) ) cutlist [ cuts - 1 ] [ 0 ] ,
each select ( path , cutlist [ cuts - 1 ] [ 1 ] , closed ? 0 : - 1 )
]
] ;
2019-02-03 00:12:37 -08:00
2021-09-04 22:10:25 -04:00
// Input `data` is a list that sums to an integer.
// Returns rounded version of input data so that every
// entry is rounded to an integer and the sum is the same as
// that of the input. Works by rounding an entry in the list
// and passing the rounding error forward to the next entry.
// This will generally distribute the error in a uniform manner.
function _sum_preserving_round ( data , index = 0 ) =
index = = len ( data ) - 1 ? list_set ( data , len ( data ) - 1 , round ( data [ len ( data ) - 1 ] ) ) :
let (
newval = round ( data [ index ] ) ,
error = newval - data [ index ]
) _sum_preserving_round (
list_set ( data , [ index , index + 1 ] , [ newval , data [ index + 1 ] - error ] ) ,
index + 1
) ;
// Function: subdivide_path()
// Usage:
// newpath = subdivide_path(path, [N|refine], method);
2019-03-22 21:13:18 -07:00
// Description:
2021-09-04 22:10:25 -04:00
// Takes a path as input (closed or open) and subdivides the path to produce a more
// finely sampled path. The new points can be distributed proportional to length
// (`method="length"`) or they can be divided up evenly among all the path segments
// (`method="segment"`). If the extra points don't fit evenly on the path then the
// algorithm attempts to distribute them uniformly. The `exact` option requires that
// the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output path may have a different number of
// points due to rounding error.
2021-08-23 23:03:25 -04:00
// .
2021-09-04 22:10:25 -04:00
// With the `"segment"` method you can also specify a vector of lengths. This vector,
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
// double counting the endpoints, which are shared by pairs of segments, so that for
// a closed polygon the total number of points will be sum(N). Note that with an open
// path there is an extra point at the end, so the number of points will be sum(N)+1.
// Arguments:
// path = path to subdivide
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
// refine = number of points to add each segment.
// closed = set to false if the path is open. Default: True
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 12);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12);
// move_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
// move_copies(mypath)circle(r=.2,$fn=32);
// Example(2D):
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Specifying different numbers of points on each segment
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
// mypath = subdivide_path(pentagon(side=2), 17);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
// move_copies(mypath)circle(r=.1,$fn=32);
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
// move_copies(mypath)sphere(r=.1,$fn=32);
function subdivide_path ( path , N , refine , closed = true , exact = true , method = "length" ) =
assert ( is_path ( path ) )
assert ( method = = "length" || method = = "segment" )
assert ( num_defined ( [ N , refine ] ) , "Must give exactly one of N and refine" )
let (
N = ! is_undef ( N ) ? N :
! is_undef ( refine ) ? len ( path ) * refine :
undef
)
assert ( ( is_num ( N ) && N > 0 ) || is_vector ( N ) , "Parameter N to subdivide_path must be postive number or vector" )
let (
count = len ( path ) - ( closed ? 0 : 1 ) ,
add_guess = method = = "segment" ? (
is_list ( N ) ? (
assert ( len ( N ) = = count , "Vector parameter N to subdivide_path has the wrong length" )
add_scalar ( N , - 1 )
) : repeat ( ( N - len ( path ) ) / count , count )
) : // method=="length"
assert ( is_num ( N ) , "Parameter N to subdivide path must be a number when method=\"length\"" )
let (
path_lens = concat (
[ for ( i = [ 0 : 1 : len ( path ) - 2 ] ) norm ( path [ i + 1 ] - path [ i ] ) ] ,
closed ? [ norm ( path [ len ( path ) - 1 ] - path [ 0 ] ) ] : [ ]
) ,
add_density = ( N - len ( path ) ) / sum ( path_lens )
)
path_lens * add_density ,
add = exact ? _sum_preserving_round ( add_guess ) :
[ for ( val = add_guess ) round ( val ) ]
) concat (
[
for ( i = [ 0 : 1 : count ] ) each [
for ( j = [ 0 : 1 : add [ i ] ] )
lerp ( path [ i ] , select ( path , i + 1 ) , j / ( add [ i ] + 1 ) )
]
] ,
closed ? [ ] : [ last ( path ) ]
) ;
// Function: path_length_fractions()
// Usage:
// fracs = path_length_fractions(path, [closed]);
// Description:
// Returns the distance fraction of each point in the path along the path, so the first
// point is zero and the final point is 1. If the path is closed the length of the output
// will have one extra point because of the final connecting segment that connects the last
// point of the path to the first point.
