mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Renamed normalize() to unit()
This commit is contained in:
parent
af0e285781
commit
07bfcd6a57
12
affine.scad
12
affine.scad
@ -83,7 +83,7 @@ function affine2d_zrot(ang) = [
|
||||
// Arguments:
|
||||
// v = The normal vector of the line to reflect across.
|
||||
function affine2d_mirror(v) =
|
||||
let(v=normalize(point2d(v)), a=v.x, b=v.y)
|
||||
let(v=unit(point2d(v)), a=v.x, b=v.y)
|
||||
[
|
||||
[1-2*a*a, 0-2*a*b, 0],
|
||||
[0-2*a*b, 1-2*b*b, 0],
|
||||
@ -225,7 +225,7 @@ function affine3d_zrot(ang) = [
|
||||
// u = 3D axis vector to rotate around.
|
||||
// ang = number of degrees to rotate.
|
||||
function affine3d_rot_by_axis(u, ang) = let(
|
||||
u = normalize(u),
|
||||
u = unit(u),
|
||||
c = cos(ang),
|
||||
c2 = 1-c,
|
||||
s = sin(ang)
|
||||
@ -290,9 +290,9 @@ function affine_frame_map(x,y,z, reverse=false) =
|
||||
assert(yvalid,"Input y must be a length 3 vector")
|
||||
assert(zvalid,"Input z must be a length 3 vector")
|
||||
let(
|
||||
x = is_def(x) ? normalize(x) : undef,
|
||||
y = is_def(y) ? normalize(y) : undef,
|
||||
z = is_def(z) ? normalize(z) : undef,
|
||||
x = is_def(x) ? unit(x) : undef,
|
||||
y = is_def(y) ? unit(y) : undef,
|
||||
z = is_def(z) ? unit(z) : undef,
|
||||
map = is_undef(x) ? [cross(y,z), y, z] :
|
||||
is_undef(y) ? [x, cross(z,x), z] :
|
||||
is_undef(z) ? [x, y, cross(x,y)] :
|
||||
@ -310,7 +310,7 @@ function affine_frame_map(x,y,z, reverse=false) =
|
||||
// Arguments:
|
||||
// v = The normal vector of the plane to reflect across.
|
||||
function affine3d_mirror(v) =
|
||||
let(v=normalize(point3d(v)), a=v.x, b=v.y, c=v.z)
|
||||
let(v=unit(point3d(v)), a=v.x, b=v.y, c=v.z)
|
||||
[
|
||||
[1-2*a*a, -2*a*b, -2*a*c, 0],
|
||||
[ -2*b*a, 1-2*b*b, -2*b*c, 0],
|
||||
|
@ -197,32 +197,32 @@ function find_anchor(anchor, geom) =
|
||||
bot = point3d(vmul(point2d(size)/2,axy),-h/2),
|
||||
top = point3d(vmul(point2d(size2)/2,axy)+shift,h/2),
|
||||
pos = lerp(bot,top,u)+offset,
|
||||
sidevec = normalize(rot(from=UP, to=top-bot, p=point3d(axy))),
|
||||
vvec = normalize([0,0,anchor.z]),
|
||||
sidevec = unit(rot(from=UP, to=top-bot, p=point3d(axy))),
|
||||
vvec = unit([0,0,anchor.z]),
|
||||
vec = anchor==CENTER? UP :
|
||||
approx(axy,[0,0])? normalize(anchor) :
|
||||
approx(axy,[0,0])? unit(anchor) :
|
||||
approx(anchor.z,0)? sidevec :
|
||||
normalize((sidevec+vvec)/2)
|
||||
unit((sidevec+vvec)/2)
|
||||
) [anchor, pos, vec, oang]
|
||||
) : type == "cyl"? ( //r1, r2, l, shift
|
||||
let(
|
||||
r1=geom[1], r2=geom[2], l=geom[3], shift=point2d(geom[4]),
|
||||
u = (anchor.z+1)/2,
|
||||
axy = normalize(point2d(anchor)),
|
||||
axy = unit(point2d(anchor)),
|
||||
bot = point3d(r1*axy,-l/2),
|
||||
top = point3d(r2*axy+shift, l/2),
|
||||
pos = lerp(bot,top,u)+offset,
|
||||
sidevec = rot(from=UP, to=top-bot, p=point3d(axy)),
|
||||
vvec = normalize([0,0,anchor.z]),
|
||||
vvec = unit([0,0,anchor.z]),
|
||||
vec = anchor==CENTER? UP :
|
||||
approx(axy,[0,0])? normalize(anchor) :
|
||||
approx(axy,[0,0])? unit(anchor) :
|
||||
approx(anchor.z,0)? sidevec :
|
||||
normalize((sidevec+vvec)/2)
|
||||
unit((sidevec+vvec)/2)
|
||||
) [anchor, pos, vec, oang]
|
||||
