mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 21:58:27 +01:00
Extend triangulate functionality and correct is_polygon_convex
This commit is contained in:
parent
8de2283f91
commit
1b84a3129d
107
geometry.scad
107
geometry.scad
@ -494,11 +494,13 @@ function _covariance_evec_eval(points) =
|
|||||||
// Usage:
|
// Usage:
|
||||||
// plane = plane_from_points(points, [fast], [eps]);
|
// plane = plane_from_points(points, [fast], [eps]);
|
||||||
// Topics: Geometry, Planes, Points
|
// Topics: Geometry, Planes, Points
|
||||||
|
// See Also: plane_from_polygon
|
||||||
// Description:
|
// Description:
|
||||||
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
|
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
|
||||||
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane and norm([A,B,C])=1.
|
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane and norm([A,B,C])=1.
|
||||||
// If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned.
|
// If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned.
|
||||||
// If `fast` is true, the polygon coplanarity check is skipped and a best fitting plane is returned.
|
// If `fast` is true, the polygon coplanarity check is skipped and a best fitting plane is returned.
|
||||||
|
// It differs from `plane_from_polygon` as the plane normal is independent of the point order. It is faster, though.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// points = The list of points to find the plane of.
|
// points = The list of points to find the plane of.
|
||||||
// fast = If true, don't verify the point coplanarity. Default: false
|
// fast = If true, don't verify the point coplanarity. Default: false
|
||||||
@ -529,6 +531,7 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
|||||||
// Usage:
|
// Usage:
|
||||||
// plane = plane_from_polygon(points, [fast], [eps]);
|
// plane = plane_from_polygon(points, [fast], [eps]);
|
||||||
// Topics: Geometry, Planes, Polygons
|
// Topics: Geometry, Planes, Polygons
|
||||||
|
// See Also: plane_from_points
|
||||||
// Description:
|
// Description:
|
||||||
// Given a 3D planar polygon, returns the normalized cartesian equation of its plane.
|
// Given a 3D planar polygon, returns the normalized cartesian equation of its plane.
|
||||||
// Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
|
// Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
|
||||||
@ -936,10 +939,10 @@ function point_plane_distance(plane, point) =
|
|||||||
// the maximum distance from points to the plane
|
// the maximum distance from points to the plane
|
||||||
function _pointlist_greatest_distance(points,plane) =
|
function _pointlist_greatest_distance(points,plane) =
|
||||||
let(
|
let(
|
||||||
normal = point3d(plane),
|
normal = [plane[0],plane[1],plane[2]],
|
||||||
pt_nrm = points*normal
|
pt_nrm = points*normal
|
||||||
)
|
)
|
||||||
abs(max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3])) / norm(normal);
|
max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3]) / norm(normal);
|
||||||
|
|
||||||
|
|
||||||
// Function: are_points_on_plane()
|
// Function: are_points_on_plane()
|
||||||
@ -1355,7 +1358,7 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
|||||||
pb = points[b],
|
pb = points[b],
|
||||||
nrm = norm(pa-pb)
|
nrm = norm(pa-pb)
|
||||||
)
|
)
|
||||||
nrm <= eps*max(norm(pa),norm(pb)) ?
|
nrm <= eps ?