function path_length_fractions ( path , closed = false ) =
assert ( is_path ( path ) )
assert ( is_bool ( closed ) )
let (
lengths = [
0 ,
for ( i = [ 0 : 1 : len ( path ) - ( closed ? 1 : 2 ) ] )
norm ( select ( path , i + 1 ) - path [ i ] )
] ,
partial_len = cumsum ( lengths ) ,
total_len = last ( partial_len )
) partial_len / total_len ;
// Function: resample_path()
// Usage:
// newpath = resample_path(path, N|spacing, [closed]);
// Description:
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
// input path that are guaranteed to appear in the output path are the starting and ending points.
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
// Note that because this function operates on a discrete input path the quality of the output depends on
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
// Arguments:
// path = path to resample
// N = Number of points in output
// spacing = Approximate spacing desired
// closed = set to true if path is closed. Default: false
function resample_path ( path , N , spacing , closed = false ) =
assert ( is_path ( path ) )
assert ( num_defined ( [ N , spacing ] ) = = 1 , "Must define exactly one of N and spacing" )
assert ( is_bool ( closed ) )
let (
length = path_length ( path , closed ) ,
// In the open path case decrease N by 1 so that we don't try to get
// path_cut to return the endpoint (which might fail due to rounding)
// Add last point later
N = is_def ( N ) ? N - ( closed ? 0 : 1 ) : round ( length / spacing ) ,
distlist = lerpn ( 0 , length , N , false ) ,
cuts = path_cut_points ( path , distlist , closed = closed )
)
[ each subindex ( cuts , 0 ) ,
if ( ! closed ) last ( path ) // Then add last point here
] ;
// Section: 3D Modules
// Module: extrude_from_to()
// Description:
// Extrudes a 2D shape between the 3d points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
// Arguments:
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
// xcopies(3) circle(3, $fn=32);
// }
module extrude_from_to ( pt1 , pt2 , convexity , twist , scale , slices ) {
assert ( is_vector ( pt1 ) ) ;
assert ( is_vector ( pt2 ) ) ;
pt1 = point3d ( pt1 ) ;
pt2 = point3d ( pt2 ) ;
rtp = xyz_to_spherical ( pt2 - pt1 ) ;
translate ( pt1 ) {
rotate ( [ 0 , rtp [ 2 ] , rtp [ 1 ] ] ) {
if ( rtp [ 0 ] > 0 ) {
linear_extrude ( height = rtp [ 0 ] , convexity = convexity , center = false , slices = slices , twist = twist , scale = scale ) {
children ( ) ;
}
}
}
}
}
// Module: spiral_sweep()
// Description:
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
// of a given radius, height and twist. The origin in the profile traces out the helix of the specified radius.
// If twist is positive the path will be right-handed; if twist is negative the path will be left-handed.
// .
// Higbee specifies tapering applied to the ends of the extrusion and is given as the linear distance
// over which to taper.
// Arguments:
// poly = Array of points of a polygon path, to be extruded.
// h = height of the spiral to extrude along.
2020-08-26 20:39:45 -07:00
// r = Radius of the spiral to extrude along. Default: 50
2017-08-29 17:00:16 -07:00
// twist = number of degrees of rotation to spiral up along height.
2021-01-31 15:43:50 -08:00
// ---
// d = Diameter of the spiral to extrude along.
// higbee = Length to taper thread ends over.