) : type == "spheroid"? ( //r
|
||||
let(
|
||||
r=geom[1]
|
||||
) [anchor, r*normalize(anchor)+offset, normalize(anchor), oang]
|
||||
) [anchor, r*unit(anchor)+offset, unit(anchor), oang]
|
||||
) : type == "vnf_isect"? ( //vnf
|
||||
let(
|
||||
vnf=geom[1],
|
||||
@ -252,7 +252,7 @@ function find_anchor(anchor, geom) =
|
||||
pos = hits[furthest][2],
|
||||
dist = hits[furthest][0],
|
||||
nfaces = [for (hit = hits) if(approx(hit[0],dist,eps=eps)) hit[1]],
|
||||
n = normalize(
|
||||
n = unit(
|
||||
sum([
|
||||
for (i = nfaces) let(
|
||||
faceverts = select(vnf[0],vnf[1][i]),
|
||||
@ -281,12 +281,12 @@ function find_anchor(anchor, geom) =
|
||||
frpt = [size.x/2*anchor.x, -size.y/2],
|
||||
bkpt = [size2/2*anchor.x, size.y/2],
|
||||
pos = lerp(frpt, bkpt, u),
|
||||
vec = normalize(rot(from=BACK, to=bkpt-frpt, p=anchor))
|
||||
vec = unit(rot(from=BACK, to=bkpt-frpt, p=anchor))
|
||||
) [anchor, pos, vec, 0]
|
||||
) : type == "circle"? ( //r
|
||||
let(
|
||||
r=geom[1],
|
||||
anchor = normalize(point2d(anchor))
|
||||
anchor = unit(point2d(anchor))
|
||||
) [anchor, r*anchor+offset, anchor, 0]
|
||||
) : type == "path_isect"? ( //path
|
||||
let(
|
||||
@ -299,7 +299,7 @@ function find_anchor(anchor, geom) =
|
||||
isect = ray_segment_intersection([[0,0],anchor], seg1),
|
||||
n = is_undef(isect)? [0,1] :
|
||||
!approx(isect, t[1])? line_normal(seg1) :
|
||||
normalize((line_normal(seg1)+line_normal(seg2))/2),
|
||||
unit((line_normal(seg1)+line_normal(seg2))/2),
|
||||
n2 = vector_angle(anchor,n)>90? -n : n
|
||||
)
|
||||
if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2]
|
||||
@ -307,7 +307,7 @@ function find_anchor(anchor, geom) =
|
||||
maxidx = max_index(subindex(isects,0)),
|
||||
isect = isects[maxidx],
|
||||
pos = isect[1],
|
||||
vec = normalize(isect[2])
|
||||
vec = unit(isect[2])
|
||||
) [anchor, pos, vec, 0]
|
||||
) : type == "path_extent"? ( //path
|
||||
let(
|
||||
|
@ -198,9 +198,9 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
|
||||
// fbez = fillet3pts(p0,p1,p2, 10);
|
||||
// trace_bezier(slice(fbez, 1, -2), size=1);
|
||||
function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
|
||||
v0 = normalize(p0-p1),
|
||||
v1 = normalize(p2-p1),
|
||||
midv = normalize((v0+v1)/2),
|
||||
v0 = unit(p0-p1),
|
||||
v1 = unit(p2-p1),
|
||||
midv = unit((v0+v1)/2),
|
||||
a = vector_angle(v0,v1),
|
||||
tanr = min(r/tan(a/2), norm(p0-p1)*0.99, norm(p2-p1)*0.99),
|
||||
tp0 = p1+v0*tanr,
|
||||
|
16
coords.scad
16
coords.scad
@ -251,10 +251,10 @@ function project_plane(point, a, b, c) =
|
||||
assert(is_vector(c))
|
||||
assert(is_vector(point)||is_path(point))
|
||||
let(
|
||||
u = normalize(b-a),
|
||||
v = normalize(c-a),
|
||||
n = normalize(cross(u,v)),
|
||||
w = normalize(cross(n,u)),
|
||||
u = unit(b-a),
|
||||
v = unit(c-a),
|
||||
n = unit(cross(u,v)),
|
||||
w = unit(cross(n,u)),
|
||||
relpoint = is_vector(point)? (point-a) : translate_points(point,-a)
|
||||
) relpoint * transpose([w,u]);
|
||||
|
||||
@ -281,10 +281,10 @@ function lift_plane(point, a, b, c) =
|
||||
assert(is_vector(c))
|
||||
assert(is_vector(point)||is_path(point))
|
||||
let(
|
||||
u = normalize(b-a),
|
||||
v = normalize(c-a),
|
||||