|
||||||
assert(!error, "Cannot find three noncollinear points in pointlist.") [] :
|
assert(!error, "Cannot find three noncollinear points in pointlist.") [] :
|
||||||
let(
|
let(
|
||||||
n = (pb-pa)/nrm,
|
n = (pb-pa)/nrm,
|
||||||
@ -1659,7 +1662,7 @@ function polygon_triangulate(poly, ind, eps=EPSILON) =
|
|||||||
|
|
||||||
// requires ccw 2d polygons
|
// requires ccw 2d polygons
|
||||||
// returns ccw triangles
|
// returns ccw triangles
|
||||||
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
|
function _old_triangulate(poly, ind, eps=EPSILON, tris=[]) =
|
||||||
len(ind)==3 ? concat(tris,[ind]) :
|
len(ind)==3 ? concat(tris,[ind]) :
|
||||||
let( ear = _get_ear(poly,ind,eps) )
|
let( ear = _get_ear(poly,ind,eps) )
|
||||||
assert( ear!=undef,
|
assert( ear!=undef,
|
||||||
@ -1671,7 +1674,7 @@ function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
|
|||||||
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
|
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
|
||||||
|
|
||||||
// search a valid ear from the remaining polygon
|
// search a valid ear from the remaining polygon
|
||||||
function _get_ear(poly, ind, eps, _i=0) =
|
function _old_get_ear(poly, ind, eps, _i=0) =
|
||||||
_i>=len(ind) ? undef : // poly has no ears
|
_i>=len(ind) ? undef : // poly has no ears
|
||||||
let( // the _i-th ear candidate
|
let( // the _i-th ear candidate
|
||||||
p0 = poly[ind[_i]],
|
p0 = poly[ind[_i]],
|
||||||
@ -1703,6 +1706,67 @@ function _get_ear(poly, ind, eps, _i=0) =
|
|||||||
// check the next ear candidate
|
// check the next ear candidate
|
||||||
_get_ear(poly, ind, eps, _i=_i+1);
|
_get_ear(poly, ind, eps, _i=_i+1);
|
||||||
|
|
||||||
|
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
|
||||||
|
len(ind)==3
|
||||||
|
? _is_degenerate(select(poly,ind),eps)
|
||||||
|
? tris // last 3 pts perform a degenerate triangle, ignore it
|
||||||
|
: concat(tris,[ind]) // otherwise, include it
|
||||||
|
: let( ear = _get_ear(poly,ind,eps) )
|
||||||
|
assert( ear!=undef,
|
||||||
|
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
|
||||||
|
ear<0 // degenerate ear
|
||||||
|
? let( indr = select(ind,-ear+1, -ear-1) ) // discard it
|
||||||
|
_triangulate(poly, indr, eps, tris)
|
||||||
|
: let(
|
||||||
|
ear_tri = select(ind,ear,ear+2),
|
||||||
|
indr = select(ind,ear+2, ear) // indices of the remaining points
|
||||||
|
)
|
||||||
|
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
|
||||||
|
|
||||||
|
|
||||||
|
// a returned ear will be:
|
||||||
|
// 1. a CCW triangle without points inside except possibly at its vertices
|
||||||
|
// 2. or a degenerate triangle where two vertices are coincident
|
||||||
|
// the returned ear is specified by the index of `ind` of its first vertex
|
||||||
|
function _get_ear(poly, ind, eps, _i=0) =
|
||||||
|
_i>=len(ind) ? undef : // poly has no ears
|
||||||
|
let( // the _i-th ear candidate
|
||||||
|
p0 = poly[ind[_i]],
|
||||||
|
p1 = poly[ind[(_i+1)%len(ind)]],
|
||||||
|
p2 = poly[ind[(_i+2)%len(ind)]]
|
||||||
|
)
|
||||||
|
// if it is a degenerate triangle, return it (codified)
|
||||||
|
_is_degenerate([p0,p1,p2],eps) ? -(_i+1) :
|
||||||
|
// if it is not a convex vertex, try the next one
|
||||||
|
_is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) :
|
||||||
|
let( // vertex p1 is convex
|
||||||
|
// check if the triangle contains any other point
|
||||||
|
// except possibly its own vertices
|
||||||
|
to_tst = select(ind,_i+3, _i-1),
|
||||||
|
pt2tst = select(poly,to_tst), // points other than p0, p1 and p2
|
||||||
|
q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right
|
||||||
|
q0 = q*p0,
|
||||||
|
r = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p2,p1] pointing right
|
||||||
|
r0 = r*p2,
|
||||||
|
s = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right
|
||||||
|
s0 = s*p1,
|
||||||
|
inside = [for(p=pt2tst)
|
||||||
|
if( p*q<=q0 && p*r<=r0 && p*s<=s0 ) // p is in the triangle
|
||||||
|
if( norm(p-p0)>eps // and doesn't coincide with
|
||||||
|
&& norm(p-p1)>eps // any of its vertices