2021-08-22 21:53:08 -04:00
// higbee1 = Taper length at start
// higbee2 = Taper length at end
2021-08-28 11:37:09 -04:00
// internal = direction to taper the threads with higbee. If true threads taper outward; if false they taper inward. Default: false
2019-05-26 12:47:50 -07:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-05-03 11:32:40 -07:00
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2017-08-29 17:00:16 -07:00
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
2019-06-24 00:32:13 -07:00
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
2021-08-22 21:53:08 -04:00
module spiral_sweep ( poly , h , r , twist = 360 , higbee , center , r1 , r2 , d , d1 , d2 , higbee1 , higbee2 , internal = false , anchor , spin = 0 , orient = UP ) {
2021-08-24 22:14:54 -04:00
higsample = 10 ; // Oversample factor for higbee tapering
2021-08-28 11:37:09 -04:00
dummy1 = assert ( is_num ( twist ) && twist ! = 0 ) ;
2021-08-22 21:53:08 -04:00
bounds = pointlist_bounds ( poly ) ;
yctr = ( bounds [ 0 ] . y + bounds [ 1 ] . y ) / 2 ;
xmin = bounds [ 0 ] . x ;
xmax = bounds [ 1 ] . x ;
2021-08-23 23:03:25 -04:00
poly = path3d ( clockwise_polygon ( poly ) ) ;
2020-05-29 19:04:34 -07:00
anchor = get_anchor ( anchor , center , BOT , BOT ) ;
2021-01-31 15:43:50 -08:00
r1 = get_radius ( r1 = r1 , r = r , d1 = d1 , d = d , dflt = 50 ) ;
r2 = get_radius ( r1 = r2 , r = r , d1 = d2 , d = d , dflt = 50 ) ;
sides = segs ( max ( r1 , r2 ) ) ;
2021-08-28 08:57:09 -04:00
dir = sign ( twist ) ;
ang_step = 360 / sides * dir ;
2021-08-24 22:14:54 -04:00
anglist = [ for ( ang = [ 0 : ang_step : twist - EPSILON ] ) ang ,
twist ] ;
2021-01-31 15:43:50 -08:00
higbee1 = first_defined ( [ higbee1 , higbee , 0 ] ) ;
higbee2 = first_defined ( [ higbee2 , higbee , 0 ] ) ;
higang1 = 360 * higbee1 / ( 2 * r1 * PI ) ;
higang2 = 360 * higbee2 / ( 2 * r2 * PI ) ;
2021-08-24 22:14:54 -04:00
dummy2 = assert ( higbee1 >= 0 && higbee2 >= 0 )
2021-08-28 10:14:29 -04:00
assert ( higang1 < dir * twist / 2 , "Higbee1 is more than half the threads" )
assert ( higang2 < dir * twist / 2 , "Higbee2 is more than half the threads" ) ;
2021-08-24 22:14:54 -04:00
function polygon_r ( N , theta ) =
let ( alpha = 360 / N )
cos ( alpha / 2 ) / ( cos ( posmod ( theta , alpha ) - alpha / 2 ) ) ;
2021-08-28 10:14:29 -04:00
higofs = pow ( 0.05 , 2 ) ; // Smallest hig scale is the square root of this value
function taperfunc ( x ) = sqrt ( ( 1 - higofs ) * x + higofs ) ;
2021-08-24 22:14:54 -04:00
interp_ang = [
for ( i = idx ( anglist , e = - 2 ) )
each lerpn ( anglist [ i ] , anglist [ i + 1 ] ,
2021-08-28 08:57:09 -04:00
( higang1 > 0 && higang1 > dir * anglist [ i + 1 ]
|| ( higang2 > 0 && higang2 > dir * ( twist - anglist [ i ] ) ) ) ? ceil ( ( anglist [ i + 1 ] - anglist [ i ] ) / ang_step * higsample )
