Developmental superskin() wrapper and various supporting stuff.

Code in a rough state at this point.
This commit is contained in:
Adrian Mariano 2020-02-02 22:43:49 -05:00
parent 28f07a997f
commit 0aabf2cf47

303
skin.scad
View File

@ -293,4 +293,307 @@ function skin(profiles, closed=false, caps=true, method="uniform") =
) vnfout; ) vnfout;
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
//
// Developmental skin wrapper, called superskin() for now, but this
// is not meant to be the final name.
// Function&Module: superskin()
// Usage: As module:
// skin(profiles, [slices], [samples|refine], [method], [smethod], [caps], [closed], [z]);
// Usage: As function:
// vnf = skin(profiles, [slices], [samples|refine], [method], [smethod], [caps], [closed], [z]);
// Description:
// Given a list of two ore more path `profiles` in 3d space, produces faces to skin a surface between
// the profiles. Optionally the first and last profiles can have endcaps, or the first and last profiles
// can be connected together. Each profile should be roughly planar, but some variation is allowed.
// Each profile must rotate in the same clockwise direction. If called as a function, returns a
// [VNF structure](vnf.scad) like `[VERTICES, FACES]`. If called as a module, creates a polyhedron
// of the skined profiles.
//
// The profiles can be specified either as a list of 3d curves or they can be specified as
// 2d curves with heights given in the `z` parameter.
//
// For this operation to be well-defined, we the profiles must all have the same vertex count and
// we must assume that profiles are aligned so that vertex `i` links to vertex `i` on all polygons.
// Many interesting cases do not comply with this restriction. To handle these cases, you can
// specify various matching methods (listed below). You can also adjust non-matching profiles
// by either resampling them using `subdivide_path` or by duplicating vertices using
// `repeat_entries`. It is OK to pass a profile that has the same vertex repeated, such as
// a square with 5 points (two of which are identical), so that it can match up to a pentagon.
// Such a combination would create a triangular face at the location of the duplicated vertex.
//
// In order for skinned surfaces to look good it is usually necessary to use a fine sampling of
// points on all of the profiles, and a large number of extra interpolated slices between the
// profiles that you specify. The `slices` parameter specifies the number of slices to insert
// between each pair of profiles, either a scalar to insert the same number everywhere, or a vector
// to insert a different number between each pair. To resample the profiles you can specify the
// number of samples at each profiles with the `samples` argument or you can use `refine`. The
// `refine` parameter specifies a multiplication factor relative to the largest profile, so
// if refine is 10 and the largest profile has length 6 then you will get a total of 60 points,
// or 10 points per side of the longest profile. The default is `samples` equal to the size
// of the largest profile, which will do nothing if all profiles are the same size.
//
// Two methods are available for resampling, `"length"` and `"segment"`. Specify them using
// the `smethod` argument. The length resampling method resamples proportional to length.
// The segment method divides each segment of a profile into the same number of points.
// A uniform division may be impossible, in which case the code computes an approximation.
// See `subdivide_path` for more details.
//
// You can choose from four methods for specifying alignment for incomensurate profiles.
// The available methods are `"distance"`, `"tangent"`, `"uniform"` and `"align"`.
// The "distance" method finds the global minimum distance method for connecting two
// profiles. This algorithm generally produces a good result when both profiles have
// a small number of vertices. It is computationally intensive (O(N^3)) and may be
// slow on large inputs. The `"tangent"` method generally produces good results when
// connecting a discrete polygon to a convex, finely sampled curve. It works by finding
// a plane that passed through each edge of the polygon that is tangent to
// the curve. The `"uniform"` method simply connects the vertices, after resampling
// if it is required. The `"align"` method resamples the vertices and then reindexes
// to find the shortest distance alignment. This will result in the faces with the
// smallest amount of twist. The align algorithm has quadratic run time and can be slow
// with large profiles.
//
// Arguments:
// profiles = list of 2d or 3d profiles to be skinned. (If 2d must also give `z`.)
// slices = scalar or vector number of slices to insert between each pair of profiles. Default: 8.
// samples = resample each profile to this many points. If `method` is distance default is undef, otherwise default is the length of longest profile.
// refine = resample profiles to this number of points per side. If `method` is "distance" default is 10, otherwise undef.
// smethod = sampling method, either "length" or "segment". If `method` is "distance" or tangent default is "segment", otherwise "length".
// caps = true to create endcap faces. Default is true if closed is false.
