Merge pull request #683 from adrianVmariano/master

region fixes and optimizations
This commit is contained in:
Revar Desmera 2021-10-10 13:49:47 -07:00 committed by GitHub
commit 21991c8508
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 215 additions and 17 deletions

View File

@ -1533,6 +1533,13 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2,
"The point and polygon should be in 2D. The polygon should have more that 2 points." )
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
// Check bounding box
let(
box = pointlist_bounds(poly)
)
point.x<box[0].x-eps || point.x>box[1].x+eps
|| point.y<box[0].y-eps || point.y>box[1].y+eps ? -1
:
// Does the point lie on any edges? If so return 0.
let(
on_brd = [

View File

@ -35,6 +35,13 @@
function is_region(x) = is_list(x) && is_path(x.x);
// Function: force_region()
// Usage:
// region = force_region(path)
// Description:
// If the input is a path then return it as a region. Otherwise return it unaltered.
function force_region(path) = is_path(path) ? [path] : path;
// Function: check_and_fix_path()
// Usage:
@ -160,6 +167,8 @@ function is_region_simple(region, eps=EPSILON) =
] ==[];
*/
function _clockwise_region(r) = [for(p=r) clockwise_polygon(p)];
// Function: are_regions_equal()
// Usage:
// b = are_regions_equal(region1, region2, [eps])
@ -170,10 +179,16 @@ function is_region_simple(region, eps=EPSILON) =
// region1 = first region
// region2 = second region
// eps = tolerance for comparison
function are_regions_equal(region1, region2) =
function are_regions_equal(region1, region2, either_winding=false) =
let(
region1=force_region(region1),
region2=force_region(region2)
)
assert(is_region(region1) && is_region(region2))
len(region1) != len(region2)? false :
__are_regions_equal(region1, region2, 0);
__are_regions_equal(either_winding?_clockwise_region(region1):region1,
either_winding?_clockwise_region(region2):region2,
0);
function __are_regions_equal(region1, region2, i) =
i >= len(region1)? true :
@ -272,6 +287,102 @@ function _path_region_intersections(path, region, closed=true, eps=EPSILON, extr
]);
// Returns a list [reg1,reg2] such that reg1[i] is a list of intersection points for path i
// in region1 having the form [seg, u].
function _region_region_intersections(region1, region2, closed1=true,closed2=true, eps=EPSILON) =
let(
intersections = [
for(p1=idx(region1))
let(
path = closed1?close_path(region1[p1]):region1[p1]
)
for(i = [0:1:len(path)-2])
let(
a1 = path[i],
a2 = path[i+1],
nrm = norm(a1-a2)
)
if( nrm>eps ) // ignore zero-length path edges
let(
seg_normal = [-(a2-a1).y, (a2-a1).x]/nrm,
ref = a1*seg_normal
)
// `signs[j]` is the sign of the signed distance from
// poly vertex j to the line [a1,a2] where near zero
// distances are snapped to zero; poly edges
// with equal signs at its vertices cannot intersect
// the path edge [a1,a2] or they are collinear and
// further tests can be discarded.
for(p2=idx(region2))
let(
poly = closed2?close_path(region2[p2]):region2[p2],
signs = [for(v=poly*seg_normal) v-ref> eps ? 1 : v-ref<-eps ? -1 : 0]
)
if(max(signs)>=0 && min(signs)<=0) // some edge edge intersects line [a1,a2]
for(j=[0:1:len(poly)-2])
if(signs[j]!=signs[j+1])
let( // exclude non-crossing and collinear segments
b1 = poly[j],
b2 = poly[j+1],
isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps)
)
if (isect
&& isect[1]>= -eps
&& isect[1]<= 1+eps
&& isect[2]>= -eps
&& isect[2]<= 1+eps)
[[p1,i,isect[1]], [p2,j,isect[2]]]
],
regions=[region1,region2],
// Create a flattened index list corresponding to the points in region1 and region2
// that gives each point as an intersection point
ptind = [for(i=[0:1])
[for(p=idx(regions[i]))
for(j=idx(regions[i][p])) [p,j,0]]],
points = [for(i=[0:1]) flatten(regions[i])],
// Corner points are those points where the region touches itself, hence duplicate
// points in the region's point set
cornerpts = [for(i=[0:1])
[for(k=vector_search(points[i],eps,points[i]))
each if (len(k)>1) select(ptind[i],k)]],
risect = [for(i=[0:1]) concat(subindex(intersections,i), cornerpts[i])],
counts = [count(len(region1)), count(len(region2))],
pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)]
)
[for(i=[0:1]) [for(j=counts[i]) _sort_vectors(select(risect[i],pathind[i][j]))]];