: 1 ,
2021-08-24 22:14:54 -04:00
endpoint = false ) ,
last ( anglist )
] ;
skewmat = affine3d_skew_xz ( xa = atan2 ( r2 - r1 , h ) ) ;
2021-01-31 15:43:50 -08:00
points = [
2021-08-24 22:14:54 -04:00
for ( a = interp_ang ) let (
2021-08-28 10:14:29 -04:00
hsc = dir * a < higang1 ? taperfunc ( dir * a / higang1 )
: dir * ( twist - a ) < higang2 ? taperfunc ( dir * ( twist - a ) / higang2 )
: 1 ,
2021-08-24 22:14:54 -04:00
u = a / twist ,
2021-01-31 15:43:50 -08:00
r = lerp ( r1 , r2 , u ) ,
2021-08-28 10:14:29 -04:00
mat = affine3d_zrot ( a )
* affine3d_translate ( [ polygon_r ( sides , a ) * r , 0 , h * ( u - 0.5 ) ] )
* affine3d_xrot ( 90 )
* skewmat
* scale ( [ hsc , lerp ( hsc , 1 , 0.25 ) , 1 ] , cp = [ internal ? xmax : xmin , yctr , 0 ] ) ,
2021-01-20 13:36:41 -08:00
pts = apply ( mat , poly )
2021-01-31 15:43:50 -08:00
) pts
2020-05-29 19:04:34 -07:00
] ;
2021-01-31 15:43:50 -08:00
vnf = vnf_vertex_array (
2021-08-28 08:57:09 -04:00
points , col_wrap = true , caps = true , reverse = dir > 0 ? true : false ,
2021-08-23 23:03:25 -04:00
style = higbee1 > 0 || higbee2 > 0 ? "quincunx" : "alt"
2020-05-29 19:04:34 -07:00
) ;
2021-01-31 15:43:50 -08:00
attachable ( anchor , spin , orient , r1 = r1 , r2 = r2 , l = h ) {
2021-08-28 08:57:09 -04:00
vnf_polyhedron ( vnf , convexity = ceil ( 2 * dir * twist / 360 ) ) ;
2020-05-29 19:04:34 -07:00
children ( ) ;
}
2017-08-29 17:00:16 -07:00
}
2019-06-24 00:32:13 -07:00
// Module: path_extrude()
2019-03-22 21:13:18 -07:00
// Description:
2020-11-16 17:50:08 -08:00
// Extrudes 2D children along a 3D path. This may be slow.
2019-03-22 21:13:18 -07:00
// Arguments:
2018-11-24 01:37:56 -08:00
// path = array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through.
// clipsize = increase if artifacts are left. Default: 1000
2021-02-19 19:56:43 -08:00
// Example(FlatSpin,VPD=600,VPT=[75,16,20]):
2019-03-22 21:13:18 -07:00
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
2019-06-24 00:32:13 -07:00
// path_extrude(path) circle(r=10, $fn=6);
module path_extrude ( path , convexity = 10 , clipsize = 100 ) {
2021-06-12 17:17:05 -07:00
function polyquats ( path , q = q_ident ( ) , v = [ 0 , 0 , 1 ] , i = 0 ) = let (
2020-05-29 19:04:34 -07:00
v2 = path [ i + 1 ] - path [ i ] ,
ang = vector_angle ( v , v2 ) ,
axis = ang > 0.001 ? unit ( cross ( v , v2 ) ) : [ 0 , 0 , 1 ] ,
2021-06-12 17:17:05 -07:00
newq = q_mul ( quat ( axis , ang ) , q ) ,
2020-05-29 19:04:34 -07:00
dist = norm ( v2 )
) i < ( len ( path ) - 2 ) ?
concat ( [ [ dist , newq , ang ] ] , polyquats ( path , newq , v2 , i + 1 ) ) :
[ [ dist , newq , ang ] ] ;
epsilon = 0.0001 ; // Make segments ever so slightly too long so they overlap.