n = normalize(cross(u,v)),
|
||||
w = normalize(cross(n,u)),
|
||||
u = unit(b-a),
|
||||
v = unit(c-a),
|
||||
n = unit(cross(u,v)),
|
||||
w = unit(cross(n,u)),
|
||||
remapped = point*[w,u]
|
||||
) is_vector(remapped)? (a+remapped) : translate_points(remapped,a);
|
||||
|
||||
|
@ -85,11 +85,11 @@ module debug_faces(vertices, faces, size=1, disabled=false) {
|
||||
v1 = vertices[face[1]];
|
||||
v2 = vertices[face[2]];
|
||||
c = (v0 + v1 + v2) / 3;
|
||||
dv0 = normalize(v1 - v0);
|
||||
dv1 = normalize(v2 - v0);
|
||||
nrm0 = normalize(cross(dv0, dv1));
|
||||
dv0 = unit(v1 - v0);
|
||||
dv1 = unit(v2 - v0);
|
||||
nrm0 = unit(cross(dv0, dv1));
|
||||
nrm1 = [0, 0, 1];
|
||||
axis = normalize(cross(nrm0, nrm1));
|
||||
axis = unit(cross(nrm0, nrm1));
|
||||
ang = vector_angle(nrm0, nrm1);
|
||||
theta = atan2(nrm0[1], nrm0[0]);
|
||||
translate(c) {
|
||||
|
@ -444,7 +444,7 @@ module zdistribute(spacing=10, sizes=undef, l=undef)
|
||||
// grid2d(spacing=10, stagger=true, in_poly=hexregion) {
|
||||
// // Note: You must use for(var=[val]) or let(var=val)
|
||||
// // to set vars from $pos or other special vars in this scope.
|
||||
// let (ref_v = (normalize([0,0,50]-point3d($pos)) + UP)/2)
|
||||
// let (ref_v = (unit([0,0,50]-point3d($pos)) + UP)/2)
|
||||
// half_of(v=-ref_v, cp=[0,0,5])
|
||||
// zrot(180/6)
|
||||
// cylinder(h=20, d=10/cos(180/6)+0.01, $fn=6);
|
||||
@ -920,7 +920,7 @@ module arc_of(
|
||||
//
|
||||
// Example:
|
||||
// ovoid_spread(n=500, d=100, cone_ang=180)
|
||||
// color(normalize(point3d(vabs($pos))))
|
||||
// color(unit(point3d(vabs($pos))))
|
||||
// cylinder(d=8, h=10, center=false);
|
||||
module ovoid_spread(r=undef, d=undef, n=100, cone_ang=90, scale=[1,1,1], perp=true)
|
||||
{
|
||||
|
@ -94,7 +94,7 @@ function collinear_indexed(points, a, b, c, eps=EPSILON) =
|
||||
// Example:
|
||||
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
|
||||
function distance_from_line(line, pt) =
|
||||
let(a=line[0], n=normalize(line[1]-a), d=a-pt)
|
||||
let(a=line[0], n=unit(line[1]-a), d=a-pt)
|
||||
norm(d - ((d * n) * n));
|
||||
|
||||
|
||||
@ -116,7 +116,7 @@ function distance_from_line(line, pt) =
|
||||
// color("blue") place_copies([p1,p2]) circle(d=2, $fn=12);
|
||||
function line_normal(p1,p2) =
|
||||
is_undef(p2)? line_normal(p1[0],p1[1]) :
|
||||
normalize([p1.y-p2.y,p2.x-p1.x]);
|
||||
unit([p1.y-p2.y,p2.x-p1.x]);
|
||||
|
||||
|
||||
// 2D Line intersection from two segments.
|
||||
@ -558,7 +558,7 @@ function plane3pt(p1, p2, p3) =
|
||||
p1=point3d(p1),
|
||||
p2=point3d(p2),
|
||||
p3=point3d(p3),
|
||||
normal = normalize(cross(p3-p1, p2-p1))
|
||||
normal = unit(cross(p3-p1, p2-p1))
|
||||
) concat(normal, [normal*p1]);
|
||||
|
||||
|
||||
@ -636,7 +636,7 @@ function distance_from_plane(plane, point) =
|
||||
// point = The 3D point to find the closest point to.
|
||||
function closest_point_on_plane(plane, point) =
|
||||
let(
|
||||
n = normalize(plane_normal(plane)),
|
||||
n = unit(plane_normal(plane)),
|
||||
d = distance_from_plane(plane, point)
|
||||
) point - n*d;
|
||||
|
||||
@ -796,13 +796,13 @@ function find_circle_2tangents(pt1, pt2, pt3, r=undef, d=undef) =
|
||||
assert(r!=undef, "Must specify either r or d.")
