Removed translate_points(), scale_points(), rotate_points2d() and rotate_points3d()

This commit is contained in:
Revar Desmera 2020-03-22 05:11:19 -07:00
parent d52c10f03b
commit 00f69ba95b
13 changed files with 231 additions and 281 deletions

View File

@ -326,7 +326,7 @@ function attach_transform(anchor=CENTER, spin=0, orient=UP, geom, p) =
ang = vector_angle(anch[2], DOWN),
axis = vector_axis(anch[2], DOWN),
ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3],
axis2 = rotate_points3d([axis],[0,0,ang2])[0]
axis2 = rot(p=axis,[0,0,ang2])
)
affine3d_rot_by_axis(axis2,ang) *
affine3d_zrot(ang2+spin) *

View File

@ -884,12 +884,14 @@ function _bezier_triangle(tri, splinesteps=16, vnf=EMPTY_VNF) =
// trace_bezier_patches([patch], size=1, showcps=true);
function bezier_patch_flat(size=[100,100], N=4, spin=0, orient=UP, trans=[0,0,0]) =
let(
patch = [for (x=[0:1:N]) [for (y=[0:1:N]) vmul(point3d(size),[x/N-0.5, 0.5-y/N, 0])]]
) [for (row=patch)
translate_points(v=trans,
rotate_points3d(a=spin, from=UP, to=orient, row)
)
];
patch = [
for (x=[0:1:N]) [
for (y=[0:1:N])
vmul(point3d(size), [x/N-0.5, 0.5-y/N, 0])
]
],
m = move(trans) * rot(a=spin, from=UP, to=orient)
) [for (row=patch) apply(m, row)];