function split_region_at_region_crossings(region1, region2, closed1=true, closed2=true, eps=EPSILON) =
let(
xings = _region_region_intersections(region1, region2, closed1, closed2, eps),
regions = [region1,region2],
closed = [closed1,closed2]
)
[for(i=[0:1])
[for(p=idx(xings[i]))
let(
crossings = deduplicate([
[p,0,0],
each xings[i][p],
[p,len(regions[i][p])-(closed[i]?1:2), 1],
],eps=eps),
subpaths = [
for (frag = pair(crossings))
deduplicate(
_path_select(regions[i][p], frag[0][1], frag[0][2], frag[1][1], frag[1][2], closed=closed[i]),
eps=eps
)
]
)
[for(s=subpaths) if (len(s)>1) s]
]
];
// Function: split_path_at_region_crossings()
// Usage:
// paths = split_path_at_region_crossings(path, region, [eps]);
@ -715,13 +826,14 @@ function _point_dist(path,pathseg_unit,pathseg_len,pt) =
function _offset_region(region, r, delta, chamfer, check_valid, quality,closed,return_faces,firstface_index,flip_faces) =
let(
reglist = [for(R=region_parts(region)) is_path(R) ? [R] : R],
reglist = [for(R=region_parts(region)) force_region(R)],
ofsregs = [for(R=reglist)
[for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta), chamfer=chamfer, check_valid=check_valid,
quality=quality,closed=true)]]
difference([for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta),
chamfer=chamfer, check_valid=check_valid, quality=quality,closed=true)])]
)
union(ofsregs);
function d_offset_region(
paths, r, delta, chamfer, closed,
check_valid, quality,
@ -1020,10 +1132,41 @@ function _tag_subpaths(region1, region2, keep, eps=EPSILON) =
function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
_assemble_path_fragments(concat(_tag_subpaths(region1, region2, keep1, eps=eps),
_tag_subpaths(region2, region1, keep2, eps=eps)),
eps=eps);
function _keep_some_region_parts(region1, region2, keep1, keep2, eps=EPSILON) =
// We have to compute common vertices between paths in the region because
// they can be places where the path must be cut, even though they aren't
// found my the split_path function.
let(
keep = [keep1,keep2],
subpaths = split_region_at_region_crossings(region1,region2,eps=eps),
regions=[region1,region2]
)
_assemble_path_fragments(
[for(i=[0:1])
let(
keepS = search("S",keep[i])!=[],
keepU = search("U",keep[i])!=[],
keepoutside = search("O",keep[i]) !=[],
keepinside = search("I",keep[i]) !=[],
all_subpaths = flatten(subpaths[i])
)
for (subpath = all_subpaths)
let(
midpt = mean([subpath[0], subpath[1]]),
rel = point_in_region(midpt,regions[1-i],eps=eps),
keepthis = rel<0 ? keepoutside
: rel>0 ? keepinside
: !(keepS || keepU) ? false
: let(
sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]),
rel1 = point_in_region(sidept,region1,eps=eps)>0,
rel2 = point_in_region(sidept,region2,eps=eps)>0
)
rel1==rel2 ? keepS : keepU
)
if (keepthis) subpath
]);
// Function&Module: union()
@ -1049,7 +1192,7 @@ function union(regions=[],b=undef,c=undef,eps=EPSILON) =
len(regions)==1? regions[0] :
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
union([
_tagged_region(regions[0],regions[1],"OS", "O", eps=eps),
_keep_some_region_parts(regions[0],regions[1],"OS", "O", eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps
@ -1081,7 +1224,7 @@ function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
regions[0]==[] ? [] :
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
difference([
_tagged_region(regions[0],regions[1],"OU", "I", eps=eps),
_keep_some_region_parts(regions[0],regions[1],"OU", "I", eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps
@ -1112,7 +1255,7 @@ function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
: regions[0]==[] || regions[1]==[] ? []
: let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
intersection([
_tagged_region(regions[0],regions[1],"IS","I",eps=eps),
_keep_some_region_parts(regions[0],regions[1],"IS","I",eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps
@ -1150,7 +1293,7 @@ function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
len(regions)==1? regions[0] :
let(regions=[for (r=regions) is_path(r)? [r] : r])
exclusive_or([
_tagged_region(regions[0],regions[1],"IO","IO",eps=eps),
_keep_some_region_parts(regions[0],regions[1],"IO","IO",eps=eps),
for (i=[2:1:len(regions)-1]) regions[i]
],
eps=eps

