diff --git a/arrays.scad b/arrays.scad index e2d3ac2..8f44fe8 100644 --- a/arrays.scad +++ b/arrays.scad @@ -1199,6 +1199,52 @@ function zip(vecs, v2, v3, fit=false, fill=undef) = : [for(i=[0:1:minlen-1]) [for(v=vecs) for(x=v[i]) x] ]; +// Function: block_matrix() +// Usage: +// block_matrix([[M11, M12,...],[M21, M22,...], ... ]) +// Description: +// Create a block matrix by supplying a matrix of matrices, which will +// be combined into one unified matrix. Every matrix in one row +// must have the same height, and the combined width of the matrices +// in each row must be equal. +function block_matrix(M) = + let( + bigM = [for(bigrow = M) each zip(bigrow)], + len0=len(bigM[0]), + badrows = [for(row=bigM) if (len(row)!=len0) 1] + ) + assert(badrows==[], "Inconsistent or invalid input") + bigM; + +// Function: diagonal_matrix() +// Usage: +// diagonal_matrix(diag, [offdiag]) +// Description: +// Creates a square matrix with the items in the list `diag` on +// its diagonal. The off diagonal entries are set to offdiag, +// which is zero by default. +function diagonal_matrix(diag,offdiag=0) = + [for(i=[0:1:len(diag)-1]) [for(j=[0:len(diag)-1]) i==j?diag[i] : offdiag]]; + + +// Function: submatrix_set() +// Usage: submatrix_set(M,A,[m],[n]) +// Description: +// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but +// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds +// of M then the extra entries are ignored. You can pass in A=[[]], a null matrix, and M will be +// returned unchanged. Note that the input M need not be rectangular in shape. +function submatrix_set(M,A,m=0,n=0) = + assert(is_list(M)) + assert(is_list(A)) + let( badrows = [for(i=idx(A)) if (!is_list(A[i])) i]) + assert(badrows==[], str("Input submatrix malformed rows: ",badrows)) + [for(i=[0:1:len(M)-1]) + assert(is_list(M[i]), str("Row ",i," of input matrix is not a list")) + [for(j=[0:1:len(M[i])-1]) + i>=m && i =n && jj ? 0 : ri[j] ] ] - ) [qr[0],Rzero]; + ) [qr[0],Rzero,qr[2]]; -function _qr_factor(A,Q, column, m, n) = - column >= min(m-1,n) ? [Q,A] : +function _qr_factor(A,Q,P, pivot, column, m, n) = + column >= min(m-1,n) ? [Q,A,P] : let( + swap = !pivot ? 1 + : _swap_matrix(n,column,column+max_index([for(i=[column:n-1]) sum_of_squares([for(j=[column:m-1]) A[j][i]])])), + A = pivot ? A*swap : A, x = [for(i=[column:1:m-1]) A[i][column]], alpha = (x[0]<=0 ? 1 : -1) * norm(x), u = x - concat([alpha],repeat(0,m-1)), v = alpha==0 ? u : u / norm(u), Qc = ident(len(x)) - 2*outer_product(v,v), - Qf = [for(i=[0:m-1]) - [for(j=[0:m-1]) - i=0 && j>=0, "Swap indices out of bounds") + [for(y=[0:n-1]) [for (x=[0:n-1]) + x==i ? (y==j ? 1 : 0) + : x==j ? (y==i ? 1 : 0) + : x==y ? 