|
||||
(is_undef(pt2) && is_undef(pt3) && is_list(pt1))? find_circle_2tangents(pt1[0], pt1[1], pt1[2], r=r) :
|
||||
let(
|
||||
v1 = normalize(pt1 - pt2),
|
||||
v2 = normalize(pt3 - pt2)
|
||||
v1 = unit(pt1 - pt2),
|
||||
v2 = unit(pt3 - pt2)
|
||||
) approx(norm(v1+v2))? undef :
|
||||
let(
|
||||
a = vector_angle(v1,v2),
|
||||
n = vector_axis(v1,v2),
|
||||
v = normalize(mean([v1,v2])),
|
||||
v = unit(mean([v1,v2])),
|
||||
s = r/sin(a/2),
|
||||
cp = pt2 + s*v/norm(v)
|
||||
) [cp, n];
|
||||
|
@ -33,7 +33,7 @@
|
||||
// half_of([1,1], planar=true) circle(d=50);
|
||||
module half_of(v=UP, cp=[0,0,0], s=1000, planar=false)
|
||||
{
|
||||
cp = is_num(cp)? cp*normalize(v) : cp;
|
||||
cp = is_num(cp)? cp*unit(v) : cp;
|
||||
if (cp != [0,0,0]) {
|
||||
translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children();
|
||||
} else if (planar) {
|
||||
|
28
paths.scad
28
paths.scad
@ -219,7 +219,7 @@ function path_trim_start(path,trim,_d=0,_i=0) =
|
||||
_i >= len(path)-1? [] :
|
||||
let (l = norm(path[_i+1]-path[_i]))
|
||||
_d+l <= trim? path_trim_start(path,trim,_d+l,_i+1) :
|
||||
let (v = normalize(path[_i+1]-path[_i]))
|
||||
let (v = unit(path[_i+1]-path[_i]))
|
||||
concat(
|
||||
[path[_i+1]-v*(l-(trim-_d))],
|
||||
[for (i=[_i+1:1:len(path)-1]) path[i]]
|
||||
@ -246,7 +246,7 @@ function path_trim_end(path,trim,_d=0,_i=undef) =
|
||||
_i <= 0? [] :
|
||||
let (l = norm(path[_i]-path[_i-1]))
|
||||
_d+l <= trim? path_trim_end(path,trim,_d+l,_i-1) :
|
||||
let (v = normalize(path[_i]-path[_i-1]))
|
||||
let (v = unit(path[_i]-path[_i-1]))
|
||||
concat(
|
||||
[for (i=[0:1:_i-1]) path[i]],
|
||||
[path[_i-1]+v*(l-(trim-_d))]
|
||||
@ -284,7 +284,7 @@ function path_closest_point(path, pt) =
|
||||
// The returns vectors will be normalized to length 1.
|
||||
function path_tangents(path, closed=false) =
|
||||
assert(is_path(path))
|
||||
[for(t=deriv(path)) normalize(t)];
|
||||
[for(t=deriv(path)) unit(t)];
|
||||
|
||||
|
||||
// Function: path_normals()
|
||||
@ -303,7 +303,7 @@ function path_normals(path, tangents, closed=false) =
|
||||
pts = i==0? (closed? select(path,-1,1) : select(path,0,2)) :
|
||||
i==len(path)-1? (closed? select(path,i-1,i+1) : select(path,i-2,i)) :
|
||||
select(path,i-1,i+1)
|
||||
) normalize(cross(
|
||||
) unit(cross(
|
||||
cross(pts[1]-pts[0], pts[2]-pts[0]),
|
||||
tangents[i]
|
||||
))
|
||||
@ -392,8 +392,8 @@ function points_along_path3d(
|
||||
n=0 // Used in recursion
|
||||
) = let(
|
||||
end = len(path)-1,
|
||||
v1 = (n == 0)? [0, 0, 1] : normalize(path[n]-path[n-1]),
|
||||
v2 = (n == end)? normalize(path[n]-path[n-1]) : normalize(path[n+1]-path[n]),
|
||||
v1 = (n == 0)? [0, 0, 1] : unit(path[n]-path[n-1]),
|
||||
v2 = (n == end)? unit(path[n]-path[n-1]) : unit(path[n+1]-path[n]),
|
||||
crs = cross(v1, v2),
|
||||
axis = norm(crs) <= 0.001? [0, 0, 1] : crs,
|
||||
ang = vector_angle(v1, v2),
|
||||
@ -806,7 +806,7 @@ module path_extrude(path, convexity=10, clipsize=100) {
|
||||
function polyquats(path, q=Q_Ident(), v=[0,0,1], i=0) = let(
|
||||
v2 = path[i+1] - path[i],
|
||||
ang = vector_angle(v,v2),
|
||||
axis = ang>0.001? normalize(cross(v,v2)) : [0,0,1],
|
||||
axis = ang>0.001? unit(cross(v,v2)) : [0,0,1],
|
||||
newq = Q_Mul(Quat(axis, ang), q),
|
||||
dist = norm(v2)
|
||||
) i < (len(path)-2)?
