mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 21:58:27 +01:00
commit
2fe2f0708a
108
arrays.scad
108
arrays.scad
@ -951,28 +951,34 @@ function shuffle(list,seed) =
|
|||||||
|
|
||||||
// idx should be an index of the arrays l[i]
|
// idx should be an index of the arrays l[i]
|
||||||
function _group_sort_by_index(l,idx) =
|
function _group_sort_by_index(l,idx) =
|
||||||
len(l) == 0 ? [] :
|
len(l) == 0 ? [] :
|
||||||
len(l) == 1 ? [l] :
|
len(l) == 1 ? [l] :
|
||||||
let( pivot = l[floor(len(l)/2)][idx],
|
let(
|
||||||
equal = [ for(li=l) if( li[idx]==pivot) li ] ,
|
pivot = l[floor(len(l)/2)][idx],
|
||||||
lesser = [ for(li=l) if( li[idx]< pivot) li ] ,
|
equal = [ for(li=l) if( li[idx]==pivot) li ],
|
||||||
greater = [ for(li=l) if( li[idx]> pivot) li ]
|
lesser = [ for(li=l) if( li[idx]< pivot) li ],
|
||||||
)
|
greater = [ for(li=l) if( li[idx]> pivot) li ]
|
||||||
concat( _group_sort_by_index(lesser,idx),
|
)
|
||||||
[equal],
|
concat(
|
||||||
_group_sort_by_index(greater,idx) ) ;
|
_group_sort_by_index(lesser,idx),
|
||||||
|
[equal],
|
||||||
|
_group_sort_by_index(greater,idx)
|
||||||
|
);
|
||||||
|
|
||||||
function _group_sort(l) =
|
function _group_sort(l) =
|
||||||
len(l) == 0 ? [] :
|
len(l) == 0 ? [] :
|
||||||
len(l) == 1 ? [l] :
|
len(l) == 1 ? [l] :
|
||||||
let( pivot = l[floor(len(l)/2)],
|
let(
|
||||||
equal = [ for(li=l) if( li==pivot) li ] ,
|
pivot = l[floor(len(l)/2)],
|
||||||
lesser = [ for(li=l) if( li< pivot) li ] ,
|
equal = [ for(li=l) if( li==pivot) li ] ,
|
||||||
greater = [ for(li=l) if( li> pivot) li ]
|
lesser = [ for(li=l) if( li< pivot) li ] ,
|
||||||
)
|
greater = [ for(li=l) if( li> pivot) li ]
|
||||||
concat( _group_sort(lesser),
|
)
|
||||||
[equal],
|
concat(
|
||||||
_group_sort(greater) ) ;
|
_group_sort(lesser),
|
||||||
|
[equal],
|
||||||
|
_group_sort(greater)
|
||||||
|
);
|
||||||
|
|
||||||
|
|
||||||
// Sort a vector of scalar values with the native comparison operator
|
// Sort a vector of scalar values with the native comparison operator
|
||||||
@ -1171,11 +1177,11 @@ function group_sort(list, idx) =
|
|||||||
assert(is_list(list), "Input should be a list." )
|
assert(is_list(list), "Input should be a list." )
|
||||||
assert(is_undef(idx) || (is_finite(idx) && idx>=0) , "Invalid index." )
|
assert(is_undef(idx) || (is_finite(idx) && idx>=0) , "Invalid index." )
|
||||||
len(list)<=1 ? [list] :
|
len(list)<=1 ? [list] :
|
||||||
is_vector(list)? _group_sort(list) :
|
is_vector(list)? _group_sort(list) :
|
||||||
let( idx = is_undef(idx) ? 0 : idx )
|
let( idx = is_undef(idx) ? 0 : idx )
|
||||||
assert( [for(entry=list) if(!is_list(entry) || len(entry)<idx || !is_num(entry[idx]) ) 1]==[],
|
assert( [for(entry=list) if(!is_list(entry) || len(entry)<idx || !is_num(entry[idx]) ) 1]==[],
|
||||||
"Some entry of the list is a list shorter than `idx` or the indexed entry of it is not a number." )
|
"Some entry of the list is a list shorter than `idx` or the indexed entry of it is not a number.")
|
||||||
_group_sort_by_index(list,idx);
|
_group_sort_by_index(list,idx);
|
||||||
|
|
||||||
|
|
||||||
// Function: unique()
|
// Function: unique()
|
||||||
@ -1197,23 +1203,27 @@ function unique(list) =
|
|||||||
is_string(list)? str_join(unique([for (x = list) x])) :
|
is_string(list)? str_join(unique([for (x = list) x])) :
|
||||||
len(list)<=1? list :
|
len(list)<=1? list :
|
||||||
is_homogeneous(list,1) && ! is_list(list[0])
|
is_homogeneous(list,1) && ! is_list(list[0])
|
||||||
? _unique_sort(list)
|
? _unique_sort(list)
|
||||||
: let( sorted = sort(list))
|
: let( sorted = sort(list))
|
||||||
[ for (i=[0:1:len(sorted)-1])
|
[
|
||||||
if (i==0 || (sorted[i] != sorted[i-1]))
|
for (i=[0:1:len(sorted)-1])
|
||||||
sorted[i]
|
if (i==0 || (sorted[i] != sorted[i-1]))
|
||||||
];
|
sorted[i]
|
||||||
|
];
|
||||||
|
|
||||||
function _unique_sort(l) =
|
function _unique_sort(l) =
|
||||||
len(l) <= 1 ? l :
|
len(l) <= 1 ? l :
|
||||||
let( pivot = l[floor(len(l)/2)],
|
let(
|
||||||
equal = [ for(li=l) if( li==pivot) li ] ,
|
pivot = l[floor(len(l)/2)],
|
||||||
lesser = [ for(li=l) if( li<pivot ) li ] ,
|
equal = [ for(li=l) if( li==pivot) li ] ,
|
||||||
greater = [ for(li=l) if( li>pivot) li ]
|
lesser = [ for(li=l) if( li<pivot ) li ] ,
|
||||||
)
|
greater = [ for(li=l) if( li>pivot) li ]
|
||||||
concat( _unique_sort(lesser),
|
)
|
||||||
equal[0],
|
concat(
|
||||||
_unique_sort(greater) ) ;
|
_unique_sort(lesser),
|
||||||
|
equal[0],
|
||||||
|
_unique_sort(greater)
|
||||||
|
);
|
||||||
|
|
||||||
|
|
||||||
// Function: unique_count()
|
// Function: unique_count()
|
||||||
@ -1232,11 +1242,21 @@ function unique_count(list) =
|
|||||||
assert(is_list(list) || is_string(list), "Invalid input." )
|
assert(is_list(list) || is_string(list), "Invalid input." )
|
||||||
list == [] ? [[],[]] :
|
list == [] ? [[],[]] :
|
||||||
is_homogeneous(list,1) && ! is_list(list[0])
|
is_homogeneous(list,1) && ! is_list(list[0])
|
||||||
? let( sorted = _group_sort(list) )
|
? let( sorted = _group_sort(list) ) [
|
||||||
[ [for(s=sorted) s[0] ], [for(s=sorted) len(s) ] ]
|
[for(s=sorted) s[0] ],
|
||||||
: let( list=sort(list) )
|
[for(s=sorted) len(s) ]
|
||||||
let( ind = [0, for(i=[1:1:len(list)-1]) if (list[i]!=list[i-1]) i] )
|
]
|
||||||
[ select(list,ind), deltas( concat(ind,[len(list)]) ) ];
|
: let(
|
||||||
|
list=sort(list),
|
||||||
|
ind = [
|
||||||
|
0,
|
||||||
|
for(i=[1:1:len(list)-1])
|
||||||
|
if (list[i]!=list[i-1]) i
|
||||||
|
]
|
||||||
|
) [
|
||||||
|
select(list,ind),
|
||||||
|
deltas( concat(ind,[len(list)]) )
|
||||||
|
];
|
||||||
|
|
||||||
|
|
||||||
// Section: List Iteration Helpers
|
// Section: List Iteration Helpers
|
||||||
|
@ -502,7 +502,7 @@ module generic_bottle_neck(
|
|||||||
}
|
}
|
||||||
|
|
||||||
function generic_bottle_neck(
|
function generic_bottle_neck(
|
||||||
neck_d,
|
neck_d,
|
||||||
id,
|
id,
|
||||||
thread_od,
|
thread_od,
|
||||||
height,
|
height,
|
||||||
|
333
geometry.scad
333
geometry.scad
@ -31,8 +31,8 @@ function _dist2line(d,n) = norm(d-(d * n) * n);
|
|||||||
function _point_above_below_segment(point, edge) =
|
function _point_above_below_segment(point, edge) =
|
||||||
let( edge = edge - [point, point] )
|
let( edge = edge - [point, point] )
|
||||||
edge[0].y <= 0
|
edge[0].y <= 0
|
||||||
? (edge[1].y > 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0
|
? (edge[1].y > 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0
|
||||||
: (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0 ;
|
: (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0;
|
||||||
|
|
||||||
//Internal
|
//Internal
|
||||||
function _valid_line(line,dim,eps=EPSILON) =
|
function _valid_line(line,dim,eps=EPSILON) =
|
||||||
@ -74,8 +74,8 @@ function collinear(a, b, c, eps=EPSILON) =
|
|||||||
"Input should be 3 points or a list of points with same dimension.")