1 : 0]]; + // Function: back_substitute() @@ -862,6 +886,17 @@ function is_matrix(A,m,n,square=false) = && ( !square || len(A)==len(A[0])); +// Function: norm_fro() +// Usage: +// norm_fro(A) +// Description: +// Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the +// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm. +// This is an easily computed norm that is convenient for comparing two matrices. +function norm_fro(A) = + sqrt(sum([for(entry=A) sum_of_squares(entry)])); + + // Section: Comparisons and Logic // Function: is_zero() @@ -1309,6 +1344,41 @@ function C_div(z1,z2) = // Section: Polynomials +// Function: quadratic_roots() +// Usage: +// roots = quadratic_roots(a,b,c,[real]) +// Description: +// Computes roots of the quadratic equation a*x^2+b*x+c==0, where the +// coefficients are real numbers. If real is true then returns only the +// real roots. Otherwise returns a pair of complex values. This method +// may be more reliable than the general root finder at distinguishing +// real roots from complex roots. + +// https://people.csail.mit.edu/bkph/articles/Quadratics.pdf + +function quadratic_roots(a,b,c,real=false) = + real ? [for(root = quadratic_roots(a,b,c,real=false)) if (root.y==0) root.x] + : + is_undef(b) && is_undef(c) && is_vector(a,3) ? quadratic_roots(a[0],a[1],a[2]) : + assert(is_num(a) && is_num(b) && is_num(c)) + assert(a!=0 || b!=0 || c!=0, "Quadratic must have a nonzero coefficient") + a==0 && b==0 ? [] : // No solutions + a==0 ? [[-c/b,0]] : + let( + descrim = b*b-4*a*c, + sqrt_des = sqrt(abs(descrim)) + ) + descrim < 0 ? // Complex case + [[-b, sqrt_des], + [-b, -sqrt_des]]/2/a : + b<0 ? // b positive + [[2*c/(-b+sqrt_des),0], + [(-b+sqrt_des)/a/2,0]] + : // b negative + [[(-b-sqrt_des)/2/a, 0], + [2*c/(-b-sqrt_des),0]]; + + // Function: polynomial() // Usage: // polynomial(p, z) diff --git a/tests/test_arrays.scad b/tests/test_arrays.scad index 45cd2cd..1dfe421 100644 --- a/tests/test_arrays.scad +++ b/tests/test_arrays.scad @@ -470,6 +470,40 @@ module test_zip() { } test_zip(); +module test_block_matrix() { + A = [[1,2],[3,4]]; + B = ident(2); + assert_equal(block_matrix([[A,B],[B,A],[A,B]]), [[1,2,1,0],[3,4,0,1],[1,0,1,2],[0,1,3,4],[1,2,1,0],[3,4,0,1]]); + assert_equal(block_matrix([[A,B],ident(4)]), [[1,2,1,0],[3,4,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]); + text = [["a","b"],["c","d"]]; + assert_equal(block_matrix([[text,B]]), [["a","b",1,0],["c","d",0,1]]); +} +test_block_matrix(); + + +module test_diagonal_matrix() { + assert_equal(diagonal_matrix([1,2,3]), [[1,0,0],[0,2,0],[0,0,3]]); + assert_equal(diagonal_matrix([1,"c",2]), [[1,0,0],[0,"c",0],[0,0,2]]); + assert_equal(diagonal_matrix([1,"c",2],"X"), [[1,"X","X"],["X","c","X"],["X","X",2]]); + assert_equal(diagonal_matrix([[1,1],[2,2],[3,3]], [0,0]), [[ [1,1],[0,0],[0,0]], [[0,0],[2,2],[0,0]], [[0,0],[0,0],[3,3]]]); +} +test_diagonal_matrix(); + +module test_submatrix_set() { + test = [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]; + ragged = [[1,2,3,4,5],[6,7,8,9,10],[11,12], [16,17]]; + assert_equal(submatrix_set(test,[[9,8],[7,6]]), [[9,8,3,4,5],[7,6,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]); + assert_equal(submatrix_set(test,[[9,7],[8,6]],1),[[1,2,3,4,5],[9,7,8,9,10],[8,6,13,14,15], [16,17,18,19,20]]); + assert_equal(submatrix_set(test,[[9,8],[7,6]],n=1), [[1,9,8,4,5],[6,7,6,9,10],[11,12,13,14,15], [16,17,18,19,20]]); + assert_equal(submatrix_set(test,[[9,8],[7,6]],1,2), [[1,2,3,4,5],[6,7,9,8,10],[11,12,7,6,15], [16,17,18,19,20]]); + assert_equal(submatrix_set(test,[[9,8],[7,6]],-1,-1), [[6,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]); + assert_equal(submatrix_set(test,[[9,8],[7,6]],n=4), [[1,2,3,4,9],[6,7,8,9,7],[11,12,13,14,15], [16,17,18,19,20]]); + assert_equal(submatrix_set(test,[[9,8],[7,6]],7,7), [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]); + assert_equal(submatrix_set(ragged, [["a","b"],["c","d"]], 