|
||||||
|
&& norm(p-p2)>eps )
|
||||||
|
p ]
|
||||||
|
)
|
||||||
|
inside==[] ? _i : // no point inside -> an ear
|
||||||
|
// check the next ear candidate
|
||||||
|
_get_ear(poly, ind, eps, _i=_i+1);
|
||||||
|
|
||||||
|
|
||||||
|
// true for some specific kinds of degeneracy
|
||||||
|
function _is_degenerate(tri,eps) =
|
||||||
|
norm(tri[0]-tri[1])<eps || norm(tri[1]-tri[2])<eps || norm(tri[2]-tri[0])<eps ;
|
||||||
|
|
||||||
|
|
||||||
function _is_cw2(a,b,c,eps=EPSILON) = cross(a-c,b-c)<eps*norm(a-c)*norm(b-c);
|
function _is_cw2(a,b,c,eps=EPSILON) = cross(a-c,b-c)<eps*norm(a-c)*norm(b-c);
|
||||||
|
|
||||||
|
|
||||||
@ -1903,6 +1967,8 @@ function old_align_polygon(reference, poly, angles, cp) =
|
|||||||
],
|
],
|
||||||
best = min_index(subindex(alignments,1))
|
best = min_index(subindex(alignments,1))
|
||||||
) alignments[best][0];
|
) alignments[best][0];
|
||||||
|
|
||||||
|
|
||||||
function align_polygon(reference, poly, angles, cp) =
|
function align_polygon(reference, poly, angles, cp) =
|
||||||
assert(is_path(reference,dim=2) && is_path(poly,dim=2),
|
assert(is_path(reference,dim=2) && is_path(poly,dim=2),
|
||||||
"Invalid polygon(s). " )
|
"Invalid polygon(s). " )
|
||||||
@ -1985,11 +2051,11 @@ function __is_polygon_in_list(poly, polys, i) =
|
|||||||
// Topics: Geometry, Convexity, Test
|
// Topics: Geometry, Convexity, Test
|
||||||
// Description:
|
// Description:
|
||||||
// Returns true if the given 2D or 3D polygon is convex.
|
// Returns true if the given 2D or 3D polygon is convex.
|
||||||
// The result is meaningless if the polygon is not simple (self-intersecting) or non coplanar.
|
// The result is meaningless if the polygon is not simple (self-crossing) or non coplanar.
|
||||||
// If the points are collinear an error is generated.
|
// If the points are collinear or not coplanar an error may be generated.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// poly = Polygon to check.
|
// poly = Polygon to check.
|
||||||
// eps = Tolerance for the collinearity test. Default: EPSILON.
|
// eps = Tolerance for the collinearity and coplanarity tests. Default: EPSILON.
|
||||||
// Example:
|
// Example:
|
||||||
// test1 = is_polygon_convex(circle(d=50)); // Returns: true
|
// test1 = is_polygon_convex(circle(d=50)); // Returns: true
|
||||||
// test2 = is_polygon_convex(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true
|
// test2 = is_polygon_convex(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true
|
||||||
@ -2004,13 +2070,24 @@ function is_polygon_convex(poly,eps=EPSILON) =
|
|||||||
assert( lp>=3 , "A polygon must have at least 3 points" )
|
assert( lp>=3 , "A polygon must have at least 3 points" )
|
||||||
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
||||||
len(p0)==2
|
len(p0)==2
|
||||||
? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" )
|
? let( size = max([for(p=poly) norm(p-p0)]), tol=pow(size,2)*eps )
|
||||||
min(crosses) >=0 || max(crosses)<=0
|
assert( size>eps, "The polygon is self-crossing or its points are collinear" )
|
||||||
: let( prod = crosses*sum(crosses),
|
min(crosses) >=-tol || max(crosses)<=tol
|
||||||
minc = min(prod),
|
: let( ip = noncollinear_triple(poly,error=false,eps=eps) )
|
||||||
maxc = max(prod) )
|
assert( ip!=[], "The points are collinear")
|
||||||
assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" )
|
let(
|
||||||
minc>=0 || maxc<=0;
|
crx = cross(poly[ip[1]]-poly[ip[0]],poly[ip[2]]-poly[ip[1]]),
|
||||||
|
nrm = crx/norm(crx),
|
||||||
|
plane = concat(nrm, nrm*poly[0]),
|
||||||
|
prod = crosses*nrm,
|
||||||
|
size = norm(poly[ip[1]]-poly[ip[0]]),
|
||||||
|
tol = pow(size,2)*eps
|
||||||
|
)
|
||||||
|
assert(_pointlist_greatest_distance(poly,plane) < size*eps, "The polygon points are not coplanar")
|
||||||
|
let(
|
||||||
|
minc = min(prod),
|
||||||
|
maxc = max(prod) )
|
||||||
|
minc>=-tol || maxc<=tol;
|
||||||
|
|
||||||
|
|
||||||
// Function: convex_distance()
|
// Function: convex_distance()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user