|
"Input should be 3 points or a list of points with same dimension.")
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
let( points = is_def(c) ? [a,b,c]: a )
|
let( points = is_def(c) ? [a,b,c]: a )
|
||||||
len(points)<3 ? true
|
len(points)<3 ? true :
|
||||||
: noncollinear_triple(points,error=false,eps=eps)==[];
|
noncollinear_triple(points,error=false,eps=eps) == [];
|
||||||
|
|
||||||
|
|
||||||
// Function: point_line_distance()
|
// Function: point_line_distance()
|
||||||
@ -124,8 +124,7 @@ function point_segment_distance(pt, seg) =
|
|||||||
// dist = segment_distance([[-14,3], [-15,9]], [[-10,0], [10,0]]); // Returns: 5
|
// dist = segment_distance([[-14,3], [-15,9]], [[-10,0], [10,0]]); // Returns: 5
|
||||||
// dist2 = segment_distance([[-5,5], [5,-5]], [[-10,3], [10,-3]]); // Returns: 0
|
// dist2 = segment_distance([[-5,5], [5,-5]], [[-10,3], [10,-3]]); // Returns: 0
|
||||||
function segment_distance(seg1, seg2) =
|
function segment_distance(seg1, seg2) =
|
||||||
assert( is_matrix(concat(seg1,seg2),4),
|
assert( is_matrix(concat(seg1,seg2),4), "Inputs should be two valid segments." )
|
||||||
"Inputs should be two valid segments." )
|
|
||||||
convex_distance(seg1,seg2);
|
convex_distance(seg1,seg2);
|
||||||
|
|
||||||
|
|
||||||
@ -147,9 +146,9 @@ function segment_distance(seg1, seg2) =
|
|||||||
// color("blue") move_copies([p1,p2]) circle(d=2, $fn=12);
|
// color("blue") move_copies([p1,p2]) circle(d=2, $fn=12);
|
||||||
function line_normal(p1,p2) =
|
function line_normal(p1,p2) =
|
||||||
is_undef(p2)
|
is_undef(p2)
|
||||||
? assert( len(p1)==2 && !is_undef(p1[1]) , "Invalid input." )
|
? assert( len(p1)==2 && !is_undef(p1[1]) , "Invalid input." )
|
||||||
line_normal(p1[0],p1[1])
|
line_normal(p1[0],p1[1])
|
||||||
: assert( _valid_line([p1,p2],dim=2), "Invalid line." )
|
: assert( _valid_line([p1,p2],dim=2), "Invalid line." )
|
||||||
unit([p1.y-p2.y,p2.x-p1.x]);
|
unit([p1.y-p2.y,p2.x-p1.x]);
|
||||||
|
|
||||||
|
|
||||||
@ -164,7 +163,8 @@ function line_normal(p1,p2) =
|
|||||||
function _general_line_intersection(s1,s2,eps=EPSILON) =
|
function _general_line_intersection(s1,s2,eps=EPSILON) =
|
||||||
let(
|
let(
|
||||||
denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]])
|
denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]])
|
||||||
) approx(denominator,0,eps=eps)? [undef,undef,undef] : let(
|
) approx(denominator,0,eps=eps)? [undef,undef,undef] :
|
||||||
|
let(
|
||||||
t = det2([s1[0],s2[0]]-s2) / denominator,
|
t = det2([s1[0],s2[0]]-s2) / denominator,
|
||||||
u = det2([s1[0],s1[0]]-[s2[0],s1[1]]) / denominator
|
u = det2([s1[0],s1[0]]-[s2[0],s1[1]]) / denominator
|
||||||
) [s1[0]+t*(s1[1]-s1[0]), t, u];
|
) [s1[0]+t*(s1[1]-s1[0]), t, u];
|
||||||
@ -201,11 +201,10 @@ function line_intersection(l1,l2,eps=EPSILON) =
|
|||||||
function line_ray_intersection(line,ray,eps=EPSILON) =
|
function line_ray_intersection(line,ray,eps=EPSILON) =
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
assert( _valid_line(line,dim=2,eps=eps) && _valid_line(ray,dim=2,eps=eps), "Invalid line or ray." )
|
assert( _valid_line(line,dim=2,eps=eps) && _valid_line(ray,dim=2,eps=eps), "Invalid line or ray." )
|
||||||
let(
|
let( isect = _general_line_intersection(line,ray,eps=eps) )
|
||||||
isect = _general_line_intersection(line,ray,eps=eps)
|
|
||||||
)
|
|
||||||
is_undef(isect[0]) ? undef :
|
is_undef(isect[0]) ? undef :
|
||||||
(isect[2]<0-eps) ? undef : isect[0];
|
(isect[2]<0-eps) ? undef :
|
||||||
|
isect[0];
|
||||||
|
|
||||||
|
|
||||||
// Function: line_segment_intersection()
|
// Function: line_segment_intersection()
|
||||||
@ -221,9 +220,7 @@ function line_ray_intersection(line,ray,eps=EPSILON) =
|
|||||||
function line_segment_intersection(line,segment,eps=EPSILON) =
|
function line_segment_intersection(line,segment,eps=EPSILON) =
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
assert( _valid_line(line, dim=2,eps=eps) &&_valid_line(segment,dim=2,eps=eps), "Invalid line or segment." )
|
assert( _valid_line(line, dim=2,eps=eps) &&_valid_line(segment,dim=2,eps=eps), "Invalid line or segment." )
|
||||||
let(
|
let( isect = _general_line_intersection(line,segment,eps=eps) )
|
||||||
isect = _general_line_intersection(line,segment,eps=eps)
|
|
||||||
)
|
|
||||||
is_undef(isect[0]) ? undef :
|
is_undef(isect[0]) ? undef :
|
||||||
isect[2]<0-eps || isect[2]>1+eps ? undef :
|
isect[2]<0-eps || isect[2]>1+eps ? undef :
|
||||||
isect[0];
|
isect[0];
|
||||||
@ -242,11 +239,10 @@ function line_segment_intersection(line,segment,eps=EPSILON) =
|
|||||||
function ray_intersection(r1,r2,eps=EPSILON) =
|
function ray_intersection(r1,r2,eps=EPSILON) =
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
assert( _valid_line(r1,dim=2,eps=eps) && _valid_line(r2,dim=2,eps=eps), "Invalid ray(s)." )
|
assert( _valid_line(r1,dim=2,eps=eps) && _valid_line(r2,dim=2,eps=eps), "Invalid ray(s)." )
|
||||||
let(
|
let( isect = _general_line_intersection(r1,r2,eps=eps) )
|
||||||
isect = _general_line_intersection(r1,r2,eps=eps)
|
|
||||||
)
|
|
||||||
is_undef(isect[0]) ? undef :
|
is_undef(isect[0]) ? undef :
|
||||||
isect[1]<0-eps || isect[2]<0-eps ? undef : isect[0];
|
isect[1]<0-eps || isect[2]<0-eps ? undef :
|
||||||
|
isect[0];
|
||||||
|
|
||||||
|
|
||||||
// Function: ray_segment_intersection()