View File

@ -18,6 +18,11 @@ module test_union() {
R2 = [square(9,center=true)];
assert(are_regions_equal(union(R1,R2), [square(10,center=true)]));
assert(are_regions_equal(union(R2,R1), [square(10,center=true)]));
R8 = [right(8,square(10,center=true)), left(8,square(10,center=true))];
R9 = [back(8,square(10,center=true)), fwd(8,square(10,center=true))];
assert(are_regions_equal(union(R9,R8), [[[-5, -5], [-13, -5], [-13, 5], [-5, 5], [-5, 13], [5, 13], [5, 5], [13, 5], [13, -5], [5, -5], [5, -13], [-5, -13]], [[-3, 3], [-3, -3], [3, -3], [3, 3]]]));
assert(are_regions_equal(union(R8,R9), [[[-5, -5], [-13, -5], [-13, 5], [-5, 5], [-5, 13], [5, 13], [5, 5], [13, 5], [13, -5], [5, -5], [5, -13], [-5, -13]], [[-3, 3], [-3, -3], [3, -3], [3, 3]]]));
}
test_union();
@ -27,6 +32,12 @@ module test_intersection() {
R6 = [square(9.5,center=true), square(9,center=true)];
assert(are_regions_equal(intersection(R6,R1), R6));
assert(are_regions_equal(intersection(R1,R6), R6));
R8 = [right(8,square(10,center=true)), left(8,square(10,center=true))];
R9 = [back(8,square(10,center=true)), fwd(8,square(10,center=true))];
assert(are_regions_equal(intersection(R9,R8),[[[-3, -5], [-5, -5], [-5, -3], [-3, -3]], [[-5, 5], [-3, 5], [-3, 3], [-5, 3]], [[5, -5], [3, -5], [3, -3], [5, -3]], [[3, 3], [3, 5], [5, 5], [5, 3]]]));
assert(are_regions_equal(intersection(R8,R9),[[[-3, -5], [-5, -5], [-5, -3], [-3, -3]], [[-5, 5], [-3, 5], [-3, 3], [-5, 3]], [[5, -5], [3, -5], [3, -3], [5, -3]], [[3, 3], [3, 5], [5, 5], [5, 3]]]));
}
test_intersection();
@ -36,23 +47,60 @@ module test_difference() {
R4 = [square(9,center=true), square(3,center=true)];
assert(are_regions_equal(difference(R5,R4),
[square(10,center=true), square(9, center=true), square(3,center=true)]));
pathA = [
[-9,12], [-6,2], [-3,12], [0,2], [3,10], [5,10], [19,-4], [-8,-4], [-12,0]
];
pathB = [
[-12,8], [7,8], [9,6], [7,5], [-3,5], [-5,-6], [-2,-6], [0,-4],
[6,-4], [2,-8], [-7,-8], [-15,0]
];
right=[[[-10, 8], [-9, 12], [-7.8, 8]], [[0, -4], [-4.63636363636, -4], [-3, 5], [-0.9, 5], [0, 2], [1.125, 5], [7, 5], [9, 6], [19, -4], [6, -4]], [[-4.2, 8], [-1.8, 8], [-3, 12]], [[2.25, 8], [3, 10], [5, 10], [7, 8]]];
assert(are_regions_equal(difference(pathA,pathB),right));
R8 = [right(8,square(10,center=true)), left(8,square(10,center=true))];
R9 = [back(8,square(10,center=true)), fwd(8,square(10,center=true))];
assert(are_regions_equal(difference(R9,R8), [[[-5, 5], [-5, 13], [5, 13], [5, 5], [3, 5], [3, 3], [-3, 3], [-3, 5]], [[5, -13], [-5, -13], [-5, -5], [-3, -5], [-3, -3], [3, -3], [3, -5], [5, -5]]]));