View File

@ -100,121 +100,6 @@ function path4d(points, fill=0) =
result + repeat(addition, len(result));
// Function: translate_points()
// Usage:
// translate_points(pts, v);
// Description:
// Moves each point in an array by a given amount.
// Arguments:
// pts = List of points to translate.
// v = Amount to translate points by.
function translate_points(pts, v=[0,0,0]) =
pts==[]? [] : let(
v=point3d(v)
) [for (pt = pts) pt+v];
// Function: scale_points()
// Usage:
// scale_points(pts, v, [cp]);
// Description:
// Scales each point in an array by a given amount, around a given centerpoint.
// Arguments:
// pts = List of points to scale.
// v = A vector with a scaling factor for each axis.
// cp = Centerpoint to scale around.
function scale_points(pts, v=[1,1,1], cp=[0,0,0]) =
pts==[]? [] : let(
cp = point3d(cp),
v = point3d(v,fill=1)
) [for (pt = pts) vmul(pt-cp,v)+cp];
// Function: rotate_points2d()
// Usage:
// rotate_points2d(pts, a, [cp]);
// Description:
// Rotates each 2D point in an array by a given amount, around an optional centerpoint.
// Arguments:
// pts = List of 3D points to rotate.
// a = Angle to rotate by.
// cp = 2D Centerpoint to rotate around. Default: `[0,0]`
function rotate_points2d(pts, a, cp=[0,0]) =
approx(a,0)? pts :
let(
cp = point2d(cp),
pts = path2d(pts),
m = affine2d_zrot(a)
) [for (pt = pts) point2d(m*concat(pt-cp, [1])+cp)];
// Function: rotate_points3d()
// Usage:
// rotate_points3d(pts, a, [cp], [reverse]);
// rotate_points3d(pts, a, v, [cp], [reverse]);
// rotate_points3d(pts, from, to, [a], [cp], [reverse]);
// Description:
// Rotates each 3D point in an array by a given amount, around a given centerpoint.
// Arguments:
// pts = List of points to rotate.
// a = Rotation angle(s) in degrees.
// v = If given, axis vector to rotate around.
// cp = Centerpoint to rotate around.
// from = If given, the vector to rotate something from. Used with `to`.
// to = If given, the vector to rotate something to. Used with `from`.
// reverse = If true, performs an exactly reversed rotation.
function rotate_points3d(pts, a=0, v=undef, cp=[0,0,0], from=undef, to=undef, reverse=false) =
assert(is_undef(from)==is_undef(to), "`from` and `to` must be given together.")
(is_undef(from) && (a==0 || a==[0,0,0]))? pts :
let (
from = is_undef(from)? undef : (from / norm(from)),
to = is_undef(to)? undef : (to / norm(to)),
cp = point3d(cp),
pts2 = path3d(pts)
)
(!is_undef(from) && approx(from,to) && (a==0 || a == [0,0,0]))? pts2 :
let (
mrot = reverse? (
!is_undef(from)? (
assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]")
assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]")
let (
ang = vector_angle(from, to),
v = vector_axis(from, to)
)
affine3d_rot_by_axis(from, -a) * affine3d_rot_by_axis(v, -ang)
) : !is_undef(v)? (
affine3d_rot_by_axis(v, -a)
) : is_num(a)? (
affine3d_zrot(-a)
) : (
affine3d_xrot(-a.x) * affine3d_yrot(-a.y) * affine3d_zrot(-a.z)
)
) : (
!is_undef(from)? (
assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]")
assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]")
let (
from = from / norm(from),
to = to / norm(from),
ang = vector_angle(from, to),
v = vector_axis(from, to)
)
affine3d_rot_by_axis(v, ang) * affine3d_rot_by_axis(from, a)
) : !is_undef(v)? (
affine3d_rot_by_axis(v, a)
) : is_num(a)? (
affine3d_zrot(a)
) : (
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x)
)
),
m = affine3d_translate(cp) * mrot * affine3d_translate(-cp)
)
[for (pt = pts2) point3d(m*concat(pt, fill=1))];
// Section: Coordinate Systems
// Function: polar_to_xy()
@ -289,7 +174,7 @@ function project_plane(point, a, b, c) =
v = unit(c-a),
n = unit(cross(u,v)),
w = unit(cross(n,u)),
relpoint = is_vector(point)? (point-a) : translate_points(point,-a)
relpoint = is_vector(point)? (point-a) : move(-a,p=point)
) relpoint * transpose([w,u]);
@ -320,7 +205,7 @@ function lift_plane(point, a, b, c) =
n = unit(cross(u,v)),
w = unit(cross(n,u)),
remapped = point*[w,u]
) is_vector(remapped)? (a+remapped) : translate_points(remapped,a);
) is_vector(remapped)? (a+remapped) : move(a,p=remapped);
// Function: cylindrical_to_xyz()

View File

@ -65,7 +65,7 @@ module orient_cubes() {
}
for (ang = [0:90:270]) {
off = rotate_points3d([40*BACK],ang)[0];
off = rot(p=40*BACK,ang);
translate(off) {
orient_cube(ang);
}

View File

@ -10,7 +10,7 @@ module leaf(s) {
];
xrot(90)
linear_sweep_bezier(
scale_points(path, [s,s]/2),
path * s/2,
height=0.02
);
}