// method = method for aligning and connecting profiles
// closed = set to true to connect first and last profile. Default: false
// z = array of height values for each profile if the profiles are 2d
module superskin(profiles, slices=8, samples, refine, method="uniform", smethod, caps, closed=false, z)
{
vnf_polyhedron(superskin(profiles, slices, samples, refine, method, smethod, caps, closed, z));
}
function superskin(profiles, slices=8, samples, refine, method="uniform", smethod, caps, closed=false, z) =
let(
legal_methods = ["uniform","align","distance","tangent"],
caps = is_def(caps) ? caps :
closed ? false : true,
default_refine = 10,
maxsize = list_longest(profiles),
samples = echo(at_sample_method=method)is_def(samples) && is_def(refine) ? undef :
is_def(samples) ? samples :
is_def(refine) ? maxsize*refine :
method=="distance" ? maxsize*default_refine :
maxsize,
methodok = is_list(method) || in_list(method, legal_methods),
methodlistok = is_list(method) ? [for(i=[0:len(method)-1]) if (!in_list(method[i], legal_methods)) i] : [],
method = is_string(method) ? replist(method, len(profiles)+ (closed?1:0)) : method,
smethod = is_def(smethod)? smethod :
all([for(m=method) m=="distance" || m=="tangent"]) ? "segment" : "length"
)
assert(methodok,str("method must be one of ",legal_methods,". Got ",method))
assert(methodlistok==[], str("method list contains invalid method at ",methodlistok))
assert(!closed || !caps, "Cannot make closed shape with caps")
assert(is_def(samples),"Specify only one of `refine` and `samples`")
assert(samples>=maxsize,str("Requested number of samples ",samples," is smaller than size of largest profile, ",maxsize))
let(
profile_dim=array_dim(profiles,2),
profiles_ok = (profile_dim==2 && is_list(z) && len(z)==len(profiles)) || profile_dim==3
)
assert(profiles_ok,"Profiles must all be 3d or must all be 2d, with matching length z parameter.")
assert(is_undef(z) || profile_dim==2, "Do not specify z with 3d profiles")
assert(profile_dim==3 || len(z)==len(profiles),"Length of z does not match length of profiles.")
let(
profiles = profile_dim==3 ? profiles :
[for(i=[0:len(profiles)-1]) path3d(profiles[i], z[i])],
full_list =
[for(i=[0:len(profiles)-(closed?1:2)])
let(
pair =
method[i]=="distance" ? minimum_distance_match(profiles[i],select(profiles,i+1)) :
method[i]=="tangent" ? tangent_align(profiles[i],select(profiles,i+1)) :
/*method[i]=="align" || method[i]=="uniform" ?*/
let( p1 = subdivide_path(profiles[i],samples, method=smethod),
p2 = subdivide_path(select(profiles,i+1),samples, method=smethod)
) (method[i]=="uniform" ? [p1,p2] : [p1, reindex_polygon(p1, p2)])
)
each interp_and_slice(pair,slices, samples, submethod=smethod)]
)
skin(full_list, method="uniform");
// plist is list of polygons, N is list or value for number of slices to insert
// numpoints can be "max", "lcm" or a number
function interp_and_slice(plist, N, numpoints="max", align=false,submethod="length") =
let(
maxsize = list_longest(plist),
numpoints = numpoints == "max" ? maxsize :
numpoints == "lcm" ? lcmlist([for(p=plist) len(p)]) :
is_num(numpoints) ? round(numpoints) : undef
)
assert(is_def(numpoints), "Parameter numpoints must be \"max\", \"lcm\" or a positive number")
assert(numpoints>=maxsize, "Number of points requested is smaller than largest profile")
let(fixpoly = [for(poly=plist) subdivide_path(poly, numpoints,method=submethod)])
add_slices(fixpoly, N);
function add_slices(plist,N) =
assert(is_num(N) || is_list(N))
let(listok = !is_list(N) || len(N)==len(plist)-1)
assert(listok, "Input N to add_slices is a list with the wrong length")
let(
count = is_num(N) ? replist(N,len(plist)-1) : N,
slicelist = [for (i=[0:len(plist)-2])
each [for(j = [0:count[i]]) lerp(plist[i],plist[i+1],j/(count[i]+1))]
]
)
concat(slicelist, [plist[len(plist)-1]]);
// Function: unique_count()
// Usage:
// unique_count(arr);
// Description:
// Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `arr` and `counts` is a list such
// that `count[i]` gives the number of times that `sorted[i]` appears in `arr`.
// Arguments:
// arr = The list to analyze.
function unique_count(arr) =
assert(is_list(arr)||is_string(list))
len(arr)==0 ? [[],[]] :
len(arr)==1 ? [arr,[1]] :
_unique_count(sort(arr), ulist=[], counts=[], ind=1, curtot=1);
function _unique_count(arr, ulist, counts, ind, curtot) =
ind == len(arr)+1 ? [ulist, counts] :
ind==len(arr) || arr[ind] != arr[ind-1] ? _unique_count(arr,concat(ulist,[arr[ind-1]]), concat(counts,[curtot]),ind+1,1) :
_unique_count(arr,ulist,counts,ind+1,curtot+1);
///////////////////////////////////////////////////////
//
// Given inputs of a small polygon (`small`) and a larger polygon (`big`), computes an onto mapping of
// the the vertices of `big` onto `small` that minimizes the sum of the distances between every matched
// pair of vertices. The algorithm uses quadratic programming to calculate the optimal mapping under
// the assumption that big[0]->small[0] and big[len(big)-1] does NOT map to small[0]. We then
// rotate through all the possible indexings of `big`. The theoretical run time is quadratic
// in len(big) and linear in len(small).