ptcount = len ( path ) ;
pquats = polyquats ( path ) ;
for ( i = [ 0 : 1 : ptcount - 2 ] ) {
pt1 = path [ i ] ;
pt2 = path [ i + 1 ] ;
dist = pquats [ i ] [ 0 ] ;
q = pquats [ i ] [ 1 ] ;
difference ( ) {
translate ( pt1 ) {
2021-06-12 17:17:05 -07:00
q_rot ( q ) {
2020-05-29 19:04:34 -07:00
down ( clipsize / 2 / 2 ) {
2020-11-29 20:23:03 -08:00
if ( ( dist + clipsize / 2 ) > 0 ) {
linear_extrude ( height = dist + clipsize / 2 , convexity = convexity ) {
children ( ) ;
}
2020-05-29 19:04:34 -07:00
}
}
}
}
translate ( pt1 ) {
2021-06-12 17:17:05 -07:00
hq = ( i > 0 ) ? q_slerp ( q , pquats [ i - 1 ] [ 1 ] , 0.5 ) : q ;
q_rot ( hq ) down ( clipsize / 2 + epsilon ) cube ( clipsize , center = true ) ;
2020-05-29 19:04:34 -07:00
}
translate ( pt2 ) {
2021-06-12 17:17:05 -07:00
hq = ( i < ptcount - 2 ) ? q_slerp ( q , pquats [ i + 1 ] [ 1 ] , 0.5 ) : q ;
q_rot ( hq ) up ( clipsize / 2 + epsilon ) cube ( clipsize , center = true ) ;
2020-05-29 19:04:34 -07:00
}
}
}
2018-11-24 01:37:56 -08:00
}
2021-09-04 22:10:25 -04:00
function _cut_interp ( pathcut , path , data ) =
[ for ( entry = pathcut )
let (
a = path [ entry [ 1 ] - 1 ] ,
b = path [ entry [ 1 ] ] ,
c = entry [ 0 ] ,
i = max_index ( v_abs ( b - a ) ) ,
factor = ( c [ i ] - a [ i ] ) / ( b [ i ] - a [ i ] )
)
( 1 - factor ) * data [ entry [ 1 ] - 1 ] + factor * data [ entry [ 1 ] ]
] ;
// Module: path_text()
2020-07-27 15:15:34 -07:00
// Usage:
2021-09-04 22:10:25 -04:00
// path_text(path, text, [size], [thickness], [font], [lettersize], [offset], [reverse], [normal], [top], [textmetrics])
2019-07-01 19:25:00 -04:00
// Description:
2021-09-04 22:10:25 -04:00
// Place the text letter by letter onto the specified path using textmetrics (if available and requested)
2021-09-07 22:49:15 -04:00
// or user specified letter spacing. The path can be 2D or 3D. In 2D the text appears along the path with letters upright
// as determined by the path direction. In 3D by default letters are positioned on the tangent line to the path with the path normal
2021-09-04 22:10:25 -04:00
// pointing toward the reader. The path normal points away from the center of curvature (the opposite of the normal produced
// by path_normals()). Note that this means that if the center of curvature switches sides the text will flip upside down.
2021-09-07 22:49:15 -04:00
// If you want text on such a path you must supply your own normal or top vector.
2021-09-04 22:10:25 -04:00
// .
2021-09-07 22:49:15 -04:00
// Text appears starting at the beginning of the path, so if the 3D path moves right to left
// then a left-to-right reading language will display in the wrong order. (For a 2D path text will appear upside down.)
// The text for a 3D path appears positioned to be read from "outside" of the curve (from a point on the other side of the
// curve from the center of curvature). If you need the text to read properly from the inside, you can set reverse to
// true to flip the text, or supply your own normal.
2021-03-05 16:35:41 -05:00
// .
2021-09-04 22:10:25 -04:00
// If you do not have the experimental textmetrics feature enabled then you must specify the space for the letters
// using lettersize, which can be a scalar or array. You will have the easiest time getting good results by using
// a monospace font such as Courier. Note that even with text metrics, spacing may be different because path_text()
// doesn't do kerning to adjust positions of individual glyphs. Also if your font has ligatures they won't be used.
2020-07-27 15:15:34 -07:00
// .
2021-09-04 22:10:25 -04:00
// By default letters appear centered on the path. The offset can be specified to shift letters toward the reader (in
// the direction of the normal).
// .
// You can specify your own normal by setting `normal` to a direction or a list of directions. Your normal vector should
// point toward the reader. You can also specify
// top, which directs the top of the letters in a desired direction. If you specify your own directions and they
// are not perpendicular to the path then the direction you specify will take priority and the
// letters will not rest on the tangent line of the path. Note that the normal or top directions that you
// specify must not be parallel to the path.
2020-05-15 17:28:54 -04:00
// Arguments:
2021-09-04 22:10:25 -04:00
// path = path to place the text on
// text = text to create
// size = font size
2021-09-07 22:49:15 -04:00
// thickness = thickness of letters (not allowed for 2D path)
2021-09-04 22:10:25 -04:00
// font = font to use
// ---
// lettersize = scalar or array giving size of letters
2021-09-07 22:49:15 -04:00
// offset = distance to shift letters "up" (towards the reader). Not allowed for 2D path. Default: 0
// normal = direction or list of directions pointing towards the reader of the text. Not allowed for 2D path.