|
||||
@ -1143,8 +1143,8 @@ function _path_cuts_normals(path, cuts, dirs, closed=false) =
|
||||
let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2)
|
||||
)
|
||||
plane==undef?
|
||||
normalize([-dirs[i].y, dirs[i].x,0]) :
|
||||
normalize(cross(dirs[i],cross(plane[0],plane[1])))
|
||||
unit([-dirs[i].y, dirs[i].x,0]) :
|
||||
unit(cross(dirs[i],cross(plane[0],plane[1])))
|
||||
)
|
||||
];
|
||||
|
||||
@ -1161,15 +1161,15 @@ function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
||||
[for(ind=[0:len(cuts)-1])
|
||||
let(
|
||||
nextind = cuts[ind][1],
|
||||
nextpath = normalize(select(path, nextind+1)-select(path, nextind)),
|
||||
thispath = normalize(select(path, nextind) - path[nextind-1]),
|
||||
lastpath = normalize(path[nextind-1] - select(path, nextind-2)),
|
||||
nextpath = unit(select(path, nextind+1)-select(path, nextind)),
|
||||
thispath = unit(select(path, nextind) - path[nextind-1]),
|
||||
lastpath = unit(path[nextind-1] - select(path, nextind-2)),
|
||||
nextdir =
|
||||
nextind==len(path) && !closed? lastpath :
|
||||
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)?
|
||||
normalize(nextpath+thispath) :
|
||||
unit(nextpath+thispath) :
|
||||
(nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps)?
|
||||
normalize(thispath+lastpath) :
|
||||
unit(thispath+lastpath) :
|
||||
thispath
|
||||
) nextdir
|
||||
];
|
||||
|
@ -758,7 +758,7 @@ function trapezohedron(faces, r, side, longside, h) =
|
||||
];
|
||||
|
||||
|
||||
function _facenormal(pts, face) = normalize(cross(pts[face[2]]-pts[face[0]], pts[face[1]]-pts[face[0]]));
|
||||
function _facenormal(pts, face) = unit(cross(pts[face[2]]-pts[face[0]], pts[face[1]]-pts[face[0]]));
|
||||
|
||||
// hull() function returns triangulated faces. This function identifies the vertices that belong to each face
|
||||
// by grouping together the face triangles that share normal vectors. The output gives the face polygon
|
||||
|
@ -142,7 +142,7 @@ function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
|
||||
offset = realign? 180/sides : 0,
|
||||
rr = r / (circum? cos(180/sides) : 1),
|
||||
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) rr*[cos(a),sin(a)]]
|
||||
) rot(spin, p=move(-normalize(anchor)*rr, p=pts));
|
||||
) rot(spin, p=move(-unit(anchor)*rr, p=pts));
|
||||
|
||||
|
||||
|
||||
|
@ -594,7 +594,7 @@ function _tag_subpaths(path, region, eps=EPSILON) =
|
||||
midpt = lerp(subpath[0], subpath[1], 0.5),
|
||||
rel = point_in_region(midpt,region,eps=eps)
|
||||
) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let(
|
||||
vec = normalize(subpath[1]-subpath[0]),
|
||||
vec = unit(subpath[1]-subpath[0]),
|
||||
perp = rot(90, planar=true, p=vec),
|
||||
sidept = midpt + perp*0.01,
|
||||
rel1 = point_in_polygon(sidept,path,eps=eps)>0,
|
||||
|
@ -319,8 +319,8 @@ function _bezcorner(points, parm) =
|
||||
let(
|
||||
d = parm[0],
|
||||
k = parm[1],
|
||||
prev = normalize(points[0]-points[1]),
|
||||
next = normalize(points[2]-points[1])
|
||||
prev = unit(points[0]-points[1]),
|
||||
next = unit(points[2]-points[1])
|
||||
) [
|
||||
points[1]+d*prev,
|
||||
points[1]+k*d*prev,
|
||||
@ -335,8 +335,8 @@ function _bezcorner(points, parm) =
|
||||
function _chamfcorner(points, parm) =
|
||||
let(
|
||||
d = parm[0],
|
||||
prev = normalize(points[0]-points[1]),
|
||||
next = normalize(points[2]-points[1])
|
||||
prev = unit(points[0]-points[1]),
|
||||
next = unit(points[2]-points[1])
|
||||
)
|
||||
[points[1]+prev*d, points[1]+next*d];
|
||||
|
||||
@ -345,9 +345,9 @@ function _circlecorner(points, parm) =
|
||||