assert(are_regions_equal(difference(R8,R9),[[[-5, -5], [-13, -5], [-13, 5], [-5, 5], [-5, 3], [-3, 3], [-3, -3], [-5, -3]], [[3, -3], [3, 3], [5, 3], [5, 5], [13, 5], [13, -5], [5, -5], [5, -3]]]));
}
test_difference();
module test_exclusive_or() {
R8 = [right(8,square(10,center=true)), left(8,square(10,center=true))];
R9 = [back(8,square(10,center=true)), fwd(8,square(10,center=true))];
assert(are_regions_equal(exclusive_or(R8,R9),[[[-5, -5], [-13, -5], [-13, 5], [-5, 5], [-5, 3], [-3, 3], [-3, -3], [-5, -3]], [[-3, -5], [-5, -5], [-5, -13], [5, -13], [5, -5], [3, -5], [3, -3], [-3, -3]], [[-5, 5], [-3, 5], [-3, 3], [3, 3], [3, 5], [5, 5], [5, 13], [-5, 13]], [[3, -3], [3, 3], [5, 3], [5, 5], [13, 5], [13, -5], [5, -5], [5, -3]]],either_winding=true));
assert(are_regions_equal(exclusive_or(R9,R8),[[[-5, -5], [-13, -5], [-13, 5], [-5, 5], [-5, 3], [-3, 3], [-3, -3], [-5, -3]], [[-3, -5], [-5, -5], [-5, -13], [5, -13], [5, -5], [3, -5], [3, -3], [-3, -3]], [[-5, 5], [-3, 5], [-3, 3], [3, 3], [3, 5], [5, 5], [5, 13], [-5, 13]], [[3, -3], [3, 3], [5, 3], [5, 5], [13, 5], [13, -5], [5, -5], [5, -3]]],either_winding=true));
p = turtle(["move",100,"left",144], repeat=4);
p2 = move(-polygon_centroid(p),p);
p3 = polygon_parts(p2);
p4 = exclusive_or(p3,square(51,center=true));
star_square = [[[-50, -16.2459848116], [-25.5, -16.2459848116],
[-25.5, 1.55430712449]], [[-7.45841874701, 25.5], [-30.9016994375,
42.5325404176], [-25.3674915789, 25.5]], [[-19.0983005625,
6.20541401733], [-25.5, 1.55430712449], [-25.5, 25.5],
[-25.3674915789, 25.5]], [[-11.803398875, -16.2459848116],
[-19.0983005625, 6.20541401733], [-3.5527136788e-15, 20.0811415886],
[19.0983005625, 6.20541401733], [11.803398875, -16.2459848116]],
[[7.45841874701, 25.5], [0, 20.0811415886], [-7.45841874701, 25.5]],
[[25.3674915789, 25.5], [7.45841874701, 25.5], [30.9016994375,
42.5325404176]], [[25.5, 1.55430712449], [19.0983005625,
6.20541401733], [25.3674915789, 25.5], [25.5, 25.5]], [[25.5,
-16.2459848116], [25.5, 1.55430712449], [50, -16.2459848116]],
[[8.79658707105, -25.5], [11.803398875, -16.2459848116], [25.5,
-16.2459848116], [25.5, -25.5]], [[-8.79658707105, -25.5],
[8.79658707105, -25.5], [0, -52.5731112119]], [[-25.5,
-16.2459848116], [-11.803398875, -16.2459848116], [-8.79658707105,
-25.5], [-25.5, -25.5]]];
assert(are_regions_equal(exclusive_or(p3,square(51,center=true)),star_square,either_winding=true));
assert(are_regions_equal(exclusive_or(square(51,center=true),p3),star_square,either_winding=true));
}
test_exclusive_or();