View File

@ -320,14 +320,14 @@ module regular_polyhedron(
in_radius = entry[5];
if (draw){
if (rounding==0)
polyhedron(translate_points(scaled_points, translation), faces = face_triangles);
polyhedron(move(p=scaled_points, translation), faces = face_triangles);
else {
fn = segs(rounding);
rounding = rounding/cos(180/fn);
adjusted_scale = 1 - rounding / in_radius;
minkowski(){
sphere(r=rounding, $fn=fn);
polyhedron(translate_points(adjusted_scale*scaled_points,translation), faces = face_triangles);
polyhedron(move(p=adjusted_scale*scaled_points,translation), faces = face_triangles);
}
}
}
@ -335,13 +335,13 @@ module regular_polyhedron(
maxrange = repeat ? len(faces)-1 : $children-1;
for(i=[0:1:maxrange]) {
// Would like to orient so an edge (longest edge?) is parallel to x axis
facepts = translate_points(select(scaled_points, faces[i]), translation);
facepts = move(p=select(scaled_points, faces[i]), translation);
center = mean(facepts);
rotatedface = rotate_points3d(translate_points(facepts,-center), from=face_normals[i], to=[0,0,1]);
rotatedface = rot(p=move(p=facepts,-center), from=face_normals[i], to=[0,0,1]);
clockwise = sortidx([for(pt=rotatedface) -atan2(pt.y,pt.x)]);
$face = rotate_children?
path2d(select(rotatedface,clockwise)) :
select(translate_points(facepts,-center), clockwise);
select(move(p=facepts,-center), clockwise);
$faceindex = i;
$center = -translation-center;
translate(center)
@ -681,15 +681,15 @@ function regular_polyhedron_info(
facedown = facedown == true ? (stellate==false? entry[facevertices][0] : 3) : facedown,
down_direction = facedown == false? [0,0,-1] :
faces_normals_vertices[1][search(facedown, faces_vertex_count)[0]],
scaled_points = scalefactor * rotate_points3d(faces_normals_vertices[2], from=down_direction, to=[0,0,-1]),
scaled_points = scalefactor * rot(p=faces_normals_vertices[2], from=down_direction, to=[0,0,-1]),
bounds = pointlist_bounds(scaled_points),
boundtable = [bounds[0], [0,0,0], bounds[1]],
translation = [for(i=[0:2]) -boundtable[1+anchor[i]][i]],
face_normals = rotate_points3d(faces_normals_vertices[1], from=down_direction, to=[0,0,-1]),
face_normals = rot(p=faces_normals_vertices[1], from=down_direction, to=[0,0,-1]),
side_length = scalefactor * entry[edgelen]
)
info == "fullentry" ? [scaled_points, translation,stellate ? faces : face_triangles, faces, face_normals, side_length*entry[in_radius]] :
info == "vertices" ? translate_points(scaled_points,translation) :
info == "vertices" ? move(p=scaled_points,translation) :
info == "faces" ? faces :
info == "face normals" ? face_normals :
info == "in_radius" ? side_length * entry[in_radius] :

View File

@ -763,7 +763,7 @@ module offset_sweep(
top_start_ind = len(vertices_faces_bot[0]);
initial_vertices_top = zip(path, repeat(middle,len(path)));
vertices_faces_top = make_polyhedron(
path, translate_points(offsets_top,[0,middle]),
path, move(p=offsets_top,[0,middle]),
struct_val(top,"offset"), !clockwise,
struct_val(top,"quality"),
struct_val(top,"check_valid"),
@ -1278,7 +1278,7 @@ function _stroke_end(width,left, right, spec) =
angle = struct_val(spec,"absolute")?
angle_between_lines(left[0]-right[0],[cos(user_angle),sin(user_angle)]) :
user_angle,
endseg = [center, rotate_points2d([left[0]],angle, cp=center)[0]],
endseg = [center, rot(p=[left[0]], angle, cp=center)[0]],
intright = angle>0,
pathclip = _path_line_intersection(intright? right : left, endseg),
pathextend = line_intersection(endseg, select(intright? left:right,0,1))