angle = vector_angle(points)/2,
|
||||
d = parm[0],
|
||||
r = parm[1],
|
||||
prev = normalize(points[0]-points[1]),
|
||||
next = normalize(points[2]-points[1]),
|
||||
center = r/sin(angle) * normalize(prev+next)+points[1],
|
||||
prev = unit(points[0]-points[1]),
|
||||
next = unit(points[2]-points[1]),
|
||||
center = r/sin(angle) * unit(prev+next)+points[1],
|
||||
start = points[1]+prev*d,
|
||||
end = points[1]+next*d
|
||||
)
|
||||
@ -1212,8 +1212,8 @@ function _stroke_end(width,left, right, spec) =
|
||||
normal_seg = _normal_segment(right[0], left[0]),
|
||||
normal_pt = normal_seg[1],
|
||||
center = normal_seg[0],
|
||||
parallel_dir = normalize(left[0]-right[0]),
|
||||
normal_dir = normalize(normal_seg[1]-normal_seg[0]),
|
||||
parallel_dir = unit(left[0]-right[0]),
|
||||
normal_dir = unit(normal_seg[1]-normal_seg[0]),
|
||||
width_dir = sign(width[0]-width[1])
|
||||
)
|
||||
type == "round"? [arc(points=[right[0],normal_pt,left[0]],N=50),1,1] :
|
||||
@ -1270,7 +1270,7 @@ function _stroke_end(width,left, right, spec) =
|
||||
)
|
||||
assert(roundover_fits,"Roundover too large to fit")
|
||||
let(
|
||||
angled_dir = normalize(newleft[0]-newright[0]),
|
||||
angled_dir = unit(newleft[0]-newright[0]),
|
||||
nPleft = [
|
||||
leftcorner - jointleft*angled_dir,
|
||||
leftcorner,
|
||||
|
@ -506,12 +506,12 @@ function _turtle_command(command, parm, parm2, state, index) =
|
||||
command=="angle" ? list_set(state, angle, parm) :
|
||||
command=="setdir" ? (
|
||||
is_vector(parm) ?
|
||||
list_set(state, step, norm(state[step]) * normalize(parm)) :
|
||||
list_set(state, step, norm(state[step]) * unit(parm)) :
|
||||
list_set(state, step, norm(state[step]) * [cos(parm),sin(parm)])
|
||||
) :
|
||||
command=="length" ? list_set(state, step, parm*normalize(state[step])) :
|
||||
command=="length" ? list_set(state, step, parm*unit(state[step])) :
|
||||
command=="scale" ? list_set(state, step, parm*state[step]) :
|
||||
command=="addlength" ? list_set(state, step, state[step]+normalize(state[step])*parm) :
|
||||
command=="addlength" ? list_set(state, step, state[step]+unit(state[step])*parm) :
|
||||
command=="arcsteps" ? list_set(state, arcsteps, parm) :
|
||||
command=="arcleft" || command=="arcright" ?
|
||||
assert(is_num(parm),str("\"",command,"\" command requires a numeric radius value at index ",index))
|
||||
@ -625,7 +625,7 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false
|
||||
(r-rounding*sc)*[cos(a),sin(a)] +
|
||||
rounding*[cos(b),sin(b)]
|
||||
]
|
||||
) rot(spin, p=move(-r*normalize(anchor), p=path));
|
||||
) rot(spin, p=move(-r*unit(anchor), p=path));
|
||||
|
||||
|
||||
module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) {
|
||||
@ -951,7 +951,7 @@ function star(n, r, d, or, od, ir, id, step, realign=false, anchor=CENTER, spin=
|
||||
ir = get_radius(r=ir, d=id, dflt=stepr),
|
||||
offset = 90+(realign? 180/n : 0),
|
||||
path = [for(i=[0:1:2*n-1]) let(theta=180*i/n+offset, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]]
|
||||
) rot(spin, p=move(-r*normalize(anchor), p=path));
|
||||
) rot(spin, p=move(-r*unit(anchor), p=path));
|
||||
|
||||
|
||||
module star(n, r, d, or, od, ir, id, step, realign=false, anchor=CENTER, spin=0) {
|
||||
@ -1023,7 +1023,7 @@ function supershape(step=0.5,m1=4,m2=undef,n1=1,n2=undef,n3=undef,a=1,b=undef,r=
|
||||
rads = [for (theta = angs) _superformula(theta=theta,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b)],
|
||||
scale = is_def(r) ? r/max(rads) : 1,
|
||||
path = [for (i = [0:steps-1]) let(a=angs[i]) scale*rads[i]*[cos(a), sin(a)]]