|
// Function: ray_segment_intersection()
|
||||||
@ -262,9 +258,7 @@ function ray_intersection(r1,r2,eps=EPSILON) =
|
|||||||
function ray_segment_intersection(ray,segment,eps=EPSILON) =
|
function ray_segment_intersection(ray,segment,eps=EPSILON) =
|
||||||
assert( _valid_line(ray,dim=2,eps=eps) && _valid_line(segment,dim=2,eps=eps), "Invalid ray or segment." )
|
assert( _valid_line(ray,dim=2,eps=eps) && _valid_line(segment,dim=2,eps=eps), "Invalid ray or segment." )
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
let(
|
let( isect = _general_line_intersection(ray,segment,eps=eps) )
|
||||||
isect = _general_line_intersection(ray,segment,eps=eps)
|
|
||||||
)
|
|
||||||
is_undef(isect[0]) ? undef :
|
is_undef(isect[0]) ? undef :
|
||||||
isect[1]<0-eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
|
isect[1]<0-eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
|
||||||
isect[0];
|
isect[0];
|
||||||
@ -283,9 +277,7 @@ function ray_segment_intersection(ray,segment,eps=EPSILON) =
|
|||||||
function segment_intersection(s1,s2,eps=EPSILON) =
|
function segment_intersection(s1,s2,eps=EPSILON) =
|
||||||
assert( _valid_line(s1,dim=2,eps=eps) && _valid_line(s2,dim=2,eps=eps), "Invalid segment(s)." )
|
assert( _valid_line(s1,dim=2,eps=eps) && _valid_line(s2,dim=2,eps=eps), "Invalid segment(s)." )
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
let(
|
let( isect = _general_line_intersection(s1,s2,eps=eps) )
|
||||||
isect = _general_line_intersection(s1,s2,eps=eps)
|
|
||||||
)
|
|
||||||
is_undef(isect[0]) ? undef :
|
is_undef(isect[0]) ? undef :
|
||||||
isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
|
isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
|
||||||
isect[0];
|
isect[0];
|
||||||
@ -346,7 +338,7 @@ function line_closest_point(line,pt) =
|
|||||||
assert(_valid_line(line), "Invalid line." )
|
assert(_valid_line(line), "Invalid line." )
|
||||||
assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." )
|
assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." )
|
||||||
let( n = unit( line[0]- line[1]) )
|
let( n = unit( line[0]- line[1]) )
|
||||||
line[1]+((pt- line[1]) * n) * n;
|
line[1] + ((pt- line[1]) * n) * n;
|
||||||
|
|
||||||
|
|
||||||
// Function: ray_closest_point()
|
// Function: ray_closest_point()
|
||||||
@ -485,7 +477,9 @@ function line_from_points(points, fast=false, eps=EPSILON) =
|
|||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
let( pb = furthest_point(points[0],points) )
|
let( pb = furthest_point(points[0],points) )
|
||||||
norm(points[pb]-points[0])<eps*max(norm(points[pb]),norm(points[0])) ? undef :
|
norm(points[pb]-points[0])<eps*max(norm(points[pb]),norm(points[0])) ? undef :
|
||||||
fast || collinear(points) ? [points[pb], points[0]] : undef;
|
fast || collinear(points)
|
||||||
|
? [points[pb], points[0]]
|
||||||
|
: undef;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -556,7 +550,8 @@ function law_of_sines(a, A, b, B) =
|
|||||||
// a/sin(A) = b/sin(B) = c/sin(C)
|
// a/sin(A) = b/sin(B) = c/sin(C)
|
||||||
assert(num_defined([b,B]) == 1, "Must give exactly one of b= or B=.")
|
assert(num_defined([b,B]) == 1, "Must give exactly one of b= or B=.")
|
||||||
let( r = a/sin(A) )
|
let( r = a/sin(A) )
|
||||||
is_undef(b) ? r*sin(B) : asin(constrain(b/r, -1, 1));
|
is_undef(b) ? r*sin(B) :
|
||||||
|
asin(constrain(b/r, -1, 1));
|
||||||
|
|
||||||
|
|
||||||
// Function: tri_calc()
|
// Function: tri_calc()
|
||||||
@ -626,11 +621,11 @@ function tri_calc(ang,ang2,adj,opp,hyp) =
|
|||||||
hyp
|
hyp
|
||||||
: (adj!=undef? (adj/cos(ang))
|
: (adj!=undef? (adj/cos(ang))
|
||||||
: (opp/sin(ang)))
|
: (opp/sin(ang)))
|
||||||
)
|
) [adj, opp, hyp, ang, ang2];
|
||||||
[adj, opp, hyp, ang, ang2];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: hyp_opp_to_adj()
|
// Function: hyp_opp_to_adj()
|
||||||
|
// Alias: opp_hyp_to_adj()
|
||||||
// Usage:
|
// Usage:
|
||||||
// adj = hyp_opp_to_adj(hyp,opp);
|
// adj = hyp_opp_to_adj(hyp,opp);
|
||||||
// Description:
|
// Description:
|
||||||
@ -646,8 +641,11 @@ function hyp_opp_to_adj(hyp,opp) =
|
|||||||
"Triangle side lengths should be a positive numbers." )
|
"Triangle side lengths should be a positive numbers." )
|
||||||
sqrt(hyp*hyp-opp*opp);
|
sqrt(hyp*hyp-opp*opp);
|
||||||
|
|
||||||
|
function opp_hyp_to_adj(opp,hyp) = hyp_opp_to_adj(hyp,opp);
|
||||||
|
|
||||||
|
|
||||||
// Function: hyp_ang_to_adj()
|
// Function: hyp_ang_to_adj()
|
||||||
|
// Alias: ang_hyp_to_adj()
|
||||||
// Usage:
|
// Usage:
|
||||||
// adj = hyp_ang_to_adj(hyp,ang);
|
// adj = hyp_ang_to_adj(hyp,ang);
|
||||||
// Description:
|
// Description:
|
||||||
@ -663,8 +661,11 @@ function hyp_ang_to_adj(hyp,ang) =
|
|||||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||||
hyp*cos(ang);
|
hyp*cos(ang);
|
||||||
|
|
||||||
|
function ang_hyp_to_adj(ang,hyp) = hyp_ang_to_adj(hyp, ang);
|
||||||
|
|
||||||
|
|
||||||
// Function: opp_ang_to_adj()
|
// Function: opp_ang_to_adj()
|
||||||
|
// Alias: ang_opp_to_adj()
|
||||||
// Usage:
|
// Usage:
|
||||||
// adj = opp_ang_to_adj(opp,ang);
|
// adj = opp_ang_to_adj(opp,ang);
|
||||||
// Description:
|
// Description:
|
||||||
@ -680,8 +681,11 @@ function opp_ang_to_adj(opp,ang) =
|
|||||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||||
opp/tan(ang);