View File

@ -54,56 +54,6 @@ module test_path4d() {
test_path4d();
module test_translate_points() {
pts = [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]];
assert(translate_points(pts, v=[1,2,3]) == [[1,2,4], [1,3,3], [2,2,3], [1,2,2], [1,1,3], [0,2,3]]);
assert(translate_points(pts, v=[-1,-2,-3]) == [[-1,-2,-2], [-1,-1,-3], [0,-2,-3], [-1,-2,-4], [-1,-3,-3], [-2,-2,-3]]);
assert(translate_points(pts, v=[1,2]) == [[1,2,1], [1,3,0], [2,2,0], [1,2,-1], [1,1,0], [0,2,0]]);
pts2 = [[0,1], [1,0], [0,-1], [-1,0]];
assert(translate_points(pts2, v=[1,2]) == [[1,3], [2,2], [1,1], [0,2]]);
}
test_translate_points();
module test_scale_points() {
pts = [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]];
assert(scale_points(pts, v=[2,3,4]) == [[0,0,4], [0,3,0], [2,0,0], [0,0,-4], [0,-3,0], [-2,0,0]]);
assert(scale_points(pts, v=[-2,-3,-4]) == [[0,0,-4], [0,-3,0], [-2,0,0], [0,0,4], [0,3,0], [2,0,0]]);
assert(scale_points(pts, v=[1,1,1]) == [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]]);
assert(scale_points(pts, v=[-1,-1,-1]) == [[0,0,-1], [0,-1,0], [-1,0,0], [0,0,1], [0,1,0], [1,0,0]]);
pts2 = [[0,1], [1,0], [0,-1], [-1,0]];
assert(scale_points(pts2, v=[2,3]) == [[0,3], [2,0], [0,-3], [-2,0]]);
}
test_scale_points();
module test_rotate_points2d() {
pts = [[0,1], [1,0], [0,-1], [-1,0]];
s = sin(45);
assert(rotate_points2d(pts,45) == [[-s,s],[s,s],[s,-s],[-s,-s]]);
assert(rotate_points2d(pts,90) == [[-1,0],[0,1],[1,0],[0,-1]]);
assert(rotate_points2d(pts,90,cp=[1,0]) == [[0,-1],[1,0],[2,-1],[1,-2]]);
}
test_rotate_points2d();
module test_rotate_points3d() {
pts = [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]];
assert(rotate_points3d(pts, [90,0,0]) == [[0,-1,0], [0,0,1], [1,0,0], [0,1,0], [0,0,-1], [-1,0,0]]);
assert(rotate_points3d(pts, [0,90,0]) == [[1,0,0], [0,1,0], [0,0,-1], [-1,0,0], [0,-1,0], [0,0,1]]);
assert(rotate_points3d(pts, [0,0,90]) == [[0,0,1], [-1,0,0], [0,1,0], [0,0,-1], [1,0,0], [0,-1,0]]);
assert(rotate_points3d(pts, [0,0,90],cp=[2,0,0]) == [[2,-2,1], [1,-2,0], [2,-1,0], [2,-2,-1], [3,-2,0], [2,-3,0]]);
assert(rotate_points3d(pts, 90, v=UP) == [[0,0,1], [-1,0,0], [0,1,0], [0,0,-1], [1,0,0], [0,-1,0]]);
assert(rotate_points3d(pts, 90, v=DOWN) == [[0,0,1], [1,0,0], [0,-1,0], [0,0,-1], [-1,0,0], [0,1,0]]);
assert(rotate_points3d(pts, 90, v=RIGHT) == [[0,-1,0], [0,0,1], [1,0,0], [0,1,0], [0,0,-1], [-1,0,0]]);
assert(rotate_points3d(pts, from=UP, to=BACK) == [[0,1,0], [0,0,-1], [1,0,0], [0,-1,0], [0,0,1], [-1,0,0]]);
assert(rotate_points3d(pts, 90, from=UP, to=BACK), [[0,1,0], [-1,0,0], [0,0,-1], [0,-1,0], [1,0,0], [0,0,1]]);
assert(rotate_points3d(pts, from=UP, to=UP*2) == [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]]);
assert(rotate_points3d(pts, from=UP, to=DOWN*2) == [[0,0,-1], [0,1,0], [-1,0,0], [0,0,1], [0,-1,0], [1,0,0]]);
}
test_rotate_points3d();
module test_polar_to_xy() {
assert(approx(polar_to_xy(20,45), [20/sqrt(2), 20/sqrt(2)]));
assert(approx(polar_to_xy(20,135), [-20/sqrt(2), 20/sqrt(2)]));

View File

@ -11,11 +11,11 @@ function rec_cmp(a,b,eps=1e-9) =
module verify_f(actual,expected) {
if (!rec_cmp(actual,expected)) {
echo(str("Expected: ",fmtf(expected,10)));
echo(str("Expected: ",fmt_float(expected,10)));
echo(str(" : ",expected));
echo(str("Actual : ",fmtf(actual,10)));
echo(str("Actual : ",fmt_float(actual,10)));
echo(str(" : ",actual));
echo(str("Delta : ",fmtf(expected-actual,10)));
echo(str("Delta : ",fmt_float(expected-actual,10)));
echo(str(" : ",expected-actual));
assert(approx(expected,actual));
}