|
||||
) rot(spin, p=move(-scale*max(rads)*normalize(anchor), p=path));
|
||||
) rot(spin, p=move(-scale*max(rads)*unit(anchor), p=path));
|
||||
|
||||
module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0) {
|
||||
path = supershape(step=step,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d);
|
||||
|
@ -1038,7 +1038,7 @@ module sweep(shape, transformations, closed=false, caps, convexity=10) {
|
||||
// r * sin(q * phi) ];
|
||||
// function knot_normal(phi,R,r,p,q) =
|
||||
// knot(phi,R,r,p,q)
|
||||
// - R*normalize(knot(phi,R,r,p,q)
|
||||
// - R*unit(knot(phi,R,r,p,q)
|
||||
// - [0,0, knot(phi,R,r,p,q)[2]]) ;
|
||||
// ushape = 3*[[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]];
|
||||
// points = 50; // points per loop
|
||||
@ -1082,9 +1082,9 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||
assert(is_undef(normal) || (is_vector(normal) && len(normal)==3) || (is_path(normal) && len(normal)==len(path) && len(normal[0])==3), "Invalid normal specified")
|
||||
assert(is_undef(tangent) || (is_path(tangent) && len(tangent)==len(path) && len(tangent[0])==3), "Invalid tangent specified")
|
||||
let(
|
||||
tangents = is_undef(tangent) ? path_tangents(path) : [for(t=tangent) normalize(t)],
|
||||
normal = is_path(normal) ? [for(n=normal) normalize(n)] :
|
||||
is_def(normal) ? normalize(normal) :
|
||||
tangents = is_undef(tangent) ? path_tangents(path) : [for(t=tangent) unit(t)],
|
||||
normal = is_path(normal) ? [for(n=normal) unit(n)] :
|
||||
is_def(normal) ? unit(normal) :
|
||||
method =="incremental" && abs(tangents[0].z) > 1/sqrt(2) ? BACK : UP,
|
||||
normals = is_path(normal) ? normal : replist(normal,len(path)),
|
||||
pathfrac = twist_by_length ? path_length_fractions(path, closed) : [for(i=[0:1:len(path)]) i / (len(path)-(closed?0:1))],
|
||||
|
@ -8,15 +8,15 @@ testpoints_on_sphere = [ for(p =
|
||||
[0,1,PHI], [0,-1,PHI], [0,1,-PHI], [0,-1,-PHI],
|
||||
[PHI,0,1], [-PHI,0,1], [PHI,0,-1], [-PHI,0,-1]
|
||||
])
|
||||
normalize(p)
|
||||
unit(p)
|
||||
];
|
||||
|
||||
testpoints_circular = [ for(a = [0:15:360-EPSILON]) [cos(a),sin(a)] ];
|
||||
|
||||
testpoints_coplanar = let(u = normalize([1,3,7]), v = normalize([-2,1,-2])) [ for(i = [1:10]) rands(-1,1,1)[0] * u + rands(-1,1,1)[0] * v ];
|
||||
testpoints_coplanar = let(u = unit([1,3,7]), v = unit([-2,1,-2])) [ for(i = [1:10]) rands(-1,1,1)[0] * u + rands(-1,1,1)[0] * v ];
|
||||
|
||||
testpoints_collinear_2d = let(u = normalize([5,3])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
|
||||
testpoints_collinear_3d = let(u = normalize([5,3,-5])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
|
||||
testpoints_collinear_2d = let(u = unit([5,3])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
|
||||
testpoints_collinear_3d = let(u = unit([5,3,-5])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
|
||||
|
||||
testpoints2d = 20 * [for (i = [1:10]) concat(rands(-1,1,2))];
|
||||
testpoints3d = 20 * [for (i = [1:50]) concat(rands(-1,1,3))];
|
||||
|
@ -91,7 +91,7 @@ module test_line_normal() {
|
||||
for (p = pair_wrap(pts)) {
|
||||
p1 = p.x;
|
||||
p2 = p.y;
|
||||
n = normalize(p2-p1);
|
||||
n = unit(p2-p1);
|
||||
n1 = [-n.y, n.x];
|
||||
n2 = line_normal(p1,p2);
|
||||
assert(approx(n2, n1));
|
||||
@ -239,7 +239,7 @@ module test_find_circle_3points() {
|
||||
for(i = list_range(count)) {
|
||||
cp = select(coords,i,i+2);
|
||||
r = radii[i];
|
||||
nrm = normalize(select(coords,i+10,i+12));
|
||||
nrm = unit(select(coords,i+10,i+12));
|
||||
n = nrm.z<0? -nrm : nrm;
|
||||
angs = sort(select(angles,i,i+2));
|
||||
pts = translate(cp,p=rot(from=UP,to=n,p=[for (a=angs) point3d(polar_to_xy(r,a))]));
|
||||
@ -266,7 +266,7 @@ module test_find_circle_3points() {
|
||||
for(i = list_range(count)) {
|
||||
cp = select(coords,i,i+2);
|
||||
r = radii[i];
|
||||
nrm = normalize(select(coords,i+10,i+12));
|
||||
nrm = unit(select(coords,i+10,i+12));
|
||||
n = nrm.z<0? -nrm : nrm;
|
||||
angs = sort(select(angles,i,i+2));
|
||||
pts = translate(cp,p=rot(from=UP,to=n,p=[for (a=angs) point3d(polar_to_xy(r,a))]));
|
||||
|
@ -67,17 +67,17 @@ module test_vang() {
|
||||
test_vang();
|
||||
|
||||
|
||||
module test_normalize() {
|
||||
assert(normalize([10,0,0]) == [1,0,0]);
|
||||
assert(normalize([0,10,0]) == [0,1,0]);
|
||||
assert(normalize([0,0,10]) == [0,0,1]);
|
||||
assert(abs(norm(normalize([10,10,10]))-1) < EPSILON);
|
||||
assert(abs(norm(normalize([-10,-10,-10]))-1) < EPSILON);
|
||||
assert(abs(norm(normalize([-10,0,0]))-1) < EPSILON);
|
||||
assert(abs(norm(normalize([0,-10,0]))-1) < EPSILON);
|
||||
assert(abs(norm(normalize([0,0,-10]))-1) < EPSILON);
|
||||
module test_unit() {
|
||||
assert(unit([10,0,0]) == [1,0,0]);
|
||||
assert(unit([0,10,0]) == [0,1,0]);
|
||||
assert(unit([0,0,10]) == [0,0,1]);
|
||||
assert(abs(norm(unit([10,10,10]))-1) < EPSILON);
|
||||
assert(abs(norm(unit([-10,-10,-10]))-1) < EPSILON);
|
||||
assert(abs(norm(unit([-10,0,0]))-1) < EPSILON);
|
||||
assert(abs(norm(unit([0,-10,0]))-1) < EPSILON);
|
||||
assert(abs(norm(unit([0,0,-10]))-1) < EPSILON);
|
||||
}
|
||||
test_normalize();
|
||||
test_unit();
|
||||
|
||||
|
||||
module test_vector_angle() {
|
||||
|
@ -21,7 +21,7 @@
|
||||
// face = The face, given as a list of indices into the vertex array `points`.
|
||||
function face_normal(points, face) =
|
||||
let(count=len(face))
|
||||
normalize(
|
||||
unit(
|
||||
sum(
|
||||
[
|
||||
for(i=[0:1:count-1]) cross(
|
||||
|
16
vectors.scad
16
vectors.scad
@ -95,19 +95,19 @@ function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
||||
function vabs(v) = [for (x=v) abs(x)];
|
||||
|
||||
|
||||
// Function: normalize()
|
||||
// Function: unit()
|
||||
// Description:
|
||||
// Returns unit length normalized version of vector v.
|
||||
// If passed a zero-length vector, returns the unchanged vector.
|
||||
// Arguments:
|
||||
// v = The vector to normalize.
|
||||
// Examples:
|
||||
// normalize([10,0,0]); // Returns: [1,0,0]
|
||||
// normalize([0,10,0]); // Returns: [0,1,0]
|
||||
// normalize([0,0,10]); // Returns: [0,0,1]
|
||||
// normalize([0,-10,0]); // Returns: [0,-1,0]
|
||||
// normalize([0,0,0]); // Returns: [0,0,0]
|
||||
function normalize(v) = norm(v)<=EPSILON? v : v/norm(v);
|
||||
// unit([10,0,0]); // Returns: [1,0,0]
|
||||
// unit([0,10,0]); // Returns: [0,1,0]
|
||||
// unit([0,0,10]); // Returns: [0,0,1]
|
||||
// unit([0,-10,0]); // Returns: [0,-1,0]
|
||||
// unit([0,0,0]); // Returns: [0,0,0]
|
||||
function unit(v) = norm(v)<=EPSILON? v : v/norm(v);
|
||||
|
||||
|
||||
// Function: vector_angle()
|
||||
@ -182,7 +182,7 @@ function vector_axis(v1,v2=undef,v3=undef) =
|
||||
v3 = (norm(v1-v2) > eps && norm(v1+v2) > eps)? v2 :
|
||||
(norm(vabs(v2)-UP) > eps)? UP :
|
||||
RIGHT
|
||||
) normalize(cross(v1,v3)) : assert(false, "Bad arguments.");
|
||||
) unit(cross(v1,v3)) : assert(false, "Bad arguments.");
|
||||
|
||||
|
||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
@ -8,7 +8,7 @@
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,145];
|
||||
BOSL_VERSION = [2,0,146];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
Loading…
x
Reference in New Issue
Block a user