2021-09-04 22:10:25 -04:00
// top = direction or list of directions pointing toward the top of the text
2021-09-07 22:49:15 -04:00
// reverse = reverse the letters if true. Not allowed for 2D path. Default: false
2021-09-04 22:10:25 -04:00
// textmetrics = if set to true and lettersize is not given then use the experimental textmetrics feature. You must be running a dev snapshot that includes this feature and have the feature turned on in your preferences. Default: false
// Example: The examples use Courier, a monospaced font. The width is 1/1.2 times the specified size for this font. This text could wrap around a cylinder.
// path = path3d(arc(100, r=25, angle=[245, 370]));
// color("red")stroke(path, width=.3);
// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2);
// Example: By setting the normal to UP we can get text that lies flat, for writing around the edge of a disk:
// path = path3d(arc(100, r=25, angle=[245, 370]));
// color("red")stroke(path, width=.3);
// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, normal=UP);
// Example: If we want text that reads from the other side we can use reverse. Note we have to reverse the direction of the path and also set the reverse option.
// path = reverse(path3d(arc(100, r=25, angle=[65, 190])));
// color("red")stroke(path, width=.3);
// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, reverse=true);
// Example: text debossed onto a cylinder in a spiral. The text is 1 unit deep because it is half in, half out.
// text = ("A long text example to wrap around a cylinder, possibly for a few times.");
// L = 5*len(text);
// maxang = 360*L/(PI*50);
// spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]];
// difference(){
// cyl(d=50, l=50, $fn=120);
// path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2);
// }
// Example: Same example but text embossed. Make sure you have enough depth for the letters to fully overlap the object.
// text = ("A long text example to wrap around a cylinder, possibly for a few times.");
// L = 5*len(text);
// maxang = 360*L/(PI*50);
// spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]];
// cyl(d=50, l=50, $fn=120);
// path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2);
// Example: Here the text baseline sits on the path. (Note the default orientation makes text readable from below, so we specify the normal.)
// path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]);
// color("red")stroke(path,width=.2);
// path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", normal=FRONT);
// Example: If we use top to orient the text upward, the text baseline is no longer aligned with the path.
// path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]);
// color("red")stroke(path,width=.2);
// path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", top=UP);
2021-09-07 22:49:15 -04:00
// Example: This sine wave wrapped around the cylinder has a twisting normal that produces wild letter layout. We fix it with a custom normal which is different at every path point.
// path = [for(theta = [0:360]) [25*cos(theta), 25*sin(theta), 4*cos(theta*4)]];
// normal = [for(theta = [0:360]) [cos(theta), sin(theta),0]];
// zrot(-120)
// difference(){
// cyl(r=25, h=20, $fn=120);
// path_text(path, "A sine wave wiggles", font="Courier", lettersize=5/1.2, size=5, normal=normal);
// }
2021-09-04 22:10:25 -04:00
// Example: The path center of curvature changes, and the text flips.