159
tests/test_transforms.scad Normal file
View File

@ -0,0 +1,159 @@
include <BOSL2/std.scad>
module test(got,expect,extra_info) {
if (
is_undef(expect) != is_undef(got) ||
expect*0 != got*0 ||
(is_vnf(expect) && !all([for (i=idx(expect[0])) approx(got[0][i],expect[0][i])]) && got[1]!=expect[1]) ||
(is_matrix(expect) && !all([for (i=idx(expect)) approx(got[i],expect[i])])) ||
(got!=expect && !approx(got, expect))
) {
fmt = is_int(expect)? "{:.14i}" :
is_num(expect)? "{:.14g}" :
is_vector(expect)? "{:.14g}" :
"{}";
echofmt(str("Expected: ",fmt),[expect]);
echofmt(str("But Got : ",fmt),[got]);
if (expect*0 == got*0) {
echofmt(str("Delta is: ",fmt),[expect-got]);
}
if (!is_undef(extra_info)) {
echo(str("Extra Info: ",extra_info));
}
assert(false, "TEST FAILED!");
}
}
module test_rot() {
pts2d = 50 * [for (x=[-1,0,1],y=[-1,0,1]) [x,y]];
pts3d = 50 * [for (x=[-1,0,1],y=[-1,0,1],z=[-1,0,1]) [x,y,z]];
vecs2d = [
for (x=[-1,0,1], y=[-1,0,1]) if(x!=0||y!=0) [x,y],
polar_to_xy(1, -75),
polar_to_xy(1, 75)
];
vecs3d = [
LEFT, RIGHT, FRONT, BACK, DOWN, UP,
spherical_to_xyz(1, -30, 45),
spherical_to_xyz(1, 0, 45),
spherical_to_xyz(1, 30, 45),
spherical_to_xyz(2, 30, 45),
spherical_to_xyz(1, -30, 135),
spherical_to_xyz(2, -30, 135),
spherical_to_xyz(1, 0, 135),
spherical_to_xyz(1, 30, 135),
spherical_to_xyz(1, -30, 75),
spherical_to_xyz(1, 45, 45),
];
angs = [-180, -90, -45, 0, 30, 45, 90];
for (a = [-360*3:360:360*3]) {
test(rot(a), affine3d_identity(), extra_info=str("rot(",a,") != identity"));
test(rot(a,p=pts2d), pts2d, extra_info=str("rot(",a,",p=...), 2D"));
test(rot(a,p=pts3d), pts3d, extra_info=str("rot(",a,",p=...), 3D"));
}
test(rot(90), [[0,-1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]])
for (a=angs) {
test(rot(a), affine3d_zrot(a), extra_info=str("Z angle (only) = ",a));
test(rot([a,0,0]), affine3d_xrot(a), extra_info=str("X angle = ",a));
test(rot([0,a,0]), affine3d_yrot(a), extra_info=str("Y angle = ",a));
test(rot([0,0,a]), affine3d_zrot(a), extra_info=str("Z angle = ",a));