//
// The top level function, nbest_dmatch() cycles through all the of the indexings of `big`, computes
// all of the optimal values, and chooses the overall best result. It then interprets the result to
// produce the index mapping. The function _qp_extract_map() threads back through the quadratic programming
// array to identify the actual mapping.
//
// The function _qp_distance_array builds up the rows of the quadratic programming matrix with reference
// to the previous rows, where `tdist` holds the total distance for a given mapping, and `map`
// holds the information about which path was optimal for each position.
//
// The function _qp_distance_row constructs each row of the quadratic programming matrix. Note that
// in this problem we can delete entries from `big` but we cannot insert. This means we can only
// move to the right, or diagonally, and not down. This in turn means that only a portion of the
// quadratic programming matrix is reachable, so we fill in the unreachable lefthand triangular portion
// with zeros and we just don't compute the righthand portion (meaning that each row of the output
// has a different length).
// This function builds up the quadratic programming distance array where each entry in the
// array gives the optimal distance for aligning the corresponding subparts of the two inputs.
// When the array is fully populated, the bottom right corner gives the minimum distance
// for matching the full input lists. The `map` array contains a 0 when the optimal value came from
// the left (a "deletion") which means you match the next vertex in `big` with the previous, already
// used vertex of `small`, or a 1 when the optimal value came from the diagonal, which means you
// match the next vertex of `big` with the next vertex of `small`.
//
// Return value is [min_distance, map], where map is the array that is used to extract the actual
// vertex map.
function _qp_distance_array(small, big, small_ind=0, tdist=[], map=[]) =
let(
N = len(small),
M = len(big)
)
small_ind == N ? [tdist[N-1][M-1], map] :
let(
row_results = small_ind == 0 ? [cumsum([for(i=[0:M-N+1]) norm(big[i]-small[0])]), replist(0,M-N+1)] :
_qp_distance_row(small, big, small_ind, small_ind, tdist, replist(0,small_ind), replist(0, small_ind))
)
_qp_distance_array(small, big, small_ind+1, concat(tdist, [row_results[0]]), concat(map, [row_results[1]]));
function _qp_distance_row(small,big,small_ind, big_ind, tdist, newrow, maprow) =
big_ind == len(big)-len(small) + small_ind + 1 ? [newrow,maprow] :
_qp_distance_row(small,big, small_ind, big_ind+1, tdist,
concat(newrow, [norm(small[small_ind]-big[big_ind]) +
(small_ind==big_ind ? tdist[small_ind-1][big_ind-1] : min(tdist[small_ind-1][big_ind-1],newrow[big_ind-1]))]),
concat(maprow, [small_ind!=big_ind && newrow[big_ind-1] < tdist[small_ind-1][big_ind-1] ? 0 : 1]));
function _qp_extract_map(map,i,j,result) =
is_undef(i) ? _qp_extract_map(map,len(map)-1,len(select(map,-1))-1,[]) :
i==0 && j==0 ? concat([0], result) :
_qp_extract_map(map,i-map[i][j],j-1,concat([i],result));
function minimum_distance_match(poly1,poly2) =
let(
swap = len(poly1)>len(poly2),
big = swap ? poly1 : poly2,
small = swap ? poly2 : poly1,
matchres = [for(i=[0:len(big)-1]) _qp_distance_array(small,polygon_shift(big,i))],
best = min_index(subindex(matchres,0)),
newbig = polygon_shift(big,best),
newsmall = repeat_entries(small,unique_count(_qp_extract_map(matchres[best][1]))[1])
)
swap ? [newbig, newsmall] : [newsmall,newbig];
function tangent_align(poly1, poly2) =
let(
swap = len(poly1)>len(poly2),
big = swap ? poly1 : poly2,
small = swap ? poly2 : poly1,
cutpts = [for(i=[0:len(small)-1]) find_one_tangent(big, select(small,i,i+1))],
d=echo(cutpts = cutpts),
shift = select(cutpts,-1)+1,
newbig = polygon_shift(big, shift),
repeat_counts = [for(i=[0:len(small)-1]) posmod(cutpts[i]-select(cutpts,i-1),len(big))],
newsmall = repeat_entries(small,repeat_counts)
)
assert(len(newsmall)==len(newbig), "Tangent alignment failed, probably because of insufficient points or a concave curve")
swap ? [newbig, newsmall] : [newsmall, newbig];
function find_one_tangent(curve, edge, closed=true) =
let(
angles =
[for(i=[0:len(curve)-(closed?1:2)])
let(
plane = plane3pt( edge[0], edge[1], curve[i]),
tangent = [curve[i], select(curve,i+1)]
)
plane_line_angle(plane,tangent)],
zcross = [for(i=[0:len(curve)-(closed?1:2)]) if (sign(angles[i]) != sign(select(angles,i+1))) i],
d = [for(i=zcross) distance_from_line(edge, curve[i])]
)
zcross[min_index(d)];//zcross;
function plane_line_angle(plane, line) =
let(
vect = line[1]-line[0],
zplane = select(plane,0,2),
sin_angle = vect*zplane/norm(zplane)/norm(vect)
)
asin(constrain(sin_angle,-1,1));
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap