Rename quaternion functions to not have uppercase names.

This commit is contained in:
Garth Minette 2021-06-12 17:17:05 -07:00
parent 621bb4876b
commit 3eb506e78a
4 changed files with 519 additions and 537 deletions

View File

@ -1109,11 +1109,11 @@ module spiral_sweep(poly, h, r, twist=360, higbee, center, r1, r2, d, d1, d2, hi
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ]; // path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
// path_extrude(path) circle(r=10, $fn=6); // path_extrude(path) circle(r=10, $fn=6);
module path_extrude(path, convexity=10, clipsize=100) { module path_extrude(path, convexity=10, clipsize=100) {
function polyquats(path, q=Q_Ident(), v=[0,0,1], i=0) = let( function polyquats(path, q=q_ident(), v=[0,0,1], i=0) = let(
v2 = path[i+1] - path[i], v2 = path[i+1] - path[i],
ang = vector_angle(v,v2), ang = vector_angle(v,v2),
axis = ang>0.001? unit(cross(v,v2)) : [0,0,1], axis = ang>0.001? unit(cross(v,v2)) : [0,0,1],
newq = Q_Mul(Quat(axis, ang), q), newq = q_mul(quat(axis, ang), q),
dist = norm(v2) dist = norm(v2)
) i < (len(path)-2)? ) i < (len(path)-2)?
concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) : concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) :
@ -1129,7 +1129,7 @@ module path_extrude(path, convexity=10, clipsize=100) {
q = pquats[i][1]; q = pquats[i][1];
difference() { difference() {
translate(pt1) { translate(pt1) {
Qrot(q) { q_rot(q) {
down(clipsize/2/2) { down(clipsize/2/2) {
if ((dist+clipsize/2) > 0) { if ((dist+clipsize/2) > 0) {
linear_extrude(height=dist+clipsize/2, convexity=convexity) { linear_extrude(height=dist+clipsize/2, convexity=convexity) {
@ -1140,12 +1140,12 @@ module path_extrude(path, convexity=10, clipsize=100) {
} }
} }
translate(pt1) { translate(pt1) {
hq = (i > 0)? Q_Slerp(q, pquats[i-1][1], 0.5) : q; hq = (i > 0)? q_slerp(q, pquats[i-1][1], 0.5) : q;
Qrot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true); q_rot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
} }
translate(pt2) { translate(pt2) {
hq = (i < ptcount-2)? Q_Slerp(q, pquats[i+1][1], 0.5) : q; hq = (i < ptcount-2)? q_slerp(q, pquats[i+1][1], 0.5) : q;
Qrot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true); q_rot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
} }
} }
} }

View File

@ -16,190 +16,190 @@
// Internal // Internal
function _Quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w]; function _quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w];
function _Qvec(q) = [q.x,q.y,q.z]; function _qvec(q) = [q.x,q.y,q.z];
function _Qreal(q) = q[3]; function _qreal(q) = q[3];
function _Qset(v,r) = concat( v, r ); function _qset(v,r) = concat( v, r );
// normalizes without checking // normalizes without checking
function _Qnorm(q) = q/norm(q); function _qnorm(q) = q/norm(q);
// Function: Q_is_quat() // Function: is_quaternion()
// Usage: // Usage:
// if(Q_is_quat(q)) a=0; // if(is_quaternion(q)) a=0;
// Description: Return true if q is a valid non-zero quaternion. // Description: Return true if q is a valid non-zero quaternion.
// Arguments: // Arguments:
// q = object to check. // q = object to check.
function Q_is_quat(q) = is_vector(q,4) && ! approx(norm(q),0) ; function is_quaternion(q) = is_vector(q,4) && ! approx(norm(q),0) ;
// Function: Quat() // Function: quat()
// Usage: // Usage:
// Quat(ax, ang); // quat(ax, ang);
// Description: Create a normalized Quaternion from axis and angle of rotation. // Description: Create a normalized Quaternion from axis and angle of rotation.
// Arguments: // Arguments:
// ax = Vector of axis of rotation. // ax = Vector of axis of rotation.
// ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. // ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function Quat(ax=[0,0,1], ang=0) = function quat(ax=[0,0,1], ang=0) =
assert( is_vector(ax,3) && is_finite(ang), "Invalid input") assert( is_vector(ax,3) && is_finite(ang), "Invalid input")
let( n = norm(ax) ) let( n = norm(ax) )
approx(n,0) approx(n,0)
? _Quat([0,0,0], sin(ang/2), cos(ang/2)) ? _quat([0,0,0], sin(ang/2), cos(ang/2))
: _Quat(ax/n, sin(ang/2), cos(ang/2)); : _quat(ax/n, sin(ang/2), cos(ang/2));
// Function: QuatX() // Function: quat_x()
// Usage: // Usage:
// QuatX(a); // quat_x(a);
// Description: Create a normalized Quaternion for rotating around the X axis [1,0,0]. // Description: Create a normalized Quaternion for rotating around the X axis [1,0,0].
// Arguments: // Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatX(a=0) = function quat_x(a=0) =
assert( is_finite(a), "Invalid angle" ) assert( is_finite(a), "Invalid angle" )
Quat([1,0,0],a); quat([1,0,0],a);
// Function: QuatY() // Function: quat_y()
// Usage: // Usage:
// QuatY(a); // quat_y(a);
// Description: Create a normalized Quaternion for rotating around the Y axis [0,1,0]. // Description: Create a normalized Quaternion for rotating around the Y axis [0,1,0].
// Arguments: // Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatY(a=0) = function quat_y(a=0) =
assert( is_finite(a), "Invalid angle" ) assert( is_finite(a), "Invalid angle" )
Quat([0,1,0],a); quat([0,1,0],a);
// Function: QuatZ() // Function: quat_z()
// Usage: // Usage:
// QuatZ(a); // quat_z(a);
// Description: Create a normalized Quaternion for rotating around the Z axis [0,0,1]. // Description: Create a normalized Quaternion for rotating around the Z axis [0,0,1].
// Arguments: // Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatZ(a=0) = function quat_z(a=0) =
assert( is_finite(a), "Invalid angle" ) assert( is_finite(a), "Invalid angle" )
Quat([0,0,1],a); quat([0,0,1],a);
// Function: QuatXYZ() // Function: quat_xyz()
// Usage: // Usage:
// QuatXYZ([X,Y,Z]) // quat_xyz([X,Y,Z])
// Description: // Description:
// Creates a normalized quaternion from standard [X,Y,Z] rotation angles in degrees. // Creates a normalized quaternion from standard [X,Y,Z] rotation angles in degrees.
// Arguments: // Arguments:
// a = The triplet of rotation angles, [X,Y,Z] // a = The triplet of rotation angles, [X,Y,Z]
function QuatXYZ(a=[0,0,0]) = function quat_xyz(a=[0,0,0]) =
assert( is_vector(a,3), "Invalid angles") assert( is_vector(a,3), "Invalid angles")
let( let(
qx = QuatX(a[0]), qx = quat_x(a[0]),
qy = QuatY(a[1]), qy = quat_y(a[1]),
qz = QuatZ(a[2]) qz = quat_z(a[2])
) )
Q_Mul(qz, Q_Mul(qy, qx)); q_mul(qz, q_mul(qy, qx));
// Function: Q_From_to() // Function: q_from_to()
// Usage: // Usage:
// q = Q_From_to(v1, v2); // q = q_from_to(v1, v2);
// Description: // Description:
// Returns the normalized quaternion that rotates the non zero 3D vector v1 // Returns the normalized quaternion that rotates the non zero 3D vector v1
// to the non zero 3D vector v2. // to the non zero 3D vector v2.
function Q_From_to(v1, v2) = function q_from_to(v1, v2) =
assert( is_vector(v1,3) && is_vector(v2,3) assert( is_vector(v1,3) && is_vector(v2,3)
&& ! approx(norm(v1),0) && ! approx(norm(v2),0) && ! approx(norm(v1),0) && ! approx(norm(v2),0)
, "Invalid vector(s)") , "Invalid vector(s)")
let( ax = cross(v1,v2), let( ax = cross(v1,v2),
n = norm(ax) ) n = norm(ax) )
approx(n, 0) approx(n, 0)
? v1*v2>0 ? Q_Ident() : Quat([ v1.y, -v1.x, 0], 180) ? v1*v2>0 ? q_ident() : quat([ v1.y, -v1.x, 0], 180)
: Quat(ax, atan2( n , v1*v2 )); : quat(ax, atan2( n , v1*v2 ));
// Function: Q_Ident() // Function: q_ident()
// Description: Returns the "Identity" zero-rotation Quaternion. // Description: Returns the "Identity" zero-rotation Quaternion.
function Q_Ident() = [0, 0, 0, 1]; function q_ident() = [0, 0, 0, 1];
// Function: Q_Add_S() // Function: q_add_s()
// Usage: // Usage:
// Q_Add_S(q, s) // q_add_s(q, s)
// Description: // Description:
// Adds a scalar value `s` to the W part of a quaternion `q`. // Adds a scalar value `s` to the W part of a quaternion `q`.
// The returned quaternion is usually not normalized. // The returned quaternion is usually not normalized.
function Q_Add_S(q, s) = function q_add_s(q, s) =
assert( is_finite(s), "Invalid scalar" ) assert( is_finite(s), "Invalid scalar" )
q+[0,0,0,s]; q+[0,0,0,s];
// Function: Q_Sub_S() // Function: q_sub_s()
// Usage: // Usage:
// Q_Sub_S(q, s) // q_sub_s(q, s)
// Description: // Description:
// Subtracts a scalar value `s` from the W part of a quaternion `q`. // Subtracts a scalar value `s` from the W part of a quaternion `q`.
// The returned quaternion is usually not normalized. // The returned quaternion is usually not normalized.
function Q_Sub_S(q, s) = function q_sub_s(q, s) =
assert( is_finite(s), "Invalid scalar" ) assert( is_finite(s), "Invalid scalar" )
q-[0,0,0,s]; q-[0,0,0,s];
// Function: Q_Mul_S() // Function: q_mul_s()
// Usage: // Usage:
// Q_Mul_S(q, s) // q_mul_s(q, s)
// Description: // Description:
// Multiplies each part of a quaternion `q` by a scalar value `s`. // Multiplies each part of a quaternion `q` by a scalar value `s`.
// The returned quaternion is usually not normalized. // The returned quaternion is usually not normalized.
function Q_Mul_S(q, s) = function q_mul_s(q, s) =
assert( is_finite(s), "Invalid scalar" ) assert( is_finite(s), "Invalid scalar" )
q*s; q*s;
// Function: Q_Div_S() // Function: q_div_s()
// Usage: // Usage:
// Q_Div_S(q, s) // q_div_s(q, s)
// Description: // Description:
// Divides each part of a quaternion `q` by a scalar value `s`. // Divides each part of a quaternion `q` by a scalar value `s`.
// The returned quaternion is usually not normalized. // The returned quaternion is usually not normalized.
function Q_Div_S(q, s) = function q_div_s(q, s) =
assert( is_finite(s) && ! approx(s,0) , "Invalid scalar" ) assert( is_finite(s) && ! approx(s,0) , "Invalid scalar" )
q/s; q/s;
// Function: Q_Add() // Function: q_add()
// Usage: // Usage:
// Q_Add(a, b) // q_add(a, b)
// Description: // Description:
// Adds each part of two quaternions together. // Adds each part of two quaternions together.
// The returned quaternion is usually not normalized. // The returned quaternion is usually not normalized.
function Q_Add(a, b) = function q_add(a, b) =
assert( Q_is_quat(a) && Q_is_quat(a), "Invalid quaternion(s)") assert( is_quaternion(a) && is_quaternion(a), "Invalid quaternion(s)")
assert( ! approx(norm(a+b),0), "Quaternions cannot be opposed" ) assert( ! approx(norm(a+b),0), "Quaternions cannot be opposed" )
a+b; a+b;
// Function: Q_Sub() // Function: q_sub()
// Usage: // Usage:
// Q_Sub(a, b) // q_sub(a, b)
// Description: // Description:
// Subtracts each part of quaternion `b` from quaternion `a`. // Subtracts each part of quaternion `b` from quaternion `a`.
// The returned quaternion is usually not normalized. // The returned quaternion is usually not normalized.
function Q_Sub(a, b) = function q_sub(a, b) =
assert( Q_is_quat(a) && Q_is_quat(a), "Invalid quaternion(s)") assert( is_quaternion(a) && is_quaternion(a), "Invalid quaternion(s)")
assert( ! approx(a,b), "Quaternions cannot be equal" ) assert( ! approx(a,b), "Quaternions cannot be equal" )
a-b; a-b;
// Function: Q_Mul() // Function: q_mul()
// Usage: // Usage:
// Q_Mul(a, b) // q_mul(a, b)
// Description: // Description:
// Multiplies quaternion `a` by quaternion `b`. // Multiplies quaternion `a` by quaternion `b`.
// The returned quaternion is normalized if both `a` and `b` are normalized // The returned quaternion is normalized if both `a` and `b` are normalized
function Q_Mul(a, b) = function q_mul(a, b) =
assert( Q_is_quat(a) && Q_is_quat(b), "Invalid quaternion(s)") assert( is_quaternion(a) && is_quaternion(b), "Invalid quaternion(s)")
[ [
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y, a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x, a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
@ -208,94 +208,94 @@ function Q_Mul(a, b) =
]; ];
// Function: Q_Cumulative() // Function: q_cumulative()
// Usage: // Usage:
// Q_Cumulative(v); // q_cumulative(v);
// Description: // Description:
// Given a list of Quaternions, cumulatively multiplies them, returning a list // Given a list of Quaternions, cumulatively multiplies them, returning a list
// of each cumulative Quaternion product. It starts with the first quaternion // of each cumulative Quaternion product. It starts with the first quaternion
// given in the list, and applies successive quaternion rotations in list order. // given in the list, and applies successive quaternion rotations in list order.
// The quaternion in the returned list are normalized if each quaternion in v // The quaternion in the returned list are normalized if each quaternion in v
// is normalized. // is normalized.
function Q_Cumulative(v, _i=0, _acc=[]) = function q_cumulative(v, _i=0, _acc=[]) =
_i==len(v) ? _acc : _i==len(v) ? _acc :
Q_Cumulative( q_cumulative(
v, _i+1, v, _i+1,
concat( concat(
_acc, _acc,
[_i==0 ? v[_i] : Q_Mul(v[_i], last(_acc))] [_i==0 ? v[_i] : q_mul(v[_i], last(_acc))]
) )
); );
// Function: Q_Dot() // Function: q_dot()
// Usage: // Usage:
// Q_Dot(a, b) // q_dot(a, b)
// Description: Calculates the dot product between quaternions `a` and `b`. // Description: Calculates the dot product between quaternions `a` and `b`.
function Q_Dot(a, b) = function q_dot(a, b) =
assert( Q_is_quat(a) && Q_is_quat(b), "Invalid quaternion(s)" ) assert( is_quaternion(a) && is_quaternion(b), "Invalid quaternion(s)" )
a*b; a*b;
// Function: Q_Neg() // Function: q_neg()
// Usage: // Usage:
// Q_Neg(q) // q_neg(q)
// Description: Returns the negative of quaternion `q`. // Description: Returns the negative of quaternion `q`.
function Q_Neg(q) = function q_neg(q) =
assert( Q_is_quat(q), "Invalid quaternion" ) assert( is_quaternion(q), "Invalid quaternion" )
-q; -q;
// Function: Q_Conj() // Function: q_conj()
// Usage: // Usage:
// Q_Conj(q) // q_conj(q)
// Description: Returns the conjugate of quaternion `q`. // Description: Returns the conjugate of quaternion `q`.
function Q_Conj(q) = function q_conj(q) =
assert( Q_is_quat(q), "Invalid quaternion" ) assert( is_quaternion(q), "Invalid quaternion" )
[-q.x, -q.y, -q.z, q[3]]; [-q.x, -q.y, -q.z, q[3]];
// Function: Q_Inverse() // Function: q_inverse()
// Usage: // Usage:
// qc = Q_Inverse(q) // qc = q_inverse(q)
// Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized. // Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized.
function Q_Inverse(q) = function q_inverse(q) =
assert( Q_is_quat(q), "Invalid quaternion" ) assert( is_quaternion(q), "Invalid quaternion" )
let(q = _Qnorm(q) ) let(q = _qnorm(q) )
[-q.x, -q.y, -q.z, q[3]]; [-q.x, -q.y, -q.z, q[3]];
// Function: Q_Norm() // Function: q_norm()
// Usage: // Usage:
// Q_Norm(q) // q_norm(q)
// Description: // Description:
// Returns the `norm()` "length" of quaternion `q`. // Returns the `norm()` "length" of quaternion `q`.
// Normalized quaternions have unitary norm. // Normalized quaternions have unitary norm.
function Q_Norm(q) = function q_norm(q) =
assert( Q_is_quat(q), "Invalid quaternion" ) assert( is_quaternion(q), "Invalid quaternion" )
norm(q); norm(q);
// Function: Q_Normalize() // Function: q_normalize()
// Usage: // Usage:
// Q_Normalize(q) // q_normalize(q)
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1. // Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
function Q_Normalize(q) = function q_normalize(q) =
assert( Q_is_quat(q) , "Invalid quaternion" ) assert( is_quaternion(q) , "Invalid quaternion" )
q/norm(q); q/norm(q);
// Function: Q_Dist() // Function: q_dist()
// Usage: // Usage:
// Q_Dist(q1, q2) // q_dist(q1, q2)
// Description: Returns the "distance" between two quaternions. // Description: Returns the "distance" between two quaternions.
function Q_Dist(q1, q2) = function q_dist(q1, q2) =
assert( Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" ) assert( is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" )
norm(q2-q1); norm(q2-q1);
// Function: Q_Slerp() // Function: q_slerp()
// Usage: // Usage:
// Q_Slerp(q1, q2, u); // q_slerp(q1, q2, u);
// Description: // Description:
// Returns a quaternion that is a spherical interpolation between two quaternions. // Returns a quaternion that is a spherical interpolation between two quaternions.
// Arguments: // Arguments:
@ -303,45 +303,45 @@ function Q_Dist(q1, q2) =
// q2 = The second quaternion. (u=1) // q2 = The second quaternion. (u=1)
// u = The proportional value, from 0 to 1, of what part of the interpolation to return. // u = The proportional value, from 0 to 1, of what part of the interpolation to return.
// Example(3D): Giving `u` as a Scalar // Example(3D): Giving `u` as a Scalar
// a = QuatY(-135); // a = quat_y(-135);
// b = QuatXYZ([0,-30,30]); // b = quat_xyz([0,-30,30]);
// for (u=[0:0.1:1]) // for (u=[0:0.1:1])
// Qrot(Q_Slerp(a, b, u)) // q_rot(q_slerp(a, b, u))
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
// Example(3D): Giving `u` as a Range // Example(3D): Giving `u` as a Range
// a = QuatZ(-135); // a = quat_z(-135);
// b = QuatXYZ([90,0,-45]); // b = quat_xyz([90,0,-45]);
// for (q = Q_Slerp(a, b, [0:0.1:1])) // for (q = q_slerp(a, b, [0:0.1:1]))
// Qrot(q) right(80) cube([10,10,1]); // q_rot(q) right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
function Q_Slerp(q1, q2, u, _dot) = function q_slerp(q1, q2, u, _dot) =
is_undef(_dot) is_undef(_dot)
? assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)") ? assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)")
assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" ) assert(is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" )
let( let(
_dot = q1*q2, _dot = q1*q2,
q1 = q1/norm(q1), q1 = q1/norm(q1),
q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2), q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2),
dot = abs(_dot) dot = abs(_dot)
) )
! is_finite(u) ? [for (uu=u) Q_Slerp(q1, q2, uu, dot)] : ! is_finite(u) ? [for (uu=u) q_slerp(q1, q2, uu, dot)] :
Q_Slerp(q1, q2, u, dot) q_slerp(q1, q2, u, dot)
: _dot>0.9995 : _dot>0.9995
? _Qnorm(q1 + u*(q2-q1)) ? _qnorm(q1 + u*(q2-q1))
: let( theta = u*acos(_dot), : let( theta = u*acos(_dot),
q3 = _Qnorm(q2 - _dot*q1) q3 = _qnorm(q2 - _dot*q1)
) )
_Qnorm(q1*cos(theta) + q3*sin(theta)); _qnorm(q1*cos(theta) + q3*sin(theta));
// Function: Q_Matrix3() // Function: q_matrix3()
// Usage: // Usage:
// Q_Matrix3(q); // q_matrix3(q);
// Description: // Description:
// Returns the 3x3 rotation matrix for the given normalized quaternion q. // Returns the 3x3 rotation matrix for the given normalized quaternion q.
function Q_Matrix3(q) = function q_matrix3(q) =
let( q = Q_Normalize(q) ) let( q = q_normalize(q) )
[ [
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]], [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]], [ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]],
@ -349,13 +349,13 @@ function Q_Matrix3(q) =
]; ];
// Function: Q_Matrix4() // Function: q_matrix4()
// Usage: // Usage:
// Q_Matrix4(q); // q_matrix4(q);
// Description: // Description:
// Returns the 4x4 rotation matrix for the given normalized quaternion q. // Returns the 4x4 rotation matrix for the given normalized quaternion q.
function Q_Matrix4(q) = function q_matrix4(q) =
let( q = Q_Normalize(q) ) let( q = q_normalize(q) )
[ [
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0], [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0], [ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0],
@ -364,115 +364,115 @@ function Q_Matrix4(q) =
]; ];
// Function: Q_Axis() // Function: q_axis()
// Usage: // Usage:
// Q_Axis(q) // q_axis(q)
// Description: // Description:
// Returns the axis of rotation of a normalized quaternion `q`. // Returns the axis of rotation of a normalized quaternion `q`.
// The input doesn't need to be normalized. // The input doesn't need to be normalized.
function Q_Axis(q) = function q_axis(q) =
assert( Q_is_quat(q) , "Invalid quaternion" ) assert( is_quaternion(q) , "Invalid quaternion" )
let( d = norm(_Qvec(q)) ) let( d = norm(_qvec(q)) )
approx(d,0)? [0,0,1] : _Qvec(q)/d; approx(d,0)? [0,0,1] : _qvec(q)/d;
// Function: Q_Angle() // Function: q_angle()
// Usage: // Usage:
// a = Q_Angle(q) // a = q_angle(q)
// a12 = Q_Angle(q1,q2); // a12 = q_angle(q1,q2);
// Description: // Description:
// If only q1 is given, returns the angle of rotation (in degrees) of that quaternion. // If only q1 is given, returns the angle of rotation (in degrees) of that quaternion.
// If both q1 and q2 are given, returns the angle (in degrees) between them. // If both q1 and q2 are given, returns the angle (in degrees) between them.
// The input quaternions don't need to be normalized. // The input quaternions don't need to be normalized.
function Q_Angle(q1,q2) = function q_angle(q1,q2) =
assert(Q_is_quat(q1) && (is_undef(q2) || Q_is_quat(q2)), "Invalid quaternion(s)" ) assert(is_quaternion(q1) && (is_undef(q2) || is_quaternion(q2)), "Invalid quaternion(s)" )
let( n1 = is_undef(q2)? norm(_Qvec(q1)): norm(q1) ) let( n1 = is_undef(q2)? norm(_qvec(q1)): norm(q1) )
is_undef(q2) is_undef(q2)
? 2 * atan2(n1,_Qreal(q1)) ? 2 * atan2(n1,_qreal(q1))
: let( q1 = q1/norm(q1), : let( q1 = q1/norm(q1),
q2 = q2/norm(q2) ) q2 = q2/norm(q2) )
4 * atan2(norm(q1 - q2), norm(q1 + q2)); 4 * atan2(norm(q1 - q2), norm(q1 + q2));
// Function&Module: Qrot() // Function&Module: q_rot()
// Usage: As Module // Usage: As Module
// Qrot(q) ... // q_rot(q) ...
// Usage: As Function // Usage: As Function
// pts = Qrot(q,p); // pts = q_rot(q,p);
// Description: // Description:
// When called as a module, rotates all children by the rotation stored in quaternion `q`. // When called as a module, rotates all children by the rotation stored in quaternion `q`.
// When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`. // When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`.
// When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`. // When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`.
// Example(FlatSpin,VPD=225,VPT=[71,-26,16]): // Example(FlatSpin,VPD=225,VPT=[71,-26,16]):
// module shape() translate([80,0,0]) cube([10,10,1]); // module shape() translate([80,0,0]) cube([10,10,1]);
// q = QuatXYZ([90,-15,-45]); // q = quat_xyz([90,-15,-45]);
// Qrot(q) shape(); // q_rot(q) shape();
// #shape(); // #shape();
// Example(NORENDER): // Example(NORENDER):
// q = QuatXYZ([45,35,10]); // q = quat_xyz([45,35,10]);
// mat4x4 = Qrot(q); // mat4x4 = q_rot(q);
// Example(NORENDER): // Example(NORENDER):
// q = QuatXYZ([45,35,10]); // q = quat_xyz([45,35,10]);
// pt = Qrot(q, p=[4,5,6]); // pt = q_rot(q, p=[4,5,6]);
// Example(NORENDER): // Example(NORENDER):
// q = QuatXYZ([45,35,10]); // q = quat_xyz([45,35,10]);
// pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]); // pts = q_rot(q, p=[[2,3,4], [4,5,6], [9,2,3]]);
module Qrot(q) { module q_rot(q) {
multmatrix(Q_Matrix4(q)) { multmatrix(q_matrix4(q)) {
children(); children();
} }
} }
function Qrot(q,p) = function q_rot(q,p) =
is_undef(p)? Q_Matrix4(q) : is_undef(p)? q_matrix4(q) :
is_vector(p)? Qrot(q,[p])[0] : is_vector(p)? q_rot(q,[p])[0] :
apply(Q_Matrix4(q), p); apply(q_matrix4(q), p);
// Module: Qrot_copies() // Module: q_rot_copies()
// Usage: // Usage:
// Qrot_copies(quats) ... // q_rot_copies(quats) ...
// Description: // Description:
// For each quaternion given in the list `quats`, rotates to that orientation and creates a copy // For each quaternion given in the list `quats`, rotates to that orientation and creates a copy
// of all children. This is equivalent to `for (q=quats) Qrot(q) ...`. // of all children. This is equivalent to `for (q=quats) q_rot(q) ...`.
// Arguments: // Arguments:
// quats = A list containing all quaternions to rotate to and create copies of all children for. // quats = A list containing all quaternions to rotate to and create copies of all children for.
// Example: // Example:
// a = QuatZ(-135); // a = quat_z(-135);
// b = QuatXYZ([0,-30,30]); // b = quat_xyz([0,-30,30]);
// Qrot_copies(Q_Slerp(a, b, [0:0.1:1])) // q_rot_copies(q_slerp(a, b, [0:0.1:1]))
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
module Qrot_copies(quats) for (q=quats) Qrot(q) children(); module q_rot_copies(quats) for (q=quats) q_rot(q) children();
// Function: Q_Rotation() // Function: q_rotation()
// Usage: // Usage:
// Q_Rotation(R) // q_rotation(R)
// Description: // Description:
// Returns a normalized quaternion corresponding to the rotation matrix R. // Returns a normalized quaternion corresponding to the rotation matrix R.
// R may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix. // R may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix.
// The last row and last column of R are ignored for 4x4 matrices. // The last row and last column of R are ignored for 4x4 matrices.
// It doesn't check whether R is in fact a rotation matrix. // It doesn't check whether R is in fact a rotation matrix.
// If R is not a rotation, the returned quaternion is an unpredictable quaternion . // If R is not a rotation, the returned quaternion is an unpredictable quaternion .
function Q_Rotation(R) = function q_rotation(R) =
assert( is_matrix(R,3,3) || is_matrix(R,4,4) , assert( is_matrix(R,3,3) || is_matrix(R,4,4) ,
"Matrix is neither 3x3 nor 4x4") "Matrix is neither 3x3 nor 4x4")
let( tr = R[0][0]+R[1][1]+R[2][2] ) // R trace let( tr = R[0][0]+R[1][1]+R[2][2] ) // R trace
tr>0 tr>0
? let( r = 1+tr ) ? let( r = 1+tr )
_Qnorm( _Qset([ R[1][2]-R[2][1], R[2][0]-R[0][2], R[0][1]-R[1][0] ], -r ) ) _qnorm( _qset([ R[1][2]-R[2][1], R[2][0]-R[0][2], R[0][1]-R[1][0] ], -r ) )
: let( i = max_index([ R[0][0], R[1][1], R[2][2] ]), : let( i = max_index([ R[0][0], R[1][1], R[2][2] ]),
r = 1 + 2*R[i][i] -R[0][0] -R[1][1] -R[2][2] ) r = 1 + 2*R[i][i] -R[0][0] -R[1][1] -R[2][2] )
i==0 ? _Qnorm( _Qset( [ 4*r, (R[1][0]+R[0][1]), (R[0][2]+R[2][0]) ], (R[2][1]-R[1][2])) ): i==0 ? _qnorm( _qset( [ 4*r, (R[1][0]+R[0][1]), (R[0][2]+R[2][0]) ], (R[2][1]-R[1][2])) ):
i==1 ? _Qnorm( _Qset( [ (R[1][0]+R[0][1]), 4*r, (R[2][1]+R[1][2]) ], (R[0][2]-R[2][0])) ): i==1 ? _qnorm( _qset( [ (R[1][0]+R[0][1]), 4*r, (R[2][1]+R[1][2]) ], (R[0][2]-R[2][0])) ):
_Qnorm( _Qset( [ (R[2][0]+R[0][2]), (R[1][2]+R[2][1]), 4*r ], (R[1][0]-R[0][1])) ) ; _qnorm( _qset( [ (R[2][0]+R[0][2]), (R[1][2]+R[2][1]), 4*r ], (R[1][0]-R[0][1])) ) ;
// Function&Module: Q_Rotation_path() // Function&Module: q_rotation_path()
// Usage: As a function // Usage: As a function
// path = Q_Rotation_path(q1, n, q2); // path = q_rotation_path(q1, n, q2);
// path = Q_Rotation_path(q1, n); // path = q_rotation_path(q1, n);
// Usage: As a module // Usage: As a module
// Q_Rotation_path(q1, n, q2) ... // q_rotation_path(q1, n, q2) ...
// Description: // Description:
// If q2 is undef and it is called as a function, the path, with length n+1 (n>=1), will be the // If q2 is undef and it is called as a function, the path, with length n+1 (n>=1), will be the
// cumulative multiplications of the matrix rotation of q1 by itself. // cumulative multiplications of the matrix rotation of q1 by itself.
@ -488,50 +488,50 @@ function Q_Rotation(R) =
// q2 = The quaternion of the last rotation. // q2 = The quaternion of the last rotation.
// n = An integer defining the path length ( path length = n+1). // n = An integer defining the path length ( path length = n+1).
// Example(3D): as a function // Example(3D): as a function
// a = QuatY(-135); // a = quat_y(-135);
// b = QuatXYZ([0,-30,30]); // b = quat_xyz([0,-30,30]);
// for (M=Q_Rotation_path(a, 10, b)) // for (M=q_rotation_path(a, 10, b))
// multmatrix(M) // multmatrix(M)
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
// Example(3D): as a module // Example(3D): as a module
// a = QuatY(-135); // a = quat_y(-135);
// b = QuatXYZ([0,-30,30]); // b = quat_xyz([0,-30,30]);
// Q_Rotation_path(a, 10, b) // q_rotation_path(a, 10, b)
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
// Example(3D): as a function // Example(3D): as a function
// a = QuatY(5); // a = quat_y(5);
// for (M=Q_Rotation_path(a, 10)) // for (M=q_rotation_path(a, 10))
// multmatrix(M) // multmatrix(M)
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
// Example(3D): as a module // Example(3D): as a module
// a = QuatY(5); // a = quat_y(5);
// Q_Rotation_path(a, 10) // q_rotation_path(a, 10)
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
function Q_Rotation_path(q1, n=1, q2) = function q_rotation_path(q1, n=1, q2) =
assert( Q_is_quat(q1) && (is_undef(q2) || Q_is_quat(q2) ), "Invalid quaternion(s)" ) assert( is_quaternion(q1) && (is_undef(q2) || is_quaternion(q2) ), "Invalid quaternion(s)" )
assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" ) assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" )
assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" ) assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
is_undef(q2) is_undef(q2)
? [for( i=0, dR=Q_Matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R] ? [for( i=0, dR=q_matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R]
: let( q2 = Q_Normalize( q1*q2<0 ? -q2: q2 ), : let( q2 = q_normalize( q1*q2<0 ? -q2: q2 ),
dq = Q_pow( Q_Mul( q2, Q_Inverse(q1) ), 1/n ), dq = q_pow( q_mul( q2, q_inverse(q1) ), 1/n ),
dR = Q_Matrix4(dq) ) dR = q_matrix4(dq) )
[for( i=0, R=Q_Matrix4(q1); i<=n; i=i+1, R=dR*R ) R]; [for( i=0, R=q_matrix4(q1); i<=n; i=i+1, R=dR*R ) R];
module Q_Rotation_path(q1, n=1, q2) { module q_rotation_path(q1, n=1, q2) {
for(Mi=Q_Rotation_path(q1, n, q2)) for(Mi=q_rotation_path(q1, n, q2))
multmatrix(Mi) multmatrix(Mi)
children(); children();
} }
// Function: Q_Nlerp() // Function: q_nlerp()
// Usage: // Usage:
// q = Q_Nlerp(q1, q2, u); // q = q_nlerp(q1, q2, u);
// Description: // Description:
// Returns a quaternion that is a normalized linear interpolation between two quaternions // Returns a quaternion that is a normalized linear interpolation between two quaternions
// when u is a number. // when u is a number.
@ -543,33 +543,33 @@ module Q_Rotation_path(q1, n=1, q2) {
// q2 = The second quaternion. (u=1) // q2 = The second quaternion. (u=1)
// u = A value (or a list of values), between 0 and 1, of the proportion(s) of each quaternion in the interpolation. // u = A value (or a list of values), between 0 and 1, of the proportion(s) of each quaternion in the interpolation.
// Example(3D): Giving `u` as a Scalar // Example(3D): Giving `u` as a Scalar
// a = QuatY(-135); // a = quat_y(-135);
// b = QuatXYZ([0,-30,30]); // b = quat_xyz([0,-30,30]);
// for (u=[0:0.1:1]) // for (u=[0:0.1:1])
// Qrot(Q_Nlerp(a, b, u)) // q_rot(q_nlerp(a, b, u))
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
// Example(3D): Giving `u` as a Range // Example(3D): Giving `u` as a Range
// a = QuatZ(-135); // a = quat_z(-135);
// b = QuatXYZ([90,0,-45]); // b = quat_xyz([90,0,-45]);
// for (q = Q_Nlerp(a, b, [0:0.1:1])) // for (q = q_nlerp(a, b, [0:0.1:1]))
// Qrot(q) right(80) cube([10,10,1]); // q_rot(q) right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
function Q_Nlerp(q1,q2,u) = function q_nlerp(q1,q2,u) =
assert(is_finite(u) || is_range(u) || is_vector(u) , assert(is_finite(u) || is_range(u) || is_vector(u) ,
"Invalid interpolation coefficient(s)" ) "Invalid interpolation coefficient(s)" )
assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" ) assert(is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" )
assert( ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" ) assert( ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
let( q1 = Q_Normalize(q1), let( q1 = q_normalize(q1),
q2 = Q_Normalize(q2) ) q2 = q_normalize(q2) )
is_num(u) is_num(u)
? _Qnorm((1-u)*q1 + u*q2 ) ? _qnorm((1-u)*q1 + u*q2 )
: [for (ui=u) _Qnorm((1-ui)*q1 + ui*q2 ) ]; : [for (ui=u) _qnorm((1-ui)*q1 + ui*q2 ) ];
// Function: Q_Squad() // Function: q_squad()
// Usage: // Usage:
// qn = Q_Squad(q1,q2,q3,q4,u); // qn = q_squad(q1,q2,q3,q4,u);
// Description: // Description:
// Returns a quaternion that is a cubic spherical interpolation of the quaternions // Returns a quaternion that is a cubic spherical interpolation of the quaternions
// q1 and q4 taking the other two quaternions, q2 and q3, as parameter of a cubic // q1 and q4 taking the other two quaternions, q2 and q3, as parameter of a cubic
@ -586,71 +586,72 @@ function Q_Nlerp(q1,q2,u) =
// q4 = The end quaternion. (u=1) // q4 = The end quaternion. (u=1)
// u = A value (or a list of values), of the proportion(s) of each quaternion in the cubic interpolation. // u = A value (or a list of values), of the proportion(s) of each quaternion in the cubic interpolation.
// Example(3D): Giving `u` as a Scalar // Example(3D): Giving `u` as a Scalar
// a = QuatY(-135); // a = quat_y(-135);
// b = QuatXYZ([-50,-50,120]); // b = quat_xyz([-50,-50,120]);
// c = QuatXYZ([-50,-40,30]); // c = quat_xyz([-50,-40,30]);
// d = QuatY(-45); // d = quat_y(-45);
// color("red"){ // color("red"){
// Qrot(b) right(80) cube([10,10,1]); // q_rot(b) right(80) cube([10,10,1]);
// Qrot(c) right(80) cube([10,10,1]); // q_rot(c) right(80) cube([10,10,1]);
// } // }
// for (u=[0:0.05:1]) // for (u=[0:0.05:1])
// Qrot(Q_Squad(a, b, c, d, u)) // q_rot(q_squad(a, b, c, d, u))
// right(80) cube([10,10,1]); // right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
// Example(3D): Giving `u` as a Range // Example(3D): Giving `u` as a Range
// a = QuatY(-135); // a = quat_y(-135);
// b = QuatXYZ([-50,-50,120]); // b = quat_xyz([-50,-50,120]);
// c = QuatXYZ([-50,-40,30]); // c = quat_xyz([-50,-40,30]);
// d = QuatY(-45); // d = quat_y(-45);
// for (q = Q_Squad(a, b, c, d, [0:0.05:1])) // for (q = q_squad(a, b, c, d, [0:0.05:1]))
// Qrot(q) right(80) cube([10,10,1]); // q_rot(q) right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
function Q_Squad(q1,q2,q3,q4,u) = function q_squad(q1,q2,q3,q4,u) =
assert(is_finite(u) || is_range(u) || is_vector(u) , assert(is_finite(u) || is_range(u) || is_vector(u) ,
"Invalid interpolation coefficient(s)" ) "Invalid interpolation coefficient(s)" )
is_num(u) is_num(u)
? Q_Slerp( Q_Slerp(q1,q4,u), Q_Slerp(q2,q3,u), 2*u*(1-u)) ? q_slerp( q_slerp(q1,q4,u), q_slerp(q2,q3,u), 2*u*(1-u))
: [for(ui=u) Q_Slerp( Q_Slerp(q1,q4,ui), Q_Slerp(q2,q3,ui), 2*ui*(1-ui) ) ]; : [for(ui=u) q_slerp( q_slerp(q1,q4,ui), q_slerp(q2,q3,ui), 2*ui*(1-ui) ) ];
// Function: Q_exp() // Function: q_exp()
// Usage: // Usage:
// q2 = Q_exp(q); // q2 = q_exp(q);
// Description: // Description:
// Returns the quaternion that is the exponential of the quaternion q in base e // Returns the quaternion that is the exponential of the quaternion q in base e
// The returned quaternion is usually not normalized. // The returned quaternion is usually not normalized.
function Q_exp(q) = function q_exp(q) =
assert( is_vector(q,4), "Input is not a valid quaternion") assert( is_vector(q,4), "Input is not a valid quaternion")
let( nv = norm(_Qvec(q)) ) // q may be equal to zero here! let( nv = norm(_qvec(q)) ) // q may be equal to zero here!
exp(_Qreal(q))*Quat(_Qvec(q),2*nv); exp(_qreal(q))*quat(_qvec(q),2*nv);
// Function: Q_ln() // Function: q_ln()
// Usage: // Usage:
// q2 = Q_ln(q); // q2 = q_ln(q);
// Description: // Description:
// Returns the quaternion that is the natural logarithm of the quaternion q. // Returns the quaternion that is the natural logarithm of the quaternion q.
// The returned quaternion is usually not normalized and may be zero. // The returned quaternion is usually not normalized and may be zero.
function Q_ln(q) = function q_ln(q) =
assert(Q_is_quat(q), "Input is not a valid quaternion") assert(is_quaternion(q), "Input is not a valid quaternion")
let( nq = norm(q), let(
nv = norm(_Qvec(q)) ) nq = norm(q),
approx(nv,0) ? _Qset([0,0,0] , ln(nq) ) : nv = norm(_qvec(q))
_Qset(_Qvec(q)*atan2(nv,_Qreal(q))/nv, ln(nq)); )
approx(nv,0) ? _qset([0,0,0] , ln(nq) ) :
_qset(_qvec(q)*atan2(nv,_qreal(q))/nv, ln(nq));
// Function: Q_pow() // Function: q_pow()
// Usage: // Usage:
// q2 = Q_pow(q, r); // q2 = q_pow(q, r);
// Description: // Description:
// Returns the quaternion that is the power of the quaternion q to the real exponent r. // Returns the quaternion that is the power of the quaternion q to the real exponent r.
// The returned quaternion is normalized if `q` is normalized. // The returned quaternion is normalized if `q` is normalized.
function Q_pow(q,r=1) = function q_pow(q,r=1) =
assert( Q_is_quat(q) && is_finite(r), assert( is_quaternion(q) && is_finite(r), "Invalid inputs")
"Invalid inputs") let( theta = 2*atan2(norm(_qvec(q)),_qreal(q)) )
let( theta = 2*atan2(norm(_Qvec(q)),_Qreal(q)) ) quat(_qvec(q), r*theta); // q_exp(r*q_ln(q));
Quat(_Qvec(q), r*theta); // Q_exp(r*Q_ln(q));

View File

@ -307,15 +307,15 @@ module stroke(
multmatrix(mat) polygon(endcap_shape2); multmatrix(mat) polygon(endcap_shape2);
} }
} else { } else {
quatsums = Q_Cumulative([ quatsums = q_cumulative([
for (i = idx(path2,e=-2)) let( for (i = idx(path2,e=-2)) let(
vec1 = i==0? UP : unit(path2[i]-path2[i-1], UP), vec1 = i==0? UP : unit(path2[i]-path2[i-1], UP),
vec2 = unit(path2[i+1]-path2[i], UP), vec2 = unit(path2[i+1]-path2[i], UP),
axis = vector_axis(vec1,vec2), axis = vector_axis(vec1,vec2),
ang = vector_angle(vec1,vec2) ang = vector_angle(vec1,vec2)
) Quat(axis,ang) ) quat(axis,ang)
]); ]);
rotmats = [for (q=quatsums) Q_Matrix4(q)]; rotmats = [for (q=quatsums) q_matrix4(q)];
sides = [ sides = [
for (i = idx(path2,e=-2)) for (i = idx(path2,e=-2))
quantup(segs(max(widths[i],widths[i+1])/2),4) quantup(segs(max(widths[i],widths[i+1])/2),4)

View File

@ -1,403 +1,384 @@
include <../std.scad> include <../std.scad>
include <../strings.scad>
function rec_cmp(a,b,eps=1e-9) =
typeof(a)!=typeof(b)? false :
is_num(a)? approx(a,b,eps=eps) :
is_list(a)? len(a)==len(b) && all([for (i=idx(a)) rec_cmp(a[i],b[i],eps=eps)]) :
a == b;
function Qstandard(q) = sign([for(qi=q) if( ! approx(qi,0)) qi,0 ][0])*q; function _q_standard(q) = sign([for(qi=q) if( ! approx(qi,0)) qi,0 ][0])*q;
module verify_f(actual,expected) {
if (!rec_cmp(actual,expected)) { module test_is_quaternion() {
echo(str("Expected: ",fmt_float(expected,10))); assert_approx(is_quaternion([0]),false);
echo(str(" : ",expected)); assert_approx(is_quaternion([0,0,0,0]),false);
echo(str("Actual : ",fmt_float(actual,10))); assert_approx(is_quaternion([1,0,2,0]),true);
echo(str(" : ",actual)); assert_approx(is_quaternion([1,0,2,0,0]),false);
echo(str("Delta : ",fmt_float(expected-actual,10)));
echo(str(" : ",expected-actual));
assert(approx(expected,actual));
}
} }
test_is_quaternion();
module test_Q_is_quat() { module test_quat() {
verify_f(Q_is_quat([0]),false); assert_approx(quat(UP,0),[0,0,0,1]);
verify_f(Q_is_quat([0,0,0,0]),false); assert_approx(quat(FWD,0),[0,0,0,1]);
verify_f(Q_is_quat([1,0,2,0]),true); assert_approx(quat(LEFT,0),[0,0,0,1]);
verify_f(Q_is_quat([1,0,2,0,0]),false); assert_approx(quat(UP,45),[0,0,0.3826834324,0.9238795325]);
assert_approx(quat(LEFT,45),[-0.3826834324, 0, 0, 0.9238795325]);
assert_approx(quat(BACK,45),[0,0.3826834323,0,0.9238795325]);
assert_approx(quat(FWD+RIGHT,30),[0.1830127019, -0.1830127019, 0, 0.9659258263]);
} }
test_Q_is_quat(); test_quat();
module test_Quat() { module test_quat_x() {
verify_f(Quat(UP,0),[0,0,0,1]); assert_approx(quat_x(0),[0,0,0,1]);
verify_f(Quat(FWD,0),[0,0,0,1]); assert_approx(quat_x(35),[0.3007057995,0,0,0.9537169507]);
verify_f(Quat(LEFT,0),[0,0,0,1]); assert_approx(quat_x(45),[0.3826834324,0,0,0.9238795325]);
verify_f(Quat(UP,45),[0,0,0.3826834324,0.9238795325]);
verify_f(Quat(LEFT,45),[-0.3826834324, 0, 0, 0.9238795325]);
verify_f(Quat(BACK,45),[0,0.3826834323,0,0.9238795325]);
verify_f(Quat(FWD+RIGHT,30),[0.1830127019, -0.1830127019, 0, 0.9659258263]);
} }
test_Quat(); test_quat_x();
module test_QuatX() { module test_quat_y() {
verify_f(QuatX(0),[0,0,0,1]); assert_approx(quat_y(0),[0,0,0,1]);
verify_f(QuatX(35),[0.3007057995,0,0,0.9537169507]); assert_approx(quat_y(35),[0,0.3007057995,0,0.9537169507]);
verify_f(QuatX(45),[0.3826834324,0,0,0.9238795325]); assert_approx(quat_y(45),[0,0.3826834323,0,0.9238795325]);
} }
test_QuatX(); test_quat_y();
module test_QuatY() { module test_quat_z() {
verify_f(QuatY(0),[0,0,0,1]); assert_approx(quat_z(0),[0,0,0,1]);
verify_f(QuatY(35),[0,0.3007057995,0,0.9537169507]); assert_approx(quat_z(36),[0,0,0.3090169944,0.9510565163]);
verify_f(QuatY(45),[0,0.3826834323,0,0.9238795325]); assert_approx(quat_z(45),[0,0,0.3826834324,0.9238795325]);
} }
test_QuatY(); test_quat_z();
module test_QuatZ() { module test_quat_xyz() {
verify_f(QuatZ(0),[0,0,0,1]); assert_approx(quat_xyz([0,0,0]), [0,0,0,1]);
verify_f(QuatZ(36),[0,0,0.3090169944,0.9510565163]); assert_approx(quat_xyz([30,0,0]), [0.2588190451, 0, 0, 0.9659258263]);
verify_f(QuatZ(45),[0,0,0.3826834324,0.9238795325]); assert_approx(quat_xyz([90,0,0]), [0.7071067812, 0, 0, 0.7071067812]);
assert_approx(quat_xyz([-270,0,0]), [-0.7071067812, 0, 0, -0.7071067812]);
assert_approx(quat_xyz([180,0,0]), [1,0,0,0]);
assert_approx(quat_xyz([270,0,0]), [0.7071067812, 0, 0, -0.7071067812]);
assert_approx(quat_xyz([-90,0,0]), [-0.7071067812, 0, 0, 0.7071067812]);
assert_approx(quat_xyz([360,0,0]), [0,0,0,-1]);
assert_approx(quat_xyz([0,0,0]), [0,0,0,1]);
assert_approx(quat_xyz([0,30,0]), [0, 0.2588190451, 0, 0.9659258263]);
assert_approx(quat_xyz([0,90,0]), [0, 0.7071067812, 0, 0.7071067812]);
assert_approx(quat_xyz([0,-270,0]), [0, -0.7071067812, 0, -0.7071067812]);
assert_approx(quat_xyz([0,180,0]), [0,1,0,0]);
assert_approx(quat_xyz([0,270,0]), [0, 0.7071067812, 0, -0.7071067812]);
assert_approx(quat_xyz([0,-90,0]), [0, -0.7071067812, 0, 0.7071067812]);
assert_approx(quat_xyz([0,360,0]), [0,0,0,-1]);
assert_approx(quat_xyz([0,0,0]), [0,0,0,1]);
assert_approx(quat_xyz([0,0,30]), [0, 0, 0.2588190451, 0.9659258263]);
assert_approx(quat_xyz([0,0,90]), [0, 0, 0.7071067812, 0.7071067812]);
assert_approx(quat_xyz([0,0,-270]), [0, 0, -0.7071067812, -0.7071067812]);
assert_approx(quat_xyz([0,0,180]), [0,0,1,0]);
assert_approx(quat_xyz([0,0,270]), [0, 0, 0.7071067812, -0.7071067812]);
assert_approx(quat_xyz([0,0,-90]), [0, 0, -0.7071067812, 0.7071067812]);
assert_approx(quat_xyz([0,0,360]), [0,0,0,-1]);
assert_approx(quat_xyz([30,30,30]), [0.1767766953, 0.3061862178, 0.1767766953, 0.9185586535]);
assert_approx(quat_xyz([12,34,56]), [-0.04824789229, 0.3036636044, 0.4195145429, 0.8540890495]);
} }
test_QuatZ(); test_quat_xyz();
module test_QuatXYZ() { module test_q_from_to() {
verify_f(QuatXYZ([0,0,0]), [0,0,0,1]); assert_approx(q_mul(q_from_to([1,2,3], [4,5,2]),q_from_to([4,5,2], [1,2,3])), q_ident());
verify_f(QuatXYZ([30,0,0]), [0.2588190451, 0, 0, 0.9659258263]); assert_approx(q_matrix4(q_from_to([1,2,3], [4,5,2])), rot(from=[1,2,3],to=[4,5,2]));
verify_f(QuatXYZ([90,0,0]), [0.7071067812, 0, 0, 0.7071067812]); assert_approx(q_rot(q_from_to([1,2,3], -[1,2,3]),[1,2,3]), -[1,2,3]);
verify_f(QuatXYZ([-270,0,0]), [-0.7071067812, 0, 0, -0.7071067812]); assert_approx(unit(q_rot(q_from_to([1,2,3], [4,5,2]),[1,2,3])), unit([4,5,2]));
verify_f(QuatXYZ([180,0,0]), [1,0,0,0]);
verify_f(QuatXYZ([270,0,0]), [0.7071067812, 0, 0, -0.7071067812]);
verify_f(QuatXYZ([-90,0,0]), [-0.7071067812, 0, 0, 0.7071067812]);
verify_f(QuatXYZ([360,0,0]), [0,0,0,-1]);
verify_f(QuatXYZ([0,0,0]), [0,0,0,1]);
verify_f(QuatXYZ([0,30,0]), [0, 0.2588190451, 0, 0.9659258263]);
verify_f(QuatXYZ([0,90,0]), [0, 0.7071067812, 0, 0.7071067812]);
verify_f(QuatXYZ([0,-270,0]), [0, -0.7071067812, 0, -0.7071067812]);
verify_f(QuatXYZ([0,180,0]), [0,1,0,0]);
verify_f(QuatXYZ([0,270,0]), [0, 0.7071067812, 0, -0.7071067812]);
verify_f(QuatXYZ([0,-90,0]), [0, -0.7071067812, 0, 0.7071067812]);
verify_f(QuatXYZ([0,360,0]), [0,0,0,-1]);
verify_f(QuatXYZ([0,0,0]), [0,0,0,1]);
verify_f(QuatXYZ([0,0,30]), [0, 0, 0.2588190451, 0.9659258263]);
verify_f(QuatXYZ([0,0,90]), [0, 0, 0.7071067812, 0.7071067812]);
verify_f(QuatXYZ([0,0,-270]), [0, 0, -0.7071067812, -0.7071067812]);
verify_f(QuatXYZ([0,0,180]), [0,0,1,0]);
verify_f(QuatXYZ([0,0,270]), [0, 0, 0.7071067812, -0.7071067812]);
verify_f(QuatXYZ([0,0,-90]), [0, 0, -0.7071067812, 0.7071067812]);
verify_f(QuatXYZ([0,0,360]), [0,0,0,-1]);
verify_f(QuatXYZ([30,30,30]), [0.1767766953, 0.3061862178, 0.1767766953, 0.9185586535]);
verify_f(QuatXYZ([12,34,56]), [-0.04824789229, 0.3036636044, 0.4195145429, 0.8540890495]);
} }
test_QuatXYZ(); test_q_from_to();
module test_Q_From_to() { module test_q_ident() {
verify_f(Q_Mul(Q_From_to([1,2,3], [4,5,2]),Q_From_to([4,5,2], [1,2,3])), Q_Ident()); assert_approx(q_ident(), [0,0,0,1]);
verify_f(Q_Matrix4(Q_From_to([1,2,3], [4,5,2])), rot(from=[1,2,3],to=[4,5,2]));
verify_f(Qrot(Q_From_to([1,2,3], -[1,2,3]),[1,2,3]), -[1,2,3]);
verify_f(unit(Qrot(Q_From_to([1,2,3], [4,5,2]),[1,2,3])), unit([4,5,2]));
} }
test_Q_From_to(); test_q_ident();
module test_Q_Ident() { module test_q_add_s() {
verify_f(Q_Ident(), [0,0,0,1]); assert_approx(q_add_s([0,0,0,1],3),[0,0,0,4]);
assert_approx(q_add_s([0,0,1,0],3),[0,0,1,3]);
assert_approx(q_add_s([0,1,0,0],3),[0,1,0,3]);
assert_approx(q_add_s([1,0,0,0],3),[1,0,0,3]);
assert_approx(q_add_s(quat(LEFT+FWD,23),1),[-0.1409744184, -0.1409744184, 0, 1.979924705]);
} }
test_Q_Ident(); test_q_add_s();
module test_Q_Add_S() { module test_q_sub_s() {
verify_f(Q_Add_S([0,0,0,1],3),[0,0,0,4]); assert_approx(q_sub_s([0,0,0,1],3),[0,0,0,-2]);
verify_f(Q_Add_S([0,0,1,0],3),[0,0,1,3]); assert_approx(q_sub_s([0,0,1,0],3),[0,0,1,-3]);
verify_f(Q_Add_S([0,1,0,0],3),[0,1,0,3]); assert_approx(q_sub_s([0,1,0,0],3),[0,1,0,-3]);
verify_f(Q_Add_S([1,0,0,0],3),[1,0,0,3]); assert_approx(q_sub_s([1,0,0,0],3),[1,0,0,-3]);
verify_f(Q_Add_S(Quat(LEFT+FWD,23),1),[-0.1409744184, -0.1409744184, 0, 1.979924705]); assert_approx(q_sub_s(quat(LEFT+FWD,23),1),[-0.1409744184, -0.1409744184, 0, -0.02007529538]);
} }
test_Q_Add_S(); test_q_sub_s();
module test_Q_Sub_S() { module test_q_mul_s() {
verify_f(Q_Sub_S([0,0,0,1],3),[0,0,0,-2]); assert_approx(q_mul_s([0,0,0,1],3),[0,0,0,3]);
verify_f(Q_Sub_S([0,0,1,0],3),[0,0,1,-3]); assert_approx(q_mul_s([0,0,1,0],3),[0,0,3,0]);
verify_f(Q_Sub_S([0,1,0,0],3),[0,1,0,-3]); assert_approx(q_mul_s([0,1,0,0],3),[0,3,0,0]);
verify_f(Q_Sub_S([1,0,0,0],3),[1,0,0,-3]); assert_approx(q_mul_s([1,0,0,0],3),[3,0,0,0]);
verify_f(Q_Sub_S(Quat(LEFT+FWD,23),1),[-0.1409744184, -0.1409744184, 0, -0.02007529538]); assert_approx(q_mul_s([1,0,0,1],3),[3,0,0,3]);
assert_approx(q_mul_s(quat(LEFT+FWD,23),4),[-0.5638976735, -0.5638976735, 0, 3.919698818]);
} }
test_Q_Sub_S(); test_q_mul_s();
module test_Q_Mul_S() {
verify_f(Q_Mul_S([0,0,0,1],3),[0,0,0,3]); module test_q_div_s() {
verify_f(Q_Mul_S([0,0,1,0],3),[0,0,3,0]); assert_approx(q_div_s([0,0,0,1],3),[0,0,0,1/3]);
verify_f(Q_Mul_S([0,1,0,0],3),[0,3,0,0]); assert_approx(q_div_s([0,0,1,0],3),[0,0,1/3,0]);
verify_f(Q_Mul_S([1,0,0,0],3),[3,0,0,0]); assert_approx(q_div_s([0,1,0,0],3),[0,1/3,0,0]);
verify_f(Q_Mul_S([1,0,0,1],3),[3,0,0,3]); assert_approx(q_div_s([1,0,0,0],3),[1/3,0,0,0]);
verify_f(Q_Mul_S(Quat(LEFT+FWD,23),4),[-0.5638976735, -0.5638976735, 0, 3.919698818]); assert_approx(q_div_s([1,0,0,1],3),[1/3,0,0,1/3]);
assert_approx(q_div_s(quat(LEFT+FWD,23),4),[-0.03524360459, -0.03524360459, 0, 0.2449811762]);
} }
test_Q_Mul_S(); test_q_div_s();
module test_q_add() {
module test_Q_Div_S() { assert_approx(q_add([2,3,4,5],[-1,-1,-1,-1]),[1,2,3,4]);
verify_f(Q_Div_S([0,0,0,1],3),[0,0,0,1/3]); assert_approx(q_add([2,3,4,5],[-3,-3,-3,-3]),[-1,0,1,2]);
verify_f(Q_Div_S([0,0,1,0],3),[0,0,1/3,0]); assert_approx(q_add([2,3,4,5],[0,0,0,0]),[2,3,4,5]);
verify_f(Q_Div_S([0,1,0,0],3),[0,1/3,0,0]); assert_approx(q_add([2,3,4,5],[1,1,1,1]),[3,4,5,6]);
verify_f(Q_Div_S([1,0,0,0],3),[1/3,0,0,0]); assert_approx(q_add([2,3,4,5],[1,0,0,0]),[3,3,4,5]);
verify_f(Q_Div_S([1,0,0,1],3),[1/3,0,0,1/3]); assert_approx(q_add([2,3,4,5],[0,1,0,0]),[2,4,4,5]);
verify_f(Q_Div_S(Quat(LEFT+FWD,23),4),[-0.03524360459, -0.03524360459, 0, 0.2449811762]); assert_approx(q_add([2,3,4,5],[0,0,1,0]),[2,3,5,5]);
assert_approx(q_add([2,3,4,5],[0,0,0,1]),[2,3,4,6]);
assert_approx(q_add([2,3,4,5],[2,1,2,1]),[4,4,6,6]);
assert_approx(q_add([2,3,4,5],[1,2,1,2]),[3,5,5,7]);
} }
test_Q_Div_S(); test_q_add();
module test_Q_Add() { module test_q_sub() {
verify_f(Q_Add([2,3,4,5],[-1,-1,-1,-1]),[1,2,3,4]); assert_approx(q_sub([2,3,4,5],[-1,-1,-1,-1]),[3,4,5,6]);
verify_f(Q_Add([2,3,4,5],[-3,-3,-3,-3]),[-1,0,1,2]); assert_approx(q_sub([2,3,4,5],[-3,-3,-3,-3]),[5,6,7,8]);
verify_f(Q_Add([2,3,4,5],[0,0,0,0]),[2,3,4,5]); assert_approx(q_sub([2,3,4,5],[0,0,0,0]),[2,3,4,5]);
verify_f(Q_Add([2,3,4,5],[1,1,1,1]),[3,4,5,6]); assert_approx(q_sub([2,3,4,5],[1,1,1,1]),[1,2,3,4]);
verify_f(Q_Add([2,3,4,5],[1,0,0,0]),[3,3,4,5]); assert_approx(q_sub([2,3,4,5],[1,0,0,0]),[1,3,4,5]);
verify_f(Q_Add([2,3,4,5],[0,1,0,0]),[2,4,4,5]); assert_approx(q_sub([2,3,4,5],[0,1,0,0]),[2,2,4,5]);
verify_f(Q_Add([2,3,4,5],[0,0,1,0]),[2,3,5,5]); assert_approx(q_sub([2,3,4,5],[0,0,1,0]),[2,3,3,5]);
verify_f(Q_Add([2,3,4,5],[0,0,0,1]),[2,3,4,6]); assert_approx(q_sub([2,3,4,5],[0,0,0,1]),[2,3,4,4]);
verify_f(Q_Add([2,3,4,5],[2,1,2,1]),[4,4,6,6]); assert_approx(q_sub([2,3,4,5],[2,1,2,1]),[0,2,2,4]);
verify_f(Q_Add([2,3,4,5],[1,2,1,2]),[3,5,5,7]); assert_approx(q_sub([2,3,4,5],[1,2,1,2]),[1,1,3,3]);
} }
test_Q_Add(); test_q_sub();
module test_Q_Sub() { module test_q_mul() {
verify_f(Q_Sub([2,3,4,5],[-1,-1,-1,-1]),[3,4,5,6]); assert_approx(q_mul(quat_z(30),quat_x(57)),[0.4608999698, 0.1234977747, 0.2274546059, 0.8488721457]);
verify_f(Q_Sub([2,3,4,5],[-3,-3,-3,-3]),[5,6,7,8]); assert_approx(q_mul(quat_y(30),quat_z(23)),[0.05160021841, 0.2536231763, 0.1925746368, 0.94653458]);
verify_f(Q_Sub([2,3,4,5],[0,0,0,0]),[2,3,4,5]);
verify_f(Q_Sub([2,3,4,5],[1,1,1,1]),[1,2,3,4]);
verify_f(Q_Sub([2,3,4,5],[1,0,0,0]),[1,3,4,5]);
verify_f(Q_Sub([2,3,4,5],[0,1,0,0]),[2,2,4,5]);
verify_f(Q_Sub([2,3,4,5],[0,0,1,0]),[2,3,3,5]);
verify_f(Q_Sub([2,3,4,5],[0,0,0,1]),[2,3,4,4]);
verify_f(Q_Sub([2,3,4,5],[2,1,2,1]),[0,2,2,4]);
verify_f(Q_Sub([2,3,4,5],[1,2,1,2]),[1,1,3,3]);
} }
test_Q_Sub(); test_q_mul();
module test_Q_Mul() { module test_q_cumulative() {
verify_f(Q_Mul(QuatZ(30),QuatX(57)),[0.4608999698, 0.1234977747, 0.2274546059, 0.8488721457]); assert_approx(q_cumulative([quat_z(30),quat_x(57),quat_y(18)]),[[0, 0, 0.2588190451, 0.9659258263], [0.4608999698, -0.1234977747, 0.2274546059, 0.8488721457], [0.4908072659, 0.01081554785, 0.1525536221, 0.8577404293]]);
verify_f(Q_Mul(QuatY(30),QuatZ(23)),[0.05160021841, 0.2536231763, 0.1925746368, 0.94653458]);
} }
test_Q_Mul(); test_q_cumulative();
module test_Q_Cumulative() { module test_q_dot() {
verify_f(Q_Cumulative([QuatZ(30),QuatX(57),QuatY(18)]),[[0, 0, 0.2588190451, 0.9659258263], [0.4608999698, -0.1234977747, 0.2274546059, 0.8488721457], [0.4908072659, 0.01081554785, 0.1525536221, 0.8577404293]]); assert_approx(q_dot(quat_z(30),quat_x(57)),0.8488721457);
assert_approx(q_dot(quat_y(30),quat_z(23)),0.94653458);
} }
test_Q_Cumulative(); test_q_dot();
module test_Q_Dot() { module test_q_neg() {
verify_f(Q_Dot(QuatZ(30),QuatX(57)),0.8488721457); assert_approx(q_neg([1,0,0,1]),[-1,0,0,-1]);
verify_f(Q_Dot(QuatY(30),QuatZ(23)),0.94653458); assert_approx(q_neg([0,1,1,0]),[0,-1,-1,0]);
assert_approx(q_neg(quat_xyz([23,45,67])),[0.0533818345,-0.4143703268,-0.4360652669,-0.7970537592]);
} }
test_Q_Dot(); test_q_neg();
module test_Q_Neg() { module test_q_conj() {
verify_f(Q_Neg([1,0,0,1]),[-1,0,0,-1]); assert_approx(q_conj([1,0,0,1]),[-1,0,0,1]);
verify_f(Q_Neg([0,1,1,0]),[0,-1,-1,0]); assert_approx(q_conj([0,1,1,0]),[0,-1,-1,0]);
verify_f(Q_Neg(QuatXYZ([23,45,67])),[0.0533818345,-0.4143703268,-0.4360652669,-0.7970537592]); assert_approx(q_conj(quat_xyz([23,45,67])),[0.0533818345, -0.4143703268, -0.4360652669, 0.7970537592]);
} }
test_Q_Neg(); test_q_conj();
module test_Q_Conj() { module test_q_inverse() {
verify_f(Q_Conj([1,0,0,1]),[-1,0,0,1]);
verify_f(Q_Conj([0,1,1,0]),[0,-1,-1,0]); assert_approx(q_inverse([1,0,0,1]),[-1,0,0,1]/sqrt(2));
verify_f(Q_Conj(QuatXYZ([23,45,67])),[0.0533818345, -0.4143703268, -0.4360652669, 0.7970537592]); assert_approx(q_inverse([0,1,1,0]),[0,-1,-1,0]/sqrt(2));
assert_approx(q_inverse(quat_xyz([23,45,67])),q_conj(quat_xyz([23,45,67])));
assert_approx(q_mul(q_inverse(quat_xyz([23,45,67])),quat_xyz([23,45,67])),q_ident());
} }
test_Q_Conj(); test_q_inverse();
module test_Q_Inverse() { module test_q_Norm() {
assert_approx(q_norm([1,0,0,1]),1.414213562);
verify_f(Q_Inverse([1,0,0,1]),[-1,0,0,1]/sqrt(2)); assert_approx(q_norm([0,1,1,0]),1.414213562);
verify_f(Q_Inverse([0,1,1,0]),[0,-1,-1,0]/sqrt(2)); assert_approx(q_norm(quat_xyz([23,45,67])),1);
verify_f(Q_Inverse(QuatXYZ([23,45,67])),Q_Conj(QuatXYZ([23,45,67])));
verify_f(Q_Mul(Q_Inverse(QuatXYZ([23,45,67])),QuatXYZ([23,45,67])),Q_Ident());
} }
test_Q_Inverse(); test_q_Norm();
module test_Q_Norm() { module test_q_normalize() {
verify_f(Q_Norm([1,0,0,1]),1.414213562); assert_approx(q_normalize([1,0,0,1]),[0.7071067812, 0, 0, 0.7071067812]);
verify_f(Q_Norm([0,1,1,0]),1.414213562); assert_approx(q_normalize([0,1,1,0]),[0, 0.7071067812, 0.7071067812, 0]);
verify_f(Q_Norm(QuatXYZ([23,45,67])),1); assert_approx(q_normalize(quat_xyz([23,45,67])),[-0.0533818345, 0.4143703268, 0.4360652669, 0.7970537592]);
} }
test_Q_Norm(); test_q_normalize();
module test_Q_Normalize() { module test_q_dist() {
verify_f(Q_Normalize([1,0,0,1]),[0.7071067812, 0, 0, 0.7071067812]); assert_approx(q_dist(quat_xyz([23,45,67]),quat_xyz([23,45,67])),0);
verify_f(Q_Normalize([0,1,1,0]),[0, 0.7071067812, 0.7071067812, 0]); assert_approx(q_dist(quat_xyz([23,45,67]),quat_xyz([12,34,56])),0.1257349854);
verify_f(Q_Normalize(QuatXYZ([23,45,67])),[-0.0533818345, 0.4143703268, 0.4360652669, 0.7970537592]);
} }
test_Q_Normalize(); test_q_dist();
module test_Q_Dist() { module test_q_slerp() {
verify_f(Q_Dist(QuatXYZ([23,45,67]),QuatXYZ([23,45,67])),0); assert_approx(q_slerp(quat_x(45),quat_y(30),0.0),quat_x(45));
verify_f(Q_Dist(QuatXYZ([23,45,67]),QuatXYZ([12,34,56])),0.1257349854); assert_approx(q_slerp(quat_x(45),quat_y(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]);
assert_approx(q_slerp(quat_x(45),quat_y(30),1.0),quat_y(30));
} }
test_Q_Dist(); test_q_slerp();
module test_Q_Slerp() { module test_q_matrix3() {
verify_f(Q_Slerp(QuatX(45),QuatY(30),0.0),QuatX(45)); assert_approx(q_matrix3(quat_z(37)),rot(37,planar=true));
verify_f(Q_Slerp(QuatX(45),QuatY(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]); assert_approx(q_matrix3(quat_z(-49)),rot(-49,planar=true));
verify_f(Q_Slerp(QuatX(45),QuatY(30),1.0),QuatY(30));
} }
test_Q_Slerp(); test_q_matrix3();
module test_Q_Matrix3() { module test_q_matrix4() {
verify_f(Q_Matrix3(QuatZ(37)),rot(37,planar=true)); assert_approx(q_matrix4(quat_z(37)),rot(37));
verify_f(Q_Matrix3(QuatZ(-49)),rot(-49,planar=true)); assert_approx(q_matrix4(quat_z(-49)),rot(-49));
assert_approx(q_matrix4(quat_x(37)),rot([37,0,0]));
assert_approx(q_matrix4(quat_y(37)),rot([0,37,0]));
assert_approx(q_matrix4(quat_xyz([12,34,56])),rot([12,34,56]));
} }
test_Q_Matrix3(); test_q_matrix4();
module test_Q_Matrix4() { module test_q_axis() {
verify_f(Q_Matrix4(QuatZ(37)),rot(37)); assert_approx(q_axis(quat_x(37)),RIGHT);
verify_f(Q_Matrix4(QuatZ(-49)),rot(-49)); assert_approx(q_axis(quat_x(-37)),LEFT);
verify_f(Q_Matrix4(QuatX(37)),rot([37,0,0])); assert_approx(q_axis(quat_y(37)),BACK);
verify_f(Q_Matrix4(QuatY(37)),rot([0,37,0])); assert_approx(q_axis(quat_y(-37)),FWD);
verify_f(Q_Matrix4(QuatXYZ([12,34,56])),rot([12,34,56])); assert_approx(q_axis(quat_z(37)),UP);
assert_approx(q_axis(quat_z(-37)),DOWN);
} }
test_Q_Matrix4(); test_q_axis();
module test_Q_Axis() { module test_q_angle() {
verify_f(Q_Axis(QuatX(37)),RIGHT); assert_approx(q_angle(quat_x(0)),0);
verify_f(Q_Axis(QuatX(-37)),LEFT); assert_approx(q_angle(quat_y(0)),0);
verify_f(Q_Axis(QuatY(37)),BACK); assert_approx(q_angle(quat_z(0)),0);
verify_f(Q_Axis(QuatY(-37)),FWD); assert_approx(q_angle(quat_x(37)),37);
verify_f(Q_Axis(QuatZ(37)),UP); assert_approx(q_angle(quat_x(-37)),37);
verify_f(Q_Axis(QuatZ(-37)),DOWN); assert_approx(q_angle(quat_y(37)),37);
assert_approx(q_angle(quat_y(-37)),37);
assert_approx(q_angle(quat_z(37)),37);
assert_approx(q_angle(quat_z(-37)),37);
assert_approx(q_angle(quat_z(-37),quat_z(-37)), 0);
assert_approx(q_angle(quat_z( 37.123),quat_z(-37.123)), 74.246);
assert_approx(q_angle(quat_x( 37),quat_y(-37)), 51.86293283);
} }
test_Q_Axis(); test_q_angle();
module test_Q_Angle() { module test_q_rot() {
verify_f(Q_Angle(QuatX(0)),0); assert_approx(q_rot(quat_xyz([12,34,56])),rot([12,34,56]));
verify_f(Q_Angle(QuatY(0)),0); assert_approx(q_rot(quat_xyz([12,34,56]),p=[2,3,4]),rot([12,34,56],p=[2,3,4]));
verify_f(Q_Angle(QuatZ(0)),0); assert_approx(q_rot(quat_xyz([12,34,56]),p=[[2,3,4],[4,9,6]]),rot([12,34,56],p=[[2,3,4],[4,9,6]]));
verify_f(Q_Angle(QuatX(37)),37);
verify_f(Q_Angle(QuatX(-37)),37);
verify_f(Q_Angle(QuatY(37)),37);
verify_f(Q_Angle(QuatY(-37)),37);
verify_f(Q_Angle(QuatZ(37)),37);
verify_f(Q_Angle(QuatZ(-37)),37);
verify_f(Q_Angle(QuatZ(-37),QuatZ(-37)), 0);
verify_f(Q_Angle(QuatZ( 37.123),QuatZ(-37.123)), 74.246);
verify_f(Q_Angle(QuatX( 37),QuatY(-37)), 51.86293283);
} }
test_Q_Angle(); test_q_rot();
module test_Qrot() { module test_q_rotation() {
verify_f(Qrot(QuatXYZ([12,34,56])),rot([12,34,56])); assert_approx(_q_standard(q_rotation(q_matrix3(quat([12,34,56],33)))),_q_standard(quat([12,34,56],33)));
verify_f(Qrot(QuatXYZ([12,34,56]),p=[2,3,4]),rot([12,34,56],p=[2,3,4])); assert_approx(q_matrix3(q_rotation(q_matrix3(quat_xyz([12,34,56])))),
verify_f(Qrot(QuatXYZ([12,34,56]),p=[[2,3,4],[4,9,6]]),rot([12,34,56],p=[[2,3,4],[4,9,6]])); q_matrix3(quat_xyz([12,34,56])));
} }
test_Qrot(); test_q_rotation();
module test_Q_Rotation() { module test_q_rotation_path() {
verify_f(Qstandard(Q_Rotation(Q_Matrix3(Quat([12,34,56],33)))),Qstandard(Quat([12,34,56],33))); assert_approx(q_rotation_path(quat_x(135), 5, quat_y(13.5))[0] , q_matrix4(quat_x(135)));
verify_f(Q_Matrix3(Q_Rotation(Q_Matrix3(QuatXYZ([12,34,56])))), assert_approx(q_rotation_path(quat_x(135), 11, quat_y(13.5))[11] , yrot(13.5));
Q_Matrix3(QuatXYZ([12,34,56]))); assert_approx(q_rotation_path(quat_x(135), 16, quat_y(13.5))[8] , q_rotation_path(quat_x(135), 8, quat_y(13.5))[4]);
} assert_approx(q_rotation_path(quat_x(135), 16, quat_y(13.5))[7] ,
test_Q_Rotation(); q_rotation_path(quat_y(13.5),16, quat_x(135))[9]);
assert_approx(q_rotation_path(quat_x(11), 5)[0] , xrot(11));
module test_Q_Rotation_path() { assert_approx(q_rotation_path(quat_x(11), 5)[4] , xrot(55));
verify_f(Q_Rotation_path(QuatX(135), 5, QuatY(13.5))[0] , Q_Matrix4(QuatX(135)));
verify_f(Q_Rotation_path(QuatX(135), 11, QuatY(13.5))[11] , yrot(13.5));
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] , Q_Rotation_path(QuatX(135), 8, QuatY(13.5))[4]);
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[7] ,
Q_Rotation_path(QuatY(13.5),16, QuatX(135))[9]);
verify_f(Q_Rotation_path(QuatX(11), 5)[0] , xrot(11));
verify_f(Q_Rotation_path(QuatX(11), 5)[4] , xrot(55));
} }
test_Q_Rotation_path(); test_q_rotation_path();
module test_Q_Nlerp() { module test_q_nlerp() {
verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.0),QuatX(45)); assert_approx(q_nlerp(quat_x(45),quat_y(30),0.0),quat_x(45));
verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]); assert_approx(q_nlerp(quat_x(45),quat_y(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]);
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] , Q_Matrix4(Q_Nlerp(QuatX(135), QuatY(13.5),0.5))); assert_approx(q_rotation_path(quat_x(135), 16, quat_y(13.5))[8] , q_matrix4(q_nlerp(quat_x(135), quat_y(13.5),0.5)));
verify_f(Q_Nlerp(QuatX(45),QuatY(30),1.0),QuatY(30)); assert_approx(q_nlerp(quat_x(45),quat_y(30),1.0),quat_y(30));
} }
test_Q_Nlerp(); test_q_nlerp();
module test_Q_Squad() { module test_q_squad() {
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(90),QuatY(30),0.0),QuatX(45)); assert_approx(q_squad(quat_x(45),quat_z(30),quat_x(90),quat_y(30),0.0),quat_x(45));
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(90),QuatY(30),1.0),QuatY(30)); assert_approx(q_squad(quat_x(45),quat_z(30),quat_x(90),quat_y(30),1.0),quat_y(30));
verify_f(Q_Squad(QuatX(0),QuatX(30),QuatX(90),QuatX(120),0.5), assert_approx(q_squad(quat_x(0),quat_x(30),quat_x(90),quat_x(120),0.5),
Q_Slerp(QuatX(0),QuatX(120),0.5)); q_slerp(quat_x(0),quat_x(120),0.5));
verify_f(Q_Squad(QuatY(0),QuatY(0),QuatX(120),QuatX(120),0.3), assert_approx(q_squad(quat_y(0),quat_y(0),quat_x(120),quat_x(120),0.3),
Q_Slerp(QuatY(0),QuatX(120),0.3)); q_slerp(quat_y(0),quat_x(120),0.3));
} }
test_Q_Squad(); test_q_squad();
module test_Q_exp() { module test_q_exp() {
verify_f(Q_exp(Q_Ident()), exp(1)*Q_Ident()); assert_approx(q_exp(q_ident()), exp(1)*q_ident());
verify_f(Q_exp([0,0,0,33.7]), exp(33.7)*Q_Ident()); assert_approx(q_exp([0,0,0,33.7]), exp(33.7)*q_ident());
verify_f(Q_exp(Q_ln(Q_Ident())), Q_Ident()); assert_approx(q_exp(q_ln(q_ident())), q_ident());
verify_f(Q_exp(Q_ln([1,2,3,0])), [1,2,3,0]); assert_approx(q_exp(q_ln([1,2,3,0])), [1,2,3,0]);
verify_f(Q_exp(Q_ln(QuatXYZ([31,27,34]))), QuatXYZ([31,27,34])); assert_approx(q_exp(q_ln(quat_xyz([31,27,34]))), quat_xyz([31,27,34]));
let(q=QuatXYZ([12,23,34])) let(q=quat_xyz([12,23,34]))
verify_f(Q_exp(q+Q_Inverse(q)),Q_Mul(Q_exp(q),Q_exp(Q_Inverse(q)))); assert_approx(q_exp(q+q_inverse(q)),q_mul(q_exp(q),q_exp(q_inverse(q))));
} }
test_Q_exp(); test_q_exp();
module test_Q_ln() { module test_q_ln() {
verify_f(Q_ln([1,2,3,0]), [24.0535117721, 48.1070235442, 72.1605353164, 1.31952866481]); assert_approx(q_ln([1,2,3,0]), [24.0535117721, 48.1070235442, 72.1605353164, 1.31952866481]);
verify_f(Q_ln(Q_Ident()), [0,0,0,0]); assert_approx(q_ln(q_ident()), [0,0,0,0]);
verify_f(Q_ln(5.5*Q_Ident()), [0,0,0,ln(5.5)]); assert_approx(q_ln(5.5*q_ident()), [0,0,0,ln(5.5)]);
verify_f(Q_ln(Q_exp(QuatXYZ([13,37,43]))), QuatXYZ([13,37,43])); assert_approx(q_ln(q_exp(quat_xyz([13,37,43]))), quat_xyz([13,37,43]));
verify_f(Q_ln(QuatXYZ([12,23,34]))+Q_ln(Q_Inverse(QuatXYZ([12,23,34]))), [0,0,0,0]); assert_approx(q_ln(quat_xyz([12,23,34]))+q_ln(q_inverse(quat_xyz([12,23,34]))), [0,0,0,0]);
} }
test_Q_ln(); test_q_ln();
module test_Q_pow() { module test_q_pow() {
q = Quat([1,2,3],77); q = quat([1,2,3],77);
verify_f(Q_pow(q,1), q); assert_approx(q_pow(q,1), q);
verify_f(Q_pow(q,0), Q_Ident()); assert_approx(q_pow(q,0), q_ident());
verify_f(Q_pow(q,-1), Q_Inverse(q)); assert_approx(q_pow(q,-1), q_inverse(q));
verify_f(Q_pow(q,2), Q_Mul(q,q)); assert_approx(q_pow(q,2), q_mul(q,q));
verify_f(Q_pow(q,3), Q_Mul(q,Q_pow(q,2))); assert_approx(q_pow(q,3), q_mul(q,q_pow(q,2)));
verify_f(Q_Mul(Q_pow(q,0.456),Q_pow(q,0.544)), q); assert_approx(q_mul(q_pow(q,0.456),q_pow(q,0.544)), q);
verify_f(Q_Mul(Q_pow(q,0.335),Q_Mul(Q_pow(q,.552),Q_pow(q,.113))), q); assert_approx(q_mul(q_pow(q,0.335),q_mul(q_pow(q,.552),q_pow(q,.113))), q);
} }
test_Q_pow(); test_q_pow();