test(rot(a,p=pts2d), apply(affine3d_zrot(a),pts2d), extra_info=str("Z angle (only) = ",a, ", p=..., 2D"));
test(rot([0,0,a],p=pts2d), apply(affine3d_zrot(a),pts2d), extra_info=str("Z angle = ",a, ", p=..., 2D"));
test(rot(a,p=pts3d), apply(affine3d_zrot(a),pts3d), extra_info=str("Z angle (only) = ",a, ", p=..., 3D"));
test(rot([a,0,0],p=pts3d), apply(affine3d_xrot(a),pts3d), extra_info=str("X angle = ",a, ", p=..., 3D"));
test(rot([0,a,0],p=pts3d), apply(affine3d_yrot(a),pts3d), extra_info=str("Y angle = ",a, ", p=..., 3D"));
test(rot([0,0,a],p=pts3d), apply(affine3d_zrot(a),pts3d), extra_info=str("Z angle = ",a, ", p=..., 3D"));
}
for (xa=angs, ya=angs, za=angs) {
test(
rot([xa,ya,za]),
affine3d_chain([
affine3d_xrot(xa),
affine3d_yrot(ya),
affine3d_zrot(za)
]),
extra_info=str("[X,Y,Z] = ",[xa,ya,za])
);
test(
rot([xa,ya,za],p=pts3d),
apply(
affine3d_chain([
affine3d_xrot(xa),
affine3d_yrot(ya),
affine3d_zrot(za)
]),
pts3d
),
extra_info=str("[X,Y,Z] = ",[xa,ya,za], ", p=...")
);
}
for (vec1 = vecs3d) {
for (ang = angs) {
test(
rot(a=ang, v=vec1),
affine3d_rot_by_axis(vec1,ang),
extra_info=str("a = ",ang,", v = ", vec1)
);
test(
rot(a=ang, v=vec1, p=pts3d),
apply(affine3d_rot_by_axis(vec1,ang), pts3d),
extra_info=str("a = ",ang,", v = ", vec1, ", p=...")
);
}
}
for (vec1 = vecs2d) {
for (vec2 = vecs2d) {
test(
rot(from=vec1, to=vec2, p=pts2d, planar=true),
apply(affine2d_zrot(vang(vec2)-vang(vec1)), pts2d),
extra_info=str(
"from = ", vec1, ", ",
"to = ", vec2, ", ",
"planar = ", true, ", ",
"p=..., 2D"
)
);
}
}
for (vec1 = vecs3d) {
for (vec2 = vecs3d) {
for (a = angs) {
test(
rot(from=vec1, to=vec2, a=a),
affine3d_chain([
affine3d_zrot(a),
affine3d_rot_from_to(vec1,vec2)
]),
extra_info=str(
"from = ", vec1, ", ",
"to = ", vec2, ", ",
"a = ", a
)
);
test(
rot(from=vec1, to=vec2, a=a, p=pts3d),
apply(
affine3d_chain([
affine3d_zrot(a),
affine3d_rot_from_to(vec1,vec2)
]),
pts3d
),
extra_info=str(
"from = ", vec1, ", ",
"to = ", vec2, ", ",
"a = ", a, ", ",
"p=..., 3D"
)
);
}
}
}
}
test_rot();
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View File