|
opp/tan(ang);
|
||||||
|
|
||||||
|
function ang_opp_to_adj(ang,opp) = opp_ang_to_adj(opp,ang);
|
||||||
|
|
||||||
|
|
||||||
// Function: hyp_adj_to_opp()
|
// Function: hyp_adj_to_opp()
|
||||||
|
// Alias: adj_hyp_to_opp()
|
||||||
// Usage:
|
// Usage:
|
||||||
// opp = hyp_adj_to_opp(hyp,adj);
|
// opp = hyp_adj_to_opp(hyp,adj);
|
||||||
// Description:
|
// Description:
|
||||||
@ -696,8 +700,11 @@ function hyp_adj_to_opp(hyp,adj) =
|
|||||||
"Triangle side lengths should be a positive numbers." )
|
"Triangle side lengths should be a positive numbers." )
|
||||||
sqrt(hyp*hyp-adj*adj);
|
sqrt(hyp*hyp-adj*adj);
|
||||||
|
|
||||||
|
function adj_hyp_to_opp(adj,hyp) = hyp_adj_to_opp(hyp,adj);
|
||||||
|
|
||||||
|
|
||||||
// Function: hyp_ang_to_opp()
|
// Function: hyp_ang_to_opp()
|
||||||
|
// Alias: ang_hyp_to_opp()
|
||||||
// Usage:
|
// Usage:
|
||||||
// opp = hyp_ang_to_opp(hyp,adj);
|
// opp = hyp_ang_to_opp(hyp,adj);
|
||||||
// Description:
|
// Description:
|
||||||
@ -712,8 +719,11 @@ function hyp_ang_to_opp(hyp,ang) =
|
|||||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||||
hyp*sin(ang);
|
hyp*sin(ang);
|
||||||
|
|
||||||
|
function ang_hyp_to_opp(ang,hyp) = hyp_ang_to_opp(hyp,ang);
|
||||||
|
|
||||||
|
|
||||||
// Function: adj_ang_to_opp()
|
// Function: adj_ang_to_opp()
|
||||||
|
// Alias: ang_adj_to_opp()
|
||||||
// Usage:
|
// Usage:
|
||||||
// opp = adj_ang_to_opp(adj,ang);
|
// opp = adj_ang_to_opp(adj,ang);
|
||||||
// Description:
|
// Description:
|
||||||
@ -728,8 +738,11 @@ function adj_ang_to_opp(adj,ang) =
|
|||||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||||
adj*tan(ang);
|
adj*tan(ang);
|
||||||
|
|
||||||
|
function ang_adj_to_opp(ang,adj) = adj_ang_to_opp(adj,ang);
|
||||||
|
|
||||||
|
|
||||||
// Function: adj_opp_to_hyp()
|
// Function: adj_opp_to_hyp()
|
||||||
|
// Alias: opp_adj_to_hyp()
|
||||||
// Usage:
|
// Usage:
|
||||||
// hyp = adj_opp_to_hyp(adj,opp);
|
// hyp = adj_opp_to_hyp(adj,opp);
|
||||||
// Description:
|
// Description:
|
||||||
@ -744,8 +757,11 @@ function adj_opp_to_hyp(adj,opp) =
|
|||||||
"Triangle side lengths should be a positive numbers." )
|
"Triangle side lengths should be a positive numbers." )
|
||||||
norm([opp,adj]);
|
norm([opp,adj]);
|
||||||
|
|
||||||
|
function opp_adj_to_hyp(opp,adj) = adj_opp_to_hyp(adj,opp);
|
||||||
|
|
||||||
|
|
||||||
// Function: adj_ang_to_hyp()
|
// Function: adj_ang_to_hyp()
|
||||||
|
// Alias: ang_adj_to_hyp()
|
||||||
// Usage:
|
// Usage:
|
||||||
// hyp = adj_ang_to_hyp(adj,ang);
|
// hyp = adj_ang_to_hyp(adj,ang);
|
||||||
// Description:
|
// Description:
|
||||||
@ -760,8 +776,11 @@ function adj_ang_to_hyp(adj,ang) =
|
|||||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||||
adj/cos(ang);
|
adj/cos(ang);
|
||||||
|
|
||||||
|
function ang_adj_to_hyp(ang,adj) = adj_ang_to_hyp(adj,ang);
|
||||||
|
|
||||||
|
|
||||||
// Function: opp_ang_to_hyp()
|
// Function: opp_ang_to_hyp()
|
||||||
|
// Alias: ang_opp_to_hyp()
|
||||||
// Usage:
|
// Usage:
|
||||||
// hyp = opp_ang_to_hyp(opp,ang);
|
// hyp = opp_ang_to_hyp(opp,ang);
|
||||||
// Description:
|
// Description:
|
||||||
@ -776,8 +795,11 @@ function opp_ang_to_hyp(opp,ang) =
|
|||||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||||
opp/sin(ang);
|
opp/sin(ang);
|
||||||
|
|
||||||
|
function ang_opp_to_hyp(ang,opp) = opp_ang_to_hyp(opp,ang);
|
||||||
|
|
||||||
|
|
||||||
// Function: hyp_adj_to_ang()
|
// Function: hyp_adj_to_ang()
|
||||||
|
// Alias: adj_hyp_to_ang()
|
||||||
// Usage:
|
// Usage:
|
||||||
// ang = hyp_adj_to_ang(hyp,adj);
|
// ang = hyp_adj_to_ang(hyp,adj);
|
||||||
// Description:
|
// Description:
|
||||||
@ -792,8 +814,11 @@ function hyp_adj_to_ang(hyp,adj) =
|
|||||||
"Triangle side lengths should be positive numbers." )
|
"Triangle side lengths should be positive numbers." )
|
||||||
acos(adj/hyp);
|
acos(adj/hyp);
|
||||||
|
|
||||||
|
function adj_hyp_to_ang(adj,hyp) = hyp_adj_to_ang(hyp,adj);
|
||||||
|
|
||||||
|
|
||||||
// Function: hyp_opp_to_ang()
|
// Function: hyp_opp_to_ang()
|
||||||
|
// Alias: opp_hyp_to_ang()
|
||||||
// Usage:
|
// Usage:
|
||||||
// ang = hyp_opp_to_ang(hyp,opp);
|
// ang = hyp_opp_to_ang(hyp,opp);
|
||||||
// Description:
|
// Description:
|
||||||
@ -808,8 +833,11 @@ function hyp_opp_to_ang(hyp,opp) =
|
|||||||
"Triangle side lengths should be positive numbers." )
|
"Triangle side lengths should be positive numbers." )
|
||||||
asin(opp/hyp);
|
asin(opp/hyp);
|
||||||
|
|
||||||
|
function opp_hyp_to_ang(opp,hyp) = hyp_opp_to_ang(hyp,opp);
|
||||||
|
|
||||||
|
|
||||||
// Function: adj_opp_to_ang()
|
// Function: adj_opp_to_ang()
|
||||||
|
// Alias: opp_adj_to_ang()
|
||||||
// Usage:
|
// Usage:
|
||||||
// ang = adj_opp_to_ang(adj,opp);
|
// ang = adj_opp_to_ang(adj,opp);
|
||||||
// Description:
|
// Description:
|
||||||
@ -824,6 +852,8 @@ function adj_opp_to_ang(adj,opp) =
|
|||||||
"Triangle side lengths should be positive numbers." )
|
"Triangle side lengths should be positive numbers." )
|
||||||
atan2(opp,adj);
|
atan2(opp,adj);
|
||||||
|
|
||||||
|
function opp_adj_to_ang(opp,adj) = adj_opp_to_ang(adj,opp);
|
||||||
|
|
||||||
|
|
||||||
// Function: triangle_area()
|
// Function: triangle_area()
|
||||||
// Usage:
|
// Usage:
|
||||||
@ -866,8 +896,7 @@ function plane3pt(p1, p2, p3) =
|
|||||||
let(
|
let(
|
||||||
crx = cross(p3-p1, p2-p1),
|
crx = cross(p3-p1, p2-p1),
|
||||||
nrm = norm(crx)
|
nrm = norm(crx)
|
||||||
)
|
) approx(nrm,0) ? [] :
|
||||||
approx(nrm,0) ? [] :
|
|
||||||
concat(crx, crx*p1)/nrm;
|
concat(crx, crx*p1)/nrm;
|
||||||
|
|
||||||
|
|
||||||
@ -893,8 +922,7 @@ function plane3pt_indexed(points, i1, i2, i3) =
|
|||||||
p1 = points[i1],
|
p1 = points[i1],
|
||||||
p2 = points[i2],
|
p2 = points[i2],
|
||||||
p3 = points[i3]
|
p3 = points[i3]
|
||||||
)
|
) plane3pt(p1,p2,p3);
|
||||||
plane3pt(p1,p2,p3);
|
|
||||||
|
|
||||||
|
|
||||||
// Function: plane_from_normal()
|
// Function: plane_from_normal()
|
||||||
@ -940,7 +968,7 @@ function _eigenvec_symm_3(M,evals,i=0) =
|
|||||||
I = ident(3),
|
I = ident(3),
|
||||||
A = (M - evals[(i+1)%3]*I) * (M - evals[(i+2)%3]*I) ,
|
A = (M - evals[(i+1)%3]*I) * (M - evals[(i+2)%3]*I) ,
|
||||||
k = max_index( [for(i=[0:2]) norm(A[i]) ])
|
k = max_index( [for(i=[0:2]) norm(A[i]) ])
|
||||||
)
|
)
|
||||||
norm(A[k])<EPSILON ? I[k] : A[k]/norm(A[k]);
|
norm(A[k])<EPSILON ? I[k] : A[k]/norm(A[k]);
|
||||||
|
|
||||||
|
|
||||||
@ -977,14 +1005,15 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
|||||||
assert( is_path(points,dim=3), "Improper 3d point list." )
|
assert( is_path(points,dim=3), "Improper 3d point list." )
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
len(points) == 3
|
len(points) == 3
|
||||||
? let( plane = plane3pt(points[0],points[1],points[2]) )
|
? let( plane = plane3pt(points[0],points[1],points[2]) )
|
||||||
plane==[] ? [] : plane
|
plane==[] ? [] : plane
|
||||||
: let(
|
: let(
|
||||||
covmix = _covariance_evec_eval(points),
|
covmix = _covariance_evec_eval(points),
|
||||||
pm = covmix[0],
|
pm = covmix[0],
|
||||||
evec = covmix[1],
|
evec = covmix[1],
|
||||||
eval0 = covmix[2],
|
eval0 = covmix[2],
|
||||||
plane = [ each evec, pm*evec] )
|
plane = [ each evec, pm*evec]
|
||||||
|
)
|
||||||
!fast && _pointlist_greatest_distance(points,plane)>eps*eval0 ? undef :
|
!fast && _pointlist_greatest_distance(points,plane)>eps*eval0 ? undef :
|
||||||
plane ;
|
plane ;
|
||||||
|
|
||||||
@ -1121,10 +1150,10 @@ function _general_plane_line_intersection(plane, line, eps=EPSILON) =
|
|||||||
b = plane*[each(line[1]-line[0]),0] // difference between the plane expression evaluation at line[1] and at line[0]
|
b = plane*[each(line[1]-line[0]),0] // difference between the plane expression evaluation at line[1] and at line[0]
|
||||||
)
|
)
|
||||||
approx(b,0,eps) // is (line[1]-line[0]) "parallel" to the plane ?
|
approx(b,0,eps) // is (line[1]-line[0]) "parallel" to the plane ?
|
||||||
? approx(a,0,eps) // is line[0] on the plane ?
|
? approx(a,0,eps) // is line[0] on the plane ?
|
||||||
? [line,undef] // line is on the plane
|
? [line,undef] // line is on the plane
|
||||||
: undef // line is parallel but not on the plane
|
: undef // line is parallel but not on the plane
|
||||||
: [ line[0]-a/b*(line[1]-line[0]), -a/b ];
|
: [ line[0]-a/b*(line[1]-line[0]), -a/b ];
|
||||||
|
|
||||||
|
|
||||||
// Function: normalize_plane()
|
// Function: normalize_plane()
|
||||||
@ -1152,8 +1181,7 @@ function plane_line_angle(plane, line) =
|
|||||||
normal = plane_normal(plane),
|
normal = plane_normal(plane),
|
||||||
sin_angle = linedir*normal,
|
sin_angle = linedir*normal,
|
||||||
cos_angle = norm(cross(linedir,normal))
|
cos_angle = norm(cross(linedir,normal))
|
||||||
)
|
) atan2(sin_angle,cos_angle);
|
||||||
atan2(sin_angle,cos_angle);
|
|
||||||
|
|
||||||
|
|
||||||
// Function: plane_line_intersection()
|
// Function: plane_line_intersection()
|
||||||
@ -1176,8 +1204,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) =
|
|||||||
let(
|
let(
|
||||||
bounded = is_list(bounded)? bounded : [bounded, bounded],
|
bounded = is_list(bounded)? bounded : [bounded, bounded],
|
||||||
res = _general_plane_line_intersection(plane, line, eps=eps)
|
res = _general_plane_line_intersection(plane, line, eps=eps)
|
||||||
)
|
) is_undef(res) ? undef :
|
||||||
is_undef(res) ? undef :
|
|
||||||
is_undef(res[1]) ? res[0] :
|
is_undef(res[1]) ? res[0] :
|
||||||
bounded[0] && res[1]<0 ? undef :
|
bounded[0] && res[1]<0 ? undef :
|
||||||
bounded[1] && res[1]>1 ? undef :
|
bounded[1] && res[1]>1 ? undef :
|
||||||
@ -1207,41 +1234,37 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
|
|||||||
bounded = is_list(bounded)? bounded : [bounded, bounded],
|
bounded = is_list(bounded)? bounded : [bounded, bounded],
|
||||||
poly = deduplicate(poly),
|
poly = deduplicate(poly),
|
||||||
indices = noncollinear_triple(poly)
|
indices = noncollinear_triple(poly)
|
||||||
)
|
) indices==[] ? undef :
|
||||||
indices==[] ? undef :
|
|
||||||
let(
|
let(
|
||||||
p1 = poly[indices[0]],
|
p1 = poly[indices[0]],
|
||||||
p2 = poly[indices[1]],
|
p2 = poly[indices[1]],
|
||||||
p3 = poly[indices[2]],
|
p3 = poly[indices[2]],
|
||||||
plane = plane3pt(p1,p2,p3),
|
plane = plane3pt(p1,p2,p3),
|
||||||
res = _general_plane_line_intersection(plane, line, eps=eps)
|
res = _general_plane_line_intersection(plane, line, eps=eps)
|
||||||
)
|
) is_undef(res)? undef :
|
||||||
is_undef(res)? undef :
|
is_undef(res[1]) ? (
|
||||||
is_undef(res[1])
|
let(// Line is on polygon plane.
|
||||||
? ( let(// Line is on polygon plane.
|
|
||||||
linevec = unit(line[1] - line[0]),
|
linevec = unit(line[1] - line[0]),
|
||||||
lp1 = line[0] + (bounded[0]? 0 : -1000000) * linevec,
|
lp1 = line[0] + (bounded[0]? 0 : -1000000) * linevec,
|
||||||
lp2 = line[1] + (bounded[1]? 0 : 1000000) * linevec,
|
lp2 = line[1] + (bounded[1]? 0 : 1000000) * linevec,
|
||||||
poly2d = clockwise_polygon(project_plane(plane, poly)),
|
poly2d = clockwise_polygon(project_plane(plane, poly)),
|
||||||
line2d = project_plane(plane, [lp1,lp2]),
|
line2d = project_plane(plane, [lp1,lp2]),
|
||||||
parts = split_path_at_region_crossings(line2d, [poly2d], closed=false),
|
parts = split_path_at_region_crossings(line2d, [poly2d], closed=false),
|
||||||
inside = [for (part = parts)
|
inside = [
|
||||||
if (point_in_polygon(mean(part), poly2d)>0) part
|
for (part = parts)
|
||||||
]
|
if (point_in_polygon(mean(part), poly2d)>0) part
|
||||||
)
|
]
|
||||||
!inside? undef :
|
) !inside? undef :
|
||||||
let(
|
let( isegs = [for (seg = inside) lift_plane(plane, seg) ] )
|
||||||
isegs = [for (seg = inside) lift_plane(plane, seg) ]
|
|
||||||
)
|
|
||||||
isegs
|
isegs
|
||||||
)
|
) :
|
||||||
: bounded[0] && res[1]<0? undef :
|
bounded[0] && res[1]<0? undef :
|
||||||
bounded[1] && res[1]>1? undef :
|
bounded[1] && res[1]>1? undef :
|
||||||
let(
|
let(
|
||||||
proj = clockwise_polygon(project_plane([p1, p2, p3], poly)),
|
proj = clockwise_polygon(project_plane([p1, p2, p3], poly)),
|
||||||
pt = project_plane([p1, p2, p3], res[0])
|
pt = project_plane([p1, p2, p3], res[0])
|
||||||
)
|
) point_in_polygon(pt, proj) < 0 ? undef :
|
||||||
point_in_polygon(pt, proj) < 0 ? undef : res[0];
|
res[0];
|
||||||
|
|
||||||
|
|
||||||
// Function: plane_intersection()
|
// Function: plane_intersection()
|
||||||
@ -1260,19 +1283,20 @@ function plane_intersection(plane1,plane2,plane3) =
|
|||||||
assert( _valid_plane(plane1) && _valid_plane(plane2) && (is_undef(plane3) ||_valid_plane(plane3)),
|
assert( _valid_plane(plane1) && _valid_plane(plane2) && (is_undef(plane3) ||_valid_plane(plane3)),
|
||||||
"The input must be 2 or 3 planes." )
|
"The input must be 2 or 3 planes." )
|
||||||
is_def(plane3)
|
is_def(plane3)
|
||||||
? let(
|
? let(
|
||||||
matrix = [for(p=[plane1,plane2,plane3]) point3d(p)],
|
matrix = [for(p=[plane1,plane2,plane3]) point3d(p)],
|
||||||
rhs = [for(p=[plane1,plane2,plane3]) p[3]]
|
rhs = [for(p=[plane1,plane2,plane3]) p[3]]
|
||||||
)
|
)
|
||||||
linear_solve(matrix,rhs)
|
linear_solve(matrix,rhs)
|
||||||
: let( normal = cross(plane_normal(plane1), plane_normal(plane2)) )
|
: let( normal = cross(plane_normal(plane1), plane_normal(plane2)) )
|
||||||
approx(norm(normal),0) ? undef :
|
approx(norm(normal),0) ? undef :
|
||||||
let(
|
let(
|
||||||
matrix = [for(p=[plane1,plane2]) point3d(p)],
|
matrix = [for(p=[plane1,plane2]) point3d(p)],
|
||||||
rhs = [plane1[3], plane2[3]],
|
rhs = [plane1[3], plane2[3]],
|
||||||
point = linear_solve(matrix,rhs)
|
point = linear_solve(matrix,rhs)
|
||||||
)
|
)
|
||||||
point==[]? undef: [point, point+normal];
|
point==[]? undef:
|
||||||
|
[point, point+normal];
|
||||||
|
|
||||||
|
|
||||||
// Function: coplanar()
|
// Function: coplanar()
|
||||||
@ -1287,7 +1311,7 @@ function coplanar(points, eps=EPSILON) =
|
|||||||
assert( is_path(points,dim=3) , "Input should be a list of 3D points." )
|
assert( is_path(points,dim=3) , "Input should be a list of 3D points." )
|
||||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && eps>=0, "The tolerance should be a non-negative value." )
|
||||||
len(points)<=2 ? false
|
len(points)<=2 ? false
|
||||||
: let( ip = noncollinear_triple(points,error=false,eps=eps) )
|
: let( ip = noncollinear_triple(points,error=false,eps=eps) )
|
||||||
ip == [] ? false :
|
ip == [] ? false :
|
||||||
let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]) )
|
let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]) )
|
||||||
_pointlist_greatest_distance(points,plane) < eps;
|
_pointlist_greatest_distance(points,plane) < eps;
|
||||||
@ -1298,7 +1322,7 @@ function _pointlist_greatest_distance(points,plane) =
|
|||||||
let(
|
let(
|
||||||
normal = point3d(plane),
|
normal = point3d(plane),
|
||||||
pt_nrm = points*normal
|
pt_nrm = points*normal
|
||||||
)
|
)
|
||||||
abs(max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3])) / norm(normal);
|
abs(max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3])) / norm(normal);
|
||||||
|
|
||||||
|
|
||||||
@ -1429,6 +1453,7 @@ function circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) =
|
|||||||
)
|
)
|
||||||
[cp, n, tp1, tp2, dang1, dang2];
|
[cp, n, tp1, tp2, dang1, dang2];
|
||||||
|
|
||||||
|
|
||||||
module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) {
|
module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) {
|
||||||
c = circle_2tangents(pt1=pt1, pt2=pt2, pt3=pt3, r=r, d=d);
|
c = circle_2tangents(pt1=pt1, pt2=pt2, pt3=pt3, r=r, d=d);
|
||||||
assert(!is_undef(c), "Cannot find circle when both rays are collinear.");
|
assert(!is_undef(c), "Cannot find circle when both rays are collinear.");
|
||||||
@ -1445,6 +1470,7 @@ module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: circle_3points()
|
// Function&Module: circle_3points()
|
||||||
// Usage: As Function
|
// Usage: As Function
|
||||||
// circ = circle_3points(pt1, pt2, pt3);
|
// circ = circle_3points(pt1, pt2, pt3);
|
||||||
@ -1699,18 +1725,16 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
|||||||
b = furthest_point(pa, points),
|
b = furthest_point(pa, points),
|
||||||
pb = points[b],
|
pb = points[b],
|
||||||
nrm = norm(pa-pb)
|
nrm = norm(pa-pb)
|
||||||
)
|
)
|
||||||
nrm <= eps*max(norm(pa),norm(pb))
|
nrm <= eps*max(norm(pa),norm(pb)) ?
|
||||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
assert(!error, "Cannot find three noncollinear points in pointlist.") [] :
|
||||||
[]
|
let(
|
||||||
: let(
|
n = (pb-pa)/nrm,
|
||||||
n = (pb-pa)/nrm,
|
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
|
||||||
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
|
)
|
||||||
)
|
max(distlist) < eps*nrm ?
