From 9b2a32e5741a9fbb579905acb9992869d3057dd6 Mon Sep 17 00:00:00 2001 From: Adrian Mariano Date: Sat, 12 Oct 2024 11:53:46 -0400 Subject: [PATCH 1/2] rounded prism anchor improvements --- attachments.scad | 64 ++++++++++++++++----- rounding.scad | 146 ++++++++++++++++++++++++++++++++++++++++++----- shapes3d.scad | 28 +++++---- 3 files changed, 199 insertions(+), 39 deletions(-) diff --git a/attachments.scad b/attachments.scad index 9329751..f0ebc8f 100644 --- a/attachments.scad +++ b/attachments.scad @@ -491,6 +491,8 @@ _ANCHOR_TYPES = ["intersect","hull"]; // Side Effects: // `$attach_anchor` for each `from=` anchor given, this is set to the `[ANCHOR, POSITION, ORIENT, SPIN]` information for that anchor. // `$attach_to` is set to `undef`. +// `$edge_angle` is set to the angle of the edge if the anchor is on an edge and the parent is a prismoid, or vnf with "hull" anchoring +// `$edge_length` is set to the length of the edge if the anchor is on an edge and the parent is a prismoid, or vnf with "hull" anchoring // Example: // spheroid(d=20) { // position(TOP) cyl(l=10, d1=10, d2=5, anchor=BOTTOM); @@ -510,6 +512,8 @@ module position(at,from) two_d = _attach_geom_2d($parent_geom); for (anchr = anchors) { anch = _find_anchor(anchr, $parent_geom); + $edge_angle = len(anch)==5 ? struct_val(anch[4],"edge_angle") : undef; + $edge_length = len(anch)==5 ? struct_val(anch[4],"edge_length") : undef; $attach_to = undef; $attach_anchor = anch; translate(anch[1]) children(); @@ -2002,6 +2006,8 @@ module edge_mask(edges=EDGES_ALL, except=[]) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); dummy=assert(vcount == 2, "Not an edge vector!"); anch = _find_anchor(vec, $parent_geom); + $edge_angle = len(anch)==5 ? struct_val(anch[4],"edge_angle") : undef; + $edge_length = len(anch)==5 ? struct_val(anch[4],"edge_length") : undef; $attach_to = undef; $attach_anchor = anch; rotang = @@ -3259,7 +3265,7 @@ function named_anchor(name, pos, orient, spin, rot, flip, info) = // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) // axis = The vector pointing along the axis of a geometry. Default: UP -// override = Function that takes an anchor and returns a pair `[position,direction]` to use for that anchor to override the normal one. You can also supply a lookup table that is a list of `[anchor, [position, direction]]` entries. If the direction/position that is returned is undef then the default will be used. +// override = Function that takes an anchor and returns a pair `[position,direction,spin]` to use for that anchor to override the normal one. You can also supply a lookup table that is a list of `[anchor, [position, direction,spin]]` entries. If the direction/position/spin that is returned is undef then the default will be used. // // Example(NORENDER): Null/Point Shape // geom = attach_geom(); @@ -3730,6 +3736,18 @@ function _get_cp(geom) = /// Arguments: /// anchor = Vector or named anchor string. /// geom = The geometry description of the shape. + +function _three_edge_corner_dir(facevecs,edges) = + let( + v1 = vector_bisect(facevecs[0],facevecs[2]), + v2 = vector_bisect(facevecs[1],facevecs[2]), + p1 = plane_from_normal(rot(v=edges[0],a=90,p=v1)), + p2 = plane_from_normal(rot(v=edges[1],a=-90,p=v2)), + line = plane_intersection(p1,p2), + v3 = unit(line[1]-line[0],UP) + ) + unit(v3,UP); + function _find_anchor(anchor, geom)= is_string(anchor)? ( anchor=="origin"? [anchor, CENTER, UP, 0] // Ok that this returns 3d anchor in the 2d case? @@ -3786,15 +3804,7 @@ function _find_anchor(anchor, geom)= dir = anch==CENTER? UP : len(facevecs)==1? unit(facevecs[0],UP) : len(facevecs)==2? vector_bisect(facevecs[0],facevecs[1]) - : let( - v1 = vector_bisect(facevecs[0],facevecs[2]), - v2 = vector_bisect(facevecs[1],facevecs[2]), - p1 = plane_from_normal(yrot(90,p=v1)), - p2 = plane_from_normal(xrot(-90,p=v2)), - line = plane_intersection(p1,p2), - v3 = unit(line[1]-line[0],UP) * anch.z - ) - unit(v3,UP), + : _three_edge_corner_dir(facevecs,[FWD,LEFT])*anch.z, edgeang = len(facevecs)==2 ? 180-vector_angle(facevecs[0], facevecs[1]) : undef, edgelen = anch.z==0 ? norm(edge) : anch.z>0 ? abs([size2.y,size2.x]*axy) @@ -3969,16 +3979,41 @@ function _find_anchor(anchor, geom)= len(matchind)!=1 ? [] : let( // After this runs we have two edges as index pairs, and their associated faces as index values match1 = select(idxs,[0,matchind[0]]), - match2 = list_remove_values(idxs,match1), + match2 = list_remove(idxs,[0,matchind[0]]), + facelists = [for(i=[0:1], j=[0:1]) + let( + ed = [match1[i],match2[j]], + fl = _vnf_find_edge_faces(vnf,ed) + ) + if (fl!=[]) [ed,fl] + ], + final = [column(facelists,0), flatten(column(facelists,1))] + ) + assert(len(final[1])==2, "invalid!") + final, + + + /*[column(facelists,0), column(facelists + + + + face1 = _vnf_find_edge_faces(vnf,[match1[0],match2[0]]), face2 = _vnf_find_edge_faces(vnf,[match1[0],match2[1]]), + face1a = _vnf_find_edge_faces(vnf,[match1[1],match2[0]]), + face2a = _vnf_find_edge_faces(vnf,[match1[1],match2[1]]), +feet= echo(facelist1 =select(vnf[1],face1a), facelist2=select(vnf[1],face2a)), edge1 = [match1[0], face1==[] ? match2[1] : match2[0]], edge2 = list_remove_values(idxs,edge1), + fee=echo(edxs=idxs, edge1=edge1, edge2=edge2,alt=[match1[1],match2[0]],[match1[1],match2[1]], + edgefaces = _vnf_find_edge_faces(vnf,edge1),_vnf_find_edge_faces(vnf,edge2) ), face3 = _vnf_find_edge_faces(vnf,edge2), - allfaces = concat(face1,face2,face3) + allfaces = concat(face1,face2,face3), + f=echo(pts=pts,matchind=matchind,match1=match1,match2=match2,face1=face1,face2=face2,face3=face3,edge1=edge1,edge2=edge2,face1a=face1a,face2a=face2a) ) - assert(len(allfaces)==2, "Invalid polyhedron encountered while computing VNF anchor") - [[edge1,edge2], allfaces], + assert(len(allfaces)==2, str("Invalid polyhedron encountered while computing VNF anchor",len(allfaces))) + [[edge1,edge2], allfaces],*/ +// fe=echo(edge_faces=edges_faces), dir = len(idxs)>2 && edges_faces==[] ? [anchor,oang] : edges_faces!=[] ? let( @@ -3989,6 +4024,7 @@ function _find_anchor(anchor, geom)= projnormals = project_plane(point4d(cross(facenormals[0],facenormals[1])), facenormals), ang = 180- posmod(v_theta(projnormals[1])-v_theta(projnormals[0]),360), horiz_face = [for(i=[0:1]) if (approx(v_abs(facenormals[i]),UP)) i], +fda= echo(horiz=horiz_face), spin = horiz_face==[] ? let( edgedir = edge[1]-edge[0], diff --git a/rounding.scad b/rounding.scad index 743b9d8..91e52c2 100644 --- a/rounding.scad +++ b/rounding.scad @@ -1348,7 +1348,10 @@ module offset_stroke(path, width=1, rounded=true, start, end, check_valid=true, // will get a similar or better looking model with fewer vertices using "round" instead of // "chamfer". Use the "chamfer" style offset only in cases where the number of steps is very small or just one (such as when using // the `os_chamfer` profile type). -// +// . +// This module offers four anchor types. The default is "hull" in which VNF anchors are placed on the VNF of the **unrounded** object. You +// can also use "intersect" to get the intersection anchors to the unrounded object. If you prefer anchors that respect the rounding +// then use "surf_hull" or "intersect_hull". // Arguments: // path = 2d path (list of points) to extrude // height / length / l / h = total height (including rounded portions, but not extra sections) of the output. Default: combined height of top and bottom end treatments. @@ -1375,7 +1378,7 @@ module offset_stroke(path, width=1, rounded=true, start, end, check_valid=true, // atype = Select "hull", "intersect", "surf_hull" or "surf_intersect" anchor types. Default: "hull" // cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid" // Anchor Types: -// hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings. +// hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings. (default) // intersect = Anchors to the surface of the linear sweep of the path, ignoring any end roundings. // surf_hull = Anchors to the convex hull of the offset_sweep shape, including end treatments. // surf_intersect = Anchors to the surface of the offset_sweep shape, including any end treatments. @@ -2030,7 +2033,11 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) = // vnf = rounded_prism(bottom, [top], [height=|h=|length=|l=], [joint_top=], [joint_bot=], [joint_sides=], [k=], [k_top=], [k_bot=], [k_sides=], [splinesteps=], [debug=]); // Description: // Construct a generalized prism with continuous curvature rounding. You supply the polygons for the top and bottom of the prism. The only -// limitation is that joining the edges must produce a valid polyhedron with coplanar side faces. You specify the rounding by giving +// limitation is that joining the edges must produce a valid polyhedron with coplanar side faces. The vertices of the top and bottom +// are joined in the order listed. The top should have the standard vertex order for a polyhedron: clockwise as seen when viewing the prism +// from the outside. +// . +// You specify the rounding by giving // the joint distance away from the corner for the rounding curve. The k parameter ranges from 0 to 1 with a default of 0.5. Larger // values give a more abrupt transition and smaller ones a more gradual transition. If you set the value much higher // than 0.8 the curvature changes abruptly enough that though it is theoretically continuous, it may @@ -2059,14 +2066,30 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) = // construct a top that is a single point or two points. This means you can completely round a cube by setting the joint to half of // the cube's width. // If you set `debug` to true the module version will display the polyhedron even when it is invalid and it will show the bezier patches at the corners. -// This can help troubleshoot problems with your parameters. With the function form setting debug to true causes it to return [patches,vnf] where +// This can help troubleshoot problems with your parameters. With the function form setting debug to true causes run even on invalid cases and to return [patches,vnf] where // patches is a list of the bezier control points for the corner patches. // . +// This module offers five anchor types. The default is "hull" in which VNF anchors are placed on the VNF of the **unrounded** object. You +// can also use "intersect" to get the intersection anchors to the unrounded object. If you prefer anchors that respect the rounding +// then use "surf_hull" or "intersect_hull". Lastly, in the special case of a prism with four sides, you can use "prismoid" anchoring +// which will attempt to assign standard prismoid anchors to the shape by assigning as RIGHT the face that is closest to the RIGHT direction, +// and defining the other anchors around the shape baesd on that choice. +// . // Note that rounded_prism() is not well suited to rounding shapes that have already been rounded, or that have many points. // It works best when the top and bottom are polygons with well-defined corners. When the polygons have been rounded already, // further rounding generates tiny bezier patches patches that can more easily // interfere, giving rise to an invalid polyhedron. It's also slow because you get bezier patches for every corner in the model. // . +// Named Anchors: +// "origin" = The native position of the prism. +// "top" = Top face, with spin BACK if face is parallel to the XY plane, or with positive Z otherwise +// "bot" = Bottom face, with spin BACK if face is parallel to the XY plane, or with positive Z otherwise +// "edge0", "edge1", etc. = Center of each side edge, spin pointing up along the edge +// "face0", "face1", etc. = Center of each side face, spin pointing up +// "top_edge0", "top_edge1", etc = Center of each top edge, spin pointing clockwise (from top) +// "bot_edge0", "bot_edge1", etc = Center of each bottom edge, spin pointing clockwise (from bottom) +// "top_corner0", "top_corner1", etc = Top corner, pointing in direction of associated edge anchor, spin up along associated edge +// "bot_corner0", "bot_2corner1", etc = Bottom corner, pointing in direction of associated edge anchor, spin up along associated edge // Arguments: // bottom = 2d or 3d path describing bottom polygon // top = 2d or 3d path describing top polygon (must be the same dimension as bottom) @@ -2085,11 +2108,23 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) = // anchor = Translate so anchor point is at the origin. (module only) Default: "origin" // spin = Rotate this many degrees around Z axis after anchor. (module only) Default: 0 // orient = Vector to rotate top towards after spin (module only) -// atype = Select "hull" or "intersect" anchor types. (module only) Default: "hull" +// atype = Select "prismoid", "hull", "intersect", "surf_hull" or "surf_intersect" anchor types. (module only) Default: "hull" // cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. (module only) Default: "centroid" // Named Anchors: -// "origin" = The native position of the prism. +// "top" = center of top face pointing normal to that face +// "bot" = center of bottom face pointing normal to that face +// "edge0", "edge1", etc. = Center of each side edge, spin pointing up along the edge. Can access with EDGE(i) +// "face0", "face1", etc. = Center of each side face, spin pointing up. Can access with FACE(i) +// "top_edge0", "top_edge1", etc = Center of each top edge, spin pointing clockwise (from top). Can access with EDGE(TOP,i) +// "bot_edge0", "bot_edge1", etc = Center of each bottom edge, spin pointing clockwise (from bottom). Can access with EDGE(BOT,i) +// "top_corner0", "top_corner1", etc = Top corner, pointing in direction of associated edge anchor, spin up along associated edge +// "bot_corner0", "bot_corner1", etc = Bottom corner, pointing in direction of associated edge anchor, spin up along associated edge // Anchor Types: +// hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings. (default) +// intersect = Anchors to the surface of the linear sweep of the path, ignoring any end roundings. +// surf_hull = Anchors to the convex hull of the offset_sweep shape, including end treatments. +// surf_intersect = Anchors to the surface of the offset_sweep shape, including any end treatments. + // "hull" = Anchors to the virtual convex hull of the prism. // "intersect" = Anchors to the surface of the prism. // Example: Uniformly rounded pentagonal prism @@ -2172,11 +2207,24 @@ module rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot k=0.5, splinesteps=16, h, length, l, height, convexity=10, debug=false, anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull") { - assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); + dummy1 = assert(in_list(atype, ["intersect","hull","surf_intersect","surf_hull","prismoid"]), + "Anchor type must be one of: \"hull\", \"intersect\", \"surf_hull\", \"surf_intersect\" or \"prismoid\"") + assert(atype!="prismoid" || len(bottom)==4, "Anchor type \"prismoid\" requires that len(bottom)=4"); result = rounded_prism(bottom=bottom, top=top, joint_bot=joint_bot, joint_top=joint_top, joint_sides=joint_sides, - k_bot=k_bot, k_top=k_top, k_sides=k_sides, k=k, splinesteps=splinesteps, h=h, length=length, height=height, l=l,debug=debug); - vnf = debug ? result[1] : result; - attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=atype=="hull", cp=cp) + k_bot=k_bot, k_top=k_top, k_sides=k_sides, k=k, splinesteps=splinesteps, h=h, length=length, height=height, l=l, + debug=debug, _full_info=true); + + top = is_undef(top) ? path3d(bottom,height/2) : + len(top[0])==2 ? path3d(top,height/2) : + top; + bottom = len(bottom[0])==2 ? path3d(bottom,-height/2) : bottom; + unrounded = vnf_vertex_array([top,bottom],caps=true, col_wrap=true,reverse=true); + + vnf = result[1]; + geom = atype=="prismoid" ? attach_geom(size=[1,1,1],anchors=result[2], override=result[3]) + : in_list(atype,["hull","intersect"]) ? attach_geom(vnf=unrounded, extent=atype=="hull", cp=cp, anchors=result[2]) + : attach_geom(vnf=vnf, extent=atype=="surf_hull", cp=cp, anchors=result[2]); + attachable(anchor=anchor, spin=spin, orient=orient, geom=geom) { if (debug){ vnf_polyhedron(vnf, convexity=convexity); @@ -2189,7 +2237,7 @@ module rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot, k_top, k_sides, k=0.5, splinesteps=16, - h, length, l, height, debug=false) = + h, length, l, height, debug=false, _full_info=false) = let( bottom = force_path(bottom,"bottom"), top = force_path(top,"top") @@ -2347,9 +2395,81 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b for(pts=edge_points) vnf_vertex_array(pts), debug ? vnf_from_polygons(faces,fast=true) : vnf_triangulate(vnf_from_polygons(faces)) - ]) + ]), + topnormal = unit(cross(top[0]-top[1],top[2]-top[1])), + botnormal = -unit(cross(bottom[0]-bottom[1],bottom[2]-bottom[1])), + sidenormal = [for(i=idx(top)) + unit(cross(select(top,i+1)-top[i], bottom[i]-top[i]))], + + //pos, orient, spin, info=... + + anchors = [ + for(i=idx(top)) + let( + face = concat(select(top,[i+1,i]), select(bottom,i,i+1)), + face_ctr = mean(concat(select(top,[i+1,i]), select(bottom,i,i+1))), + bot_edge = bottom[i]-select(bottom,i+1), + bot_edge_ctr = mean(select(bottom,i,i+1)), + bot_edge_normal = unit(mean([sidenormal[i],botnormal])), + top_edge_normal = unit(mean([sidenormal[i],topnormal])), + top_edge = select(top,i+1)-top[i], + top_edge_ctr = mean(select(top,i,i+1)), + top_edge_dir = select(top,i+1)-top[i], + edge = [top[i],bottom[i]], + edge_ctr = mean([top[i],bottom[i]]), + edge_normal = unit(mean(select(sidenormal,[i,i-1]))), + top_corner_dir = _three_edge_corner_dir([select(sidenormal,i-1),sidenormal[i],topnormal], + [top[i]-select(top,i-1), top_edge]), + bot_corner_dir = _three_edge_corner_dir([select(sidenormal,i-1),sidenormal[i],botnormal], + [bottom[i]-select(bottom,i-1), bot_edge]) + ) + each[ + named_anchor(EDGE(i),edge_ctr,edge_normal, _compute_spin(edge_normal,top[i]-bottom[i]), + info=[["edge_angle",180-vector_angle(sidenormal[i],select(sidenormal,i-1))], ["edge_length",norm(top[i]-bottom[i])]]), + named_anchor(EDGE(UP,i),top_edge_ctr, top_edge_normal, _compute_spin(top_edge_normal, top_edge), + info=[["edge_angle",180-vector_angle(topnormal,sidenormal[i])], ["edge_length",norm(top_edge)]]), + named_anchor(EDGE(DOWN,i),bot_edge_ctr, bot_edge_normal, _compute_spin(bot_edge_normal, bot_edge), + info=[["edge_angle",180-vector_angle(botnormal,sidenormal[i])], ["edge_length",norm(bot_edge)]]), + named_anchor(FACE(i),mean(face), sidenormal[i], _compute_spin(sidenormal[i],UP)), + named_anchor(str("top_corner",i),top[i], top_corner_dir, _compute_spin(top_corner_dir,UP)), + named_anchor(str("bot_corner",i),bottom[i], bot_corner_dir, _compute_spin(bot_corner_dir,UP)) + ], + named_anchor("top", mean(top), topnormal, _compute_spin(topnormal, approx(v_abs(topnormal),UP)?BACK:UP)), + named_anchor("bot", mean(bottom), botnormal, _compute_spin(botnormal, approx(v_abs(botnormal),UP)?BACK:UP)), + ], + override = len(top)!=4 ? undef + : + let( + stddir = [RIGHT,FWD,LEFT,BACK], + getanch = function(name) search([name], anchors, num_returns_per_match=1)[0], + dir_angle = [for(i=[0:3]) vector_angle(anchors[6*i+3][2],RIGHT)], + ofs = search([min(dir_angle)], dir_angle, num_returns_per_match=1)[0] + ) + [ + [UP, select(anchors[24],1,3)], + [DOWN, select(anchors[25],1,3)], + for(i=[0:3]) + let( + edgeanch=anchors