// path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180])))));
// color("red")stroke(path,width=.2);
// path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2);
// Example: We can fix it with top:
// path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180])))));
// color("red")stroke(path,width=.2);
// path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2, top=UP);
2021-09-07 22:49:15 -04:00
// Example(2D): With a 2D path instead of 3D there's no ambiguity about direction and it works by default:
// path = zrot(-120,p=concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180]))));
// color("red")stroke(path,width=.2);
// path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier");
module path_text ( path , text , font , size , thickness , lettersize , offset = 0 , reverse = false , normal , top , textmetrics = false )
2021-09-04 22:10:25 -04:00
{
2021-09-07 22:49:15 -04:00
dummy2 = assert ( is_path ( path , [ 2 , 3 ] ) , "Must supply a 2d or 3d path" )
assert ( num_defined ( [ normal , top ] ) < = 1 , "Cannot define both \"normal\" and \"top\"" ) ;
dim = len ( path [ 0 ] ) ;
normalok = is_undef ( normal ) || is_vector ( normal , 3 ) || ( is_path ( normal , 3 ) && len ( normal ) = = len ( path ) ) ;
topok = is_undef ( top ) || is_vector ( top , dim ) || ( dim = = 2 && is_vector ( top , 3 ) && top [ 2 ] = = 0 )
|| ( is_path ( top , dim ) && len ( top ) = = len ( path ) ) ;
dummy4 = assert ( dim = = 3 || is_undef ( thickness ) , "Cannot give a thickness with 2d path" )
assert ( dim = = 3 || ! reverse , "Reverse not allowed with 2d path" )
assert ( dim = = 3 || offset = = 0 , "Cannot give offset with 2d path" )
assert ( dim = = 3 || is_undef ( normal ) , "Cannot define \"normal\" for a 2d path, only \"top\"" )
assert ( normalok , "\"normal\" must be a vector or path compatible with the given path" )
assert ( topok , "\"top\" must be a vector or path compatible with the given path" ) ;
thickness = first_defined ( [ thickness , 1 ] ) ;
normal = is_vector ( normal ) ? repeat ( normal , len ( path ) )
2021-09-04 22:10:25 -04:00
: is_def ( normal ) ? normal
: undef ;
2021-09-07 22:49:15 -04:00
top = is_vector ( top ) ? repeat ( dim = = 2 ? point2d ( top ) : top , len ( path ) )
2021-09-04 22:10:25 -04:00
: is_def ( top ) ? top
: undef ;
lsize = is_def ( lettersize ) ? force_list ( lettersize , len ( text ) )
: textmetrics ? [ for ( letter = text ) let ( t = textmetrics ( letter , font = font , size = size ) ) t . advance [ 0 ] ]
: assert ( false , "textmetrics disabled: Must specify letter size" ) ;
dummy1 = assert ( sum ( lsize ) < = path_length ( path ) , "Path is too short for the text" ) ;
pts = path_cut_points ( path , add_scalar ( [ 0 , each cumsum ( lsize ) ] , lsize [ 0 ] / 2 ) , direction = true ) ;
usernorm = is_def ( normal ) ;
usetop = is_def ( top ) ;
normpts = is_undef ( normal ) ? ( reverse ? 1 : - 1 ) * subindex ( pts , 3 ) : _cut_interp ( pts , path , normal ) ;
toppts = is_undef ( top ) ? undef : _cut_interp ( pts , path , top ) ;
for ( i = idx ( text ) )
2021-09-07 22:49:15 -04:00
let ( tangent = pts [ i ] [ 2 ] )
assert ( ! usetop || ! approx ( tangent * toppts [ i ] , norm ( top [ i ] ) * norm ( tangent ) ) ,
2021-09-04 22:10:25 -04:00
str ( "Specified top direction parallel to path at character " , i ) )
2021-09-07 22:49:15 -04:00
assert ( usetop || ! approx ( tangent * normpts [ i ] , norm ( normpts [ i ] ) * norm ( tangent ) ) ,
2021-09-04 22:10:25 -04:00
str ( "Specified normal direction parallel to path at character " , i ) )
let (
2021-09-07 22:49:15 -04:00
adjustment = usetop ? ( tangent * toppts [ i ] ) * toppts [ i ] / ( toppts [ i ] * toppts [ i ] )
: usernorm ? ( tangent * normpts [ i ] ) * normpts [ i ] / ( normpts [ i ] * normpts [ i ] )
2021-09-04 22:10:25 -04:00
: [ 0 , 0 , 0 ]
)
move ( pts [ i ] [ 0 ] )
2021-09-07 22:49:15 -04:00
if ( dim = = 3 ) {
frame_map ( x = tangent - adjustment ,
z = usetop ? undef : normpts [ i ] ,
y = usetop ? toppts [ i ] : undef )
up ( offset - thickness / 2 )
linear_extrude ( height = thickness )
left ( lsize [ 0 ] / 2 ) text ( text [ i ] , font = font , size = size ) ;
} else {
frame_map ( x = point3d ( tangent - adjustment ) , y = point3d ( usetop ? toppts [ i ] : - normpts [ i ] ) )
left ( lsize [ 0 ] / 2 ) text ( text [ i ] , font = font , size = size ) ;
}
2021-09-04 22:10:25 -04:00
}
2020-05-15 17:28:54 -04:00
2017-08-29 17:00:16 -07:00
2021-09-07 22:49:15 -04:00
2020-05-29 19:04:34 -07:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap