From 0836e821f465217a268d234ae3e360f032c5bce4 Mon Sep 17 00:00:00 2001 From: Revar Desmera Date: Tue, 28 May 2019 21:23:59 -0700 Subject: [PATCH] Added arc() --- shapes2d.scad | 114 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 114 insertions(+) diff --git a/shapes2d.scad b/shapes2d.scad index d1c1727..bdf0c51 100644 --- a/shapes2d.scad +++ b/shapes2d.scad @@ -113,6 +113,120 @@ module pie_slice2d(r=undef, d=undef, ang=30) { } +// Function&Module: arc() +// Usage: 2D arc from 0ยบ to `angle` degrees. +// arc(N, r|d, angle); +// Usage: 2D arc from START to END degrees. +// arc(N, r|d, angle=[START,END]) +// Usage: 2D arc from `start` to `start+angle` degrees. +// arc(N, r|d, start, angle) +// Usage: 2D circle segment by `width` and `thickness`, starting and ending on the X axis. +// arc(N, width, thickness) +// Usage: Shortest 2d or 3d arc around centerpoint `cp`, starting at P0 and ending on the vector pointing from `cp` to `P1`. +// arc(N, cp, points=[P0,P1]) +// Usage: 2D or 3D arc, starting at `P0`, passing through `P1` and ending at `P2`. +// arc(N, points=[P0,P1,P2]) +// Description: +// If called as a function, returns a 2D or 3D path forming an arc. +// If called as a module, creates a 2D arc polygon or pie slice shape. +// Arguments: +// N = Number of line segments to form the arc curve from. +// r = Radius of the arc. +// d = Diameter of the arc. +// angle = If a scalar, specifies the end angle in degrees. If a vector of two scalars, specifies start and end angles. +// cp = Centerpoint of arc. +// points = Points on the arc. +// width = If given with `thickness`, arc starts and ends on X axis, to make a circle segment. +// thickness = If given with `width`, arc starts and ends on X axis, to make a circle segment. +// start = Start angle of arc. +// wedge = If true, include centerpoint `cp` in output to form pie slice shape. +// Examples(2D): +// arc(N=8, r=30, angle=30, wedge=true); +// arc(N=8, d=60, angle=30, wedge=true); +// arc(N=12, d=60, angle=120); +// arc(N=12, d=60, angle=120, wedge=true); +// arc(N=12, r=30, angle=[75,135], wedge=true); +// arc(N=12, r=30, start=45, angle=75, wedge=true); +// arc(N=24, width=60, thickness=20); +// arc(N=12, cp=[-10,5], points=[[20,10],[0,35]], wedge=true); +// arc(N=12, points=[[30,-5],[20,10],[-10,20]], wedge=true); +// Example(FlatSpin): +// include +// path = arc(N=12, points=[[0,30,0],[0,0,30],[30,0,0]]); +// trace_polyline(path, showpts=true, color="cyan"); +module arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false) +{ + path = arc(N=N, r=r, angle=angle, d=d, cp=cp, points=points, width=width, thickness=thickness, start=start, wedge=wedge); + polygon(path); +} + + +function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false) = + // First try for 2d arc specified by angles + is_def(width) && is_def(thickness)? ( + arc(N,points=[[width/2,0], [0,thickness], [-width/2,0]],wedge=wedge) + ) : is_def(angle)? ( + let( + parmok = is_undef(points) && is_undef(width) && is_undef(thickness) && + ((is_vector(angle) && len(angle)==2 && is_undef(start)) || is_num(angle)) + ) + assert(parmok,"Invalid parameters in arc") + let( + cp = is_def(cp) ? cp : [0,0], + start = is_def(start)? start : is_vector(angle) ? angle[0] : 0, + angle = is_vector(angle)? angle[1]-angle[0] : angle, + r = get_radius(r=r,d=d), + N = max(3,N), + arcpoints = [for(i=[0:N-1]) let(theta = start + i*angle/(N-1)) r*[cos(theta),sin(theta)]+cp], + extra = wedge? [cp] : [] + ) + concat(extra,arcpoints) + ) : + assert(is_list(points),"Invalid parameters") + // Arc is 3d, so transform points to 2d and make a recursive call, then remap back to 3d + len(points[0])==3? ( + let( + thirdpoint = is_def(cp) ? cp : points[2], + center2d = is_def(cp) ? project_plane(cp,thirdpoint,points[0],points[1]) : undef, + points2d = project_plane(points,thirdpoint,points[0],points[1]) + ) + lift_plane(arc(N,cp=center2d,points=points2d,wedge=wedge),thirdpoint,points[0],points[1]) + ) : is_def(cp)? ( + // Arc defined by center plus two points, will have radius defined by center and points[0] + // and extent defined by direction of point[1] from the center + let( + angle = vector_angle(points[0], cp, points[1]), + v1 = points[0]-cp, + v2 = points[1]-cp, + dir = sign(det2([v1,v2])), // z component of cross product + r=norm(v1) + ) + assert(dir!=0,"Collinear inputs don't define a unique arc") + arc(N,cp=cp,r=r,start=atan2(v1.y,v1.x),angle=dir*angle,wedge=wedge) + ) : ( + // Final case is arc passing through three points, starting at point[0] and ending at point[3] + let(col = collinear(points[0],points[1],points[2],1e-3)) + assert(!col, "Collinear inputs do not define an arc") + let( + cp = line_intersection(_normal_segment(points[0],points[1]),_normal_segment(points[1],points[2])), + // select order to be counterclockwise + dir = det2([points[1]-points[0],points[2]-points[1]]) > 0, + points = dir? select(points,[0,2]) : select(points,[2,0]), + r = norm(points[0]-cp), + theta_start = atan2(points[0].y-cp.y, points[0].x-cp.x), + theta_end = atan2(points[1].y-cp.y, points[1].x-cp.x), + angle = posmod(theta_end-theta_start, 360), + arcpts = arc(N,cp=cp,r=r,start=theta_start,angle=angle,wedge=wedge) + ) + dir ? arcpts : reverse(arcpts) + ); + + +function _normal_segment(p1,p2) = + let(center = (p1+p2)/2) + [center, center + norm(p1-p2)/2 * line_normal(p1,p2)]; + + // Function&Module: trapezoid() // Usage: // trapezoid(h, w1, w2);