|
||||||
max(distlist) < eps*nrm
|
assert(!error, "Cannot find three noncollinear points in pointlist.") [] :
|
||||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
[0, b, max_index(distlist)];
|
||||||
[]
|
|
||||||
: [0,b,max_index(distlist)];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: pointlist_bounds()
|
// Function: pointlist_bounds()
|
||||||
@ -1726,10 +1750,12 @@ function pointlist_bounds(pts) =
|
|||||||
assert(is_path(pts,dim=undef,fast=true) , "Invalid pointlist." )
|
assert(is_path(pts,dim=undef,fast=true) , "Invalid pointlist." )
|
||||||
let(
|
let(
|
||||||
select = ident(len(pts[0])),
|
select = ident(len(pts[0])),
|
||||||
spread = [for(i=[0:len(pts[0])-1])
|
spread = [
|
||||||
let( spreadi = pts*select[i] )
|
for(i=[0:len(pts[0])-1])
|
||||||
[min(spreadi), max(spreadi)] ] )
|
let( spreadi = pts*select[i] )
|
||||||
transpose(spread);
|
[ min(spreadi), max(spreadi) ]
|
||||||
|
]
|
||||||
|
) transpose(spread);
|
||||||
|
|
||||||
|
|
||||||
// Function: closest_point()
|
// Function: closest_point()
|
||||||
@ -1783,10 +1809,10 @@ function polygon_area(poly, signed=false) =
|
|||||||
plane==[]? undef :
|
plane==[]? undef :
|
||||||
let(
|
let(
|
||||||
n = plane_normal(plane),
|
n = plane_normal(plane),
|
||||||
total =
|
total = sum([
|
||||||
sum([ for(i=[1:1:len(poly)-2])
|
for(i=[1:1:len(poly)-2])
|
||||||
cross(poly[i]-poly[0], poly[i+1]-poly[0])
|
cross(poly[i]-poly[0], poly[i+1]-poly[0])
|
||||||
]) * n/2
|
]) * n/2
|
||||||
)
|
)
|
||||||
signed ? total : abs(total);
|
signed ? total : abs(total);
|
||||||
|
|
||||||
@ -1869,7 +1895,7 @@ function reindex_polygon(reference, poly, return_error=false) =
|
|||||||
[for(i=[0:N-1])
|
[for(i=[0:N-1])
|
||||||
(reference[i]*poly[(i+k)%N]) ] ]*I,
|
(reference[i]*poly[(i+k)%N]) ] ]*I,
|
||||||
optimal_poly = polygon_shift(fixpoly, max_index(val))
|
optimal_poly = polygon_shift(fixpoly, max_index(val))
|
||||||
)
|
)
|
||||||
return_error? [optimal_poly, min(poly*(I*poly)-2*val)] :
|
return_error? [optimal_poly, min(poly*(I*poly)-2*val)] :
|
||||||
optimal_poly;
|
optimal_poly;
|
||||||
|
|
||||||
@ -1901,7 +1927,8 @@ function align_polygon(reference, poly, angles, cp) =
|
|||||||
"The `angle` parameter must be a range or a non void list of numbers.")
|
"The `angle` parameter must be a range or a non void list of numbers.")
|
||||||
let( // alignments is a vector of entries of the form: [polygon, error]
|
let( // alignments is a vector of entries of the form: [polygon, error]
|
||||||
alignments = [
|
alignments = [
|
||||||
for(angle=angles) reindex_polygon(
|
for(angle=angles)
|
||||||
|
reindex_polygon(
|
||||||
reference,
|
reference,
|
||||||
zrot(angle,p=poly,cp=cp),
|
zrot(angle,p=poly,cp=cp),
|
||||||
return_error=true
|
return_error=true
|
||||||
@ -1927,22 +1954,21 @@ function centroid(poly, eps=EPSILON) =
|
|||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
let(
|
let(
|
||||||
n = len(poly[0])==2 ? 1 :
|
n = len(poly[0])==2 ? 1 :
|
||||||
let(
|
let( plane = plane_from_points(poly, fast=true) )
|
||||||
plane = plane_from_points(poly, fast=true) )
|
|
||||||
assert( !is_undef(plane), "The polygon must be planar." )
|
assert( !is_undef(plane), "The polygon must be planar." )
|
||||||
plane_normal(plane),
|
plane_normal(plane),
|
||||||
v0 = poly[0] ,
|
v0 = poly[0] ,
|
||||||
val = sum([for(i=[1:len(poly)-2])
|
val = sum([
|
||||||
let(
|
for(i=[1:len(poly)-2])
|
||||||
v1 = poly[i],
|
let(
|
||||||
v2 = poly[i+1],
|
v1 = poly[i],
|
||||||
area = cross(v2-v0,v1-v0)*n
|
v2 = poly[i+1],
|
||||||
)
|
area = cross(v2-v0,v1-v0)*n
|
||||||
[ area, (v0+v1+v2)*area ]
|
) [ area, (v0+v1+v2)*area ]
|
||||||
] )
|
])
|
||||||
)
|
)
|
||||||
assert(!approx(val[0],0, eps), "The polygon is self-intersecting or its points are collinear.")
|
assert(!approx(val[0],0, eps), "The polygon is self-intersecting or its points are collinear.")
|
||||||
val[1]/val[0]/3;
|
val[1]/val[0]/3;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -1972,38 +1998,39 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
|||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
// Does the point lie on any edges? If so return 0.
|
// Does the point lie on any edges? If so return 0.
|
||||||
let(
|
let(
|
||||||
on_brd = [for(i=[0:1:len(poly)-1])
|
on_brd = [
|
||||||
let( seg = select(poly,i,i+1) )
|
for (i = [0:1:len(poly)-1])
|
||||||
if( !approx(seg[0],seg[1],eps) )
|
let( seg = select(poly,i,i+1) )
|
||||||
point_on_segment2d(point, seg, eps=eps)? 1:0 ]
|
if (!approx(seg[0],seg[1],eps) )
|
||||||
)
|
point_on_segment2d(point, seg, eps=eps)? 1:0
|
||||||
sum(on_brd) > 0
|
]
|
||||||
? 0
|
)
|
||||||
: nonzero
|
sum(on_brd) > 0? 0 :
|
||||||
? // Compute winding number and return 1 for interior, -1 for exterior
|
nonzero
|
||||||
let(
|
? // Compute winding number and return 1 for interior, -1 for exterior
|
||||||
windchk = [for(i=[0:1:len(poly)-1])
|
let(
|
||||||
let(seg=select(poly,i,i+1))
|
windchk = [
|
||||||
if(!approx(seg[0],seg[1],eps=eps))
|
for(i=[0:1:len(poly)-1])
|
||||||
_point_above_below_segment(point, seg)
|
let( seg=select(poly,i,i+1) )
|
||||||
]
|
if (!approx(seg[0],seg[1],eps=eps))
|
||||||
|
_point_above_below_segment(point, seg)
|
||||||
|
]
|
||||||
|
) sum(windchk) != 0 ? 1 : -1
|
||||||
|
: // or compute the crossings with the ray [point, point+[1,0]]
|
||||||
|
let(
|
||||||
|
n = len(poly),
|
||||||
|
cross = [
|
||||||
|
for(i=[0:n-1])
|
||||||
|
let(
|
||||||
|
p0 = poly[i]-point,
|
||||||
|
p1 = poly[(i+1)%n]-point
|
||||||
)
|
)
|
||||||
sum(windchk) != 0 ? 1 : -1
|
if (
|
||||||
: // or compute the crossings with the ray [point, point+[1,0]]
|
( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) )
|
||||||
let(
|
&& -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y)
|
||||||
n = len(poly),
|
) 1
|
||||||
cross =
|
]
|
||||||
[for(i=[0:n-1])
|
) 2*(len(cross)%2)-1;
|
||||||
let(
|
|
||||||
p0 = poly[i]-point,
|
|
||||||
p1 = poly[(i+1)%n]-point
|
|
||||||
)
|
|
||||||
if( ( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) )
|
|
||||||
&& -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) )
|
|
||||||
1
|
|
||||||
]
|
|
||||||
)
|
|
||||||
2*(len(cross)%2)-1;
|
|
||||||
|
|
||||||
|
|
||||||
// Function: polygon_is_clockwise()
|
// Function: polygon_is_clockwise()
|
||||||
@ -2052,7 +2079,7 @@ function ccw_polygon(poly) =
|
|||||||
// poly = The list of the path points for the perimeter of the polygon.
|
// poly = The list of the path points for the perimeter of the polygon.