@ -60,7 +60,7 @@ module thread_helix(base_d, pitch, thread_depth=undef, thread_angle=15, twist=72
[0, -cap/2-dz],
]
);
pline = scale_points(profile, [1,1,1]*pitch);
pline = profile * pitch;
dir = left_handed? -1 : 1;
idir = internal? -1 : 1;
attachable(anchor,spin,orient, r=r, l=h) {

View File

@ -337,102 +337,56 @@ function up(z=0,p=undef) = move([0,0,z],p=p);
// stroke(rot(30,p=path), closed=true);
module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
{
if (!is_undef(cp)) {
translate(cp) rot(a=a, v=v, from=from, to=to, reverse=reverse) translate(-cp) children();
} else if (!is_undef(from)) {
assert(!is_undef(to), "`from` and `to` should be used together.");
from = point3d(from);
to = point3d(to);
axis = vector_axis(from, to);
ang = vector_angle(from, to);
if (ang < 0.0001 && a == 0) {
children(); // May be slightly faster?
} else if (reverse) {
rotate(a=-ang, v=axis) rotate(a=-a, v=from) children();
} else {
rotate(a=ang, v=axis) rotate(a=a, v=from) children();
}
} else if (a == 0) {
children(); // May be slightly faster?
} else if (reverse) {
if (!is_undef(v)) {
rotate(a=-a, v=v) children();
} else if (is_num(a)) {
rotate(-a) children();
} else {
rotate([-a[0],0,0]) rotate([0,-a[1],0]) rotate([0,0,-a[2]]) children();
}
} else {
rotate(a=a, v=v) children();
}
m = rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=false);
multmatrix(m) children();
}
function rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false, p=undef, planar=false) =
function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
assert(is_undef(from)==is_undef(to), "from and to must be specified together.")
let(
rev = reverse? -1 : 1,
from = is_undef(from)? undef : point3d(from),
to = is_undef(to)? undef : point3d(to)
)
is_undef(p)? (
is_undef(cp)? (
planar? (
is_undef(from)? affine2d_zrot(a*rev) :
affine2d_zrot(vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev)
) : (
!is_undef(from)? affine3d_chain([
affine3d_zrot(a*rev),
affine3d_rot_by_axis(
vector_axis(from,to),
vector_angle(from,to)*rev
)
]) :
!is_undef(v)? affine3d_rot_by_axis(v,a*rev) :
is_num(a)? affine3d_zrot(a*rev) :
reverse? affine3d_chain([affine3d_zrot(-a.z),affine3d_yrot(-a.y),affine3d_xrot(-a.x)]) :
affine3d_chain([affine3d_xrot(a.x),affine3d_yrot(a.y),affine3d_zrot(a.z)])
)
) : (
planar? (
affine2d_chain([
move(-cp),
rot(a=a, v=v, from=from, to=to, reverse=reverse, planar=true),
move(cp)
])
) : (
affine3d_chain([
move(-cp),
rot(a=a, v=v, from=from, to=to, reverse=reverse),
move(cp)
])
)
)
planar? let(
cp = is_undef(cp)? cp : point2d(cp),
m1 = is_undef(from)? affine2d_zrot(a) :
assert(is_vector(from))
assert(!approx(norm(from),0))
assert(approx(point3d(from).z, 0))
assert(is_vector(to))
assert(!approx(norm(to),0))
assert(approx(point3d(to).z, 0))
affine2d_zrot(
vang(point2d(to)) -
vang(point2d(from))
),
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
m3 = reverse? matrix_inverse(m2) : m2
) m3 : let(
from = is_undef(from)? undef : point3d(from),
to = is_undef(to)? undef : point3d(to),
cp = is_undef(cp)? undef : point3d(cp),
m1 = !is_undef(from)? (
assert(is_vector(from))
assert(!approx(norm(from),0))
assert(is_vector(to))
assert(!approx(norm(to),0))
affine3d_rot_from_to(from,to) * affine3d_zrot(a)
) :
!is_undef(v)? affine3d_rot_by_axis(v,a) :
is_num(a)? affine3d_zrot(a) :
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x),
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
m3 = reverse? matrix_inverse(m2) : m2
) m3
) : (
assert(is_list(p))
is_num(p.x)? (
rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=[p], planar=planar)[0]
) : is_vnf(p)? (
[rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=p.x, planar=planar), p.y]
) : is_list(p.x) && is_list(p.x.x)? (
[for (l=p) rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=l, planar=planar)]
) : (
(
(planar || (p!=[] && len(p[0])==2)) && !(
(is_vector(a) && norm(point2d(a))>0) ||
(!is_undef(v) && norm(point2d(v))>0 && !approx(a,0)) ||
(!is_undef(from) && !approx(from,to) && !(abs(point3d(from).z)>0 || abs(point3d(to).z))) ||
(!is_undef(from) && approx(from,to) && norm(point2d(from))>0 && a!=0)
)
)? (
is_undef(from)? rotate_points2d(p, a=a*rev, cp=cp) : (
approx(from,to)&&approx(a,0)? p :
rotate_points2d(p, a=vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev, cp=cp)
)
) : (
let( cp = is_undef(cp)? [0,0,0] : cp )
rotate_points3d(p, a=a, v=v, cp=cp, from=from, to=to, reverse=reverse)
)
)
let(
m = !is_undef(_m)? _m :
rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=planar),
res = p==[]? [] :
is_vector(p)? apply(m, p) :
is_vnf(p)? [apply(m, p[0]), p[1]] :
is_list(p[0])? [for (pp=p) rot(p=pp, _m=m)] :
assert(false, "The p argument for rot() is not a point, path, patch, matrix, or VNF.")
) res
);

View File

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,215];
BOSL_VERSION = [2,0,216];
// Section: BOSL Library Version Functions