1, 1), [[1,2,3,4,5],[6,"a","b",9,10],[11,"c"], [16,17]]); + assert_equal(submatrix_set(test, [[]]), test); +} +test_submatrix_set(); + module test_array_group() { v = [1,2,3,4,5,6]; diff --git a/tests/test_math.scad b/tests/test_math.scad index c3eb601..9a25cec 100644 --- a/tests/test_math.scad +++ b/tests/test_math.scad @@ -781,6 +781,12 @@ test_back_substitute(); +module test_norm_fro(){ + assert_approx(norm_fro([[2,3,4],[4,5,6]]), 10.29563014098700); + +} test_norm_fro(); + + module test_linear_solve(){ M = [[-2,-5,-1,3], [3,7,6,2], @@ -954,6 +960,38 @@ module test_real_roots(){ test_real_roots(); + +module test_quadratic_roots(){ + assert_approx(quadratic_roots([1,4,4]),[[-2,0],[-2,0]]); + assert_approx(quadratic_roots([1,4,4],real=true),[-2,-2]); + assert_approx(quadratic_roots([1,-5,6],real=true), [2,3]); + assert_approx(quadratic_roots([1,-5,6]), [[2,0],[3,0]]); +} +test_quadratic_roots(); + + +module test_null_space(){ + assert_equal(null_space([[3,2,1],[3,6,3],[3,9,-3]]),[]); + + function nullcheck(A,dim) = + let(v=null_space(A)) + len(v)==dim && is_zero(A*transpose(v),eps=1e-12); + + A = [[-1, 2, -5, 2],[-3,-1,3,-3],[5,0,5,0],[3,-4,11,-4]]; + assert(nullcheck(A,1)); + + B = [ + [ 4, 1, 8, 6, -2, 3], + [ 10, 5, 10, 10, 0, 5], + [ 8, 1, 8, 8, -6, 1], + [ -8, -8, 6, -1, -8, -1], + [ 2, 2, 0, 1, 2, 1], + [ 2, -3, 10, 6, -8, 1], + ]; + assert(nullcheck(B,3)); +} +test_null_space(); + module test_qr_factor() { // Check that R is upper triangular function is_ut(R) = @@ -962,7 +1000,15 @@ module test_qr_factor() { // Test the R is upper trianglar, Q is orthogonal and qr=M function qrok(qr,M) = - is_ut(qr[1]) && approx(qr[0]*transpose(qr[0]), ident(len(qr[0]))) && approx(qr[0]*qr[1],M); + is_ut(qr[1]) && approx(qr[0]*transpose(qr[0]), ident(len(qr[0]))) && approx(qr[0]*qr[1],M) && qr[2]==ident(len(qr[2])); + + // Test the R is upper trianglar, Q is orthogonal, R diagonal non-increasing and qrp=M + function qrokpiv(qr,M) = + is_ut(qr[1]) + && approx(qr[0]*transpose(qr[0]), ident(len(qr[0]))) + && approx(qr[0]*qr[1]*transpose(qr[2]),M) + && list_decreasing([for(i=[0:1:min(len(qr[1]),len(qr[1][0]))-1]) abs(qr[1][i][i])]); + M = [[1,2,9,4,5], [6,7,8,19,10], @@ -991,6 +1037,15 @@ module test_qr_factor() { assert(qrok(qr_factor([[7]]), [[7]])); assert(qrok(qr_factor([[1,2,3]]), [[1,2,3]])); assert(qrok(qr_factor([[1],[2],[3]]), [[1],[2],[3]])); + + + assert(qrokpiv(qr_factor(M,pivot=true),M)); + assert(qrokpiv(qr_factor(select(M,0,3),pivot=true),select(M,0,3))); + assert(qrokpiv(qr_factor(transpose(select(M,0,3)),pivot=true),transpose(select(M,0,3)))); + assert(qrokpiv(qr_factor(B,pivot=true),B)); + assert(qrokpiv(qr_factor([[7]],pivot=true), [[7]])); + assert(qrokpiv(qr_factor([[1,2,3]],pivot=true), [[1,2,3]])); + assert(qrokpiv(qr_factor([[1],[2],[3]],pivot=true), [[1],[2],[3]])); } test_qr_factor();