|
||||||
function reverse_polygon(poly) =
|
function reverse_polygon(poly) =
|
||||||
assert(is_path(poly), "Input should be a polygon")
|
assert(is_path(poly), "Input should be a polygon")
|
||||||
[poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ];
|
[ poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ];
|
||||||
|
|
||||||
|
|
||||||
// Function: polygon_normal()
|
// Function: polygon_normal()
|
||||||
@ -2244,14 +2271,16 @@ function split_polygons_at_each_z(polys, zs, _i=0) =
|
|||||||
// is_convex_polygon(spiral); // Returns: false
|
// is_convex_polygon(spiral); // Returns: false
|
||||||
function is_convex_polygon(poly,eps=EPSILON) =
|
function is_convex_polygon(poly,eps=EPSILON) =
|
||||||
assert(is_path(poly), "The input should be a 2D or 3D polygon." )
|
assert(is_path(poly), "The input should be a 2D or 3D polygon." )
|
||||||
let( lp = len(poly),
|
let(
|
||||||
p0 = poly[0] )
|
lp = len(poly),
|
||||||
|
p0 = poly[0]
|
||||||
|
)
|
||||||
assert( lp>=3 , "A polygon must have at least 3 points" )
|
assert( lp>=3 , "A polygon must have at least 3 points" )
|
||||||
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
||||||
len(p0)==2
|
len(p0)==2
|
||||||
? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" )
|
? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" )
|
||||||
min(crosses) >=0 || max(crosses)<=0
|
min(crosses) >=0 || max(crosses)<=0
|
||||||
: let( prod = crosses*sum(crosses),
|
: let( prod = crosses*sum(crosses),
|
||||||
minc = min(prod),
|
minc = min(prod),
|
||||||
maxc = max(prod) )
|
maxc = max(prod) )
|
||||||
assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" )
|
assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" )
|
||||||
@ -2439,12 +2468,12 @@ function _closest_s3(s,eps=EPSILON) =
|
|||||||
let( nr = cross(s[1]-s[0],s[2]-s[0]),
|
let( nr = cross(s[1]-s[0],s[2]-s[0]),
|
||||||
sz = [ norm(s[1]-s[0]), norm(s[1]-s[2]), norm(s[2]-s[0]) ] )
|
sz = [ norm(s[1]-s[0]), norm(s[1]-s[2]), norm(s[2]-s[0]) ] )
|
||||||
norm(nr)<eps*max(sz)
|
norm(nr)<eps*max(sz)
|
||||||
? let( i = max_index(sz) )
|
? let( i = max_index(sz) )
|
||||||
_closest_s2([ s[i], s[(i+1)%3], s[3] ], eps) // degenerate case
|
_closest_s2([ s[i], s[(i+1)%3], s[3] ], eps) // degenerate case
|
||||||
// considering that s[3] was the last inserted vertex in s,
|
// considering that s[3] was the last inserted vertex in s,
|
||||||
// the only possible outcomes will be:
|
// the only possible outcomes will be:
|
||||||
// s or some of the 3 triangles of s containing s[3]
|
// s or some of the 3 triangles of s containing s[3]
|
||||||
: let(
|
: let(
|
||||||
tris = [ [s[0], s[1], s[3]],
|
tris = [ [s[0], s[1], s[3]],
|
||||||
[s[1], s[2], s[3]],
|
[s[1], s[2], s[3]],
|
||||||
[s[2], s[0], s[3]] ],
|
[s[2], s[0], s[3]] ],
|
||||||
|
18
math.scad
18
math.scad
@ -791,13 +791,17 @@ function _med3(a,b,c) =
|
|||||||
// d = convolve([[1,1],[2,2],[3,1]],[[1,2],[2,1]])); // Returns: [3,9,11,7]
|
// d = convolve([[1,1],[2,2],[3,1]],[[1,2],[2,1]])); // Returns: [3,9,11,7]
|
||||||
function convolve(p,q) =
|
function convolve(p,q) =
|
||||||
p==[] || q==[] ? [] :
|
p==[] || q==[] ? [] :
|
||||||
assert( (is_vector(p) || is_matrix(p))
|
assert(
|
||||||
&& ( is_vector(q) || (is_matrix(q) && ( !is_vector(p[0]) || (len(p[0])==len(q[0])) ) ) ) ,
|
(is_vector(p) || is_matrix(p))
|
||||||
"The inputs should be vectors or paths all of the same dimension.")
|
&& ( is_vector(q) || (is_matrix(q) && ( !is_vector(p[0]) || (len(p[0])==len(q[0])) ) ) ) ,
|
||||||
let( n = len(p),
|
"The inputs should be vectors or paths all of the same dimension."
|
||||||
m = len(q))
|
)
|
||||||
[for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
|
let(
|
||||||
sum([for(j=[k1:k2]) p[i-j]*q[j] ])
|
n = len(p),
|
||||||
|
m = len(q)
|
||||||
|
) [
|
||||||
|
for (i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
|
||||||
|
sum([for(j=[k1:k2]) p[i-j]*q[j] ])
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
|
@ -1010,7 +1010,7 @@ module jittered_poly(path, dist=1/512) {
|
|||||||
// xcopies(3) circle(3, $fn=32);
|
// xcopies(3) circle(3, $fn=32);
|
||||||
// }
|
// }
|
||||||
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
|
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
|
||||||
assert( is_path([pt1,pt2],3), "The points should be 3d points");
|
assert( is_path([pt1,pt2],3), "The points should be 3d points");
|
||||||
rtp = xyz_to_spherical(pt2-pt1);
|
rtp = xyz_to_spherical(pt2-pt1);
|
||||||
translate(pt1) {
|
translate(pt1) {
|
||||||
rotate([0, rtp[2], rtp[1]]) {
|
rotate([0, rtp[2], rtp[1]]) {
|
||||||
|
@ -1434,10 +1434,10 @@ function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENT
|
|||||||
assert(is_undef(angle) || is_finite(angle))
|
assert(is_undef(angle) || is_finite(angle))
|
||||||
assert(num_defined([h, w1, w2, angle]) == 3, "Must give exactly 3 of the arguments h, w1, w2, and angle.")
|
assert(num_defined([h, w1, w2, angle]) == 3, "Must give exactly 3 of the arguments h, w1, w2, and angle.")
|
||||||
assert(is_finite(shift))
|
assert(is_finite(shift))
|
||||||
assert(is_finite(chamfer) || is_vector(chamfer,4))
|
assert(is_finite(chamfer) || is_vector(chamfer,4))
|
||||||
assert(is_finite(rounding) || is_vector(rounding,4))
|
assert(is_finite(rounding) || is_vector(rounding,4))
|
||||||
let(
|
let(
|
||||||
simple = chamfer==0 && rounding==0,
|
simple = chamfer==0 && rounding==0,
|
||||||
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)),
|
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)),
|
||||||
w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift),
|
w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift),
|
||||||
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift)
|
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift)
|
||||||
@ -1451,23 +1451,23 @@ function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENT
|
|||||||
[-w1/2,-h/2],
|
[-w1/2,-h/2],
|
||||||
[w1/2,-h/2],
|
[w1/2,-h/2],
|
||||||
],
|
],
|
||||||
cpath = simple? base_path :
|
cpath = simple? base_path :
|
||||||
path_chamfer_and_rounding(
|
path_chamfer_and_rounding(
|
||||||
base_path, closed=true,
|
base_path, closed=true,
|
||||||
chamfer=chamfer,
|
chamfer=chamfer,
|
||||||
rounding=rounding
|
rounding=rounding
|
||||||
),
|
),
|
||||||
path = reverse(cpath)
|
path = reverse(cpath)
|
||||||
) simple?
|
) simple
|
||||||
reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path) :
|
? reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path)
|
||||||
reorient(anchor,spin, two_d=true, path=path, p=path);
|
: reorient(anchor,spin, two_d=true, path=path, p=path);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) {
|
module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) {
|
||||||
path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding);
|
path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding);
|
||||||
union() {
|
union() {
|
||||||
simple = chamfer==0 && rounding==0;
|
simple = chamfer==0 && rounding==0;
|
||||||
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle));
|
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle));
|
||||||
w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift);
|
w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift);
|
||||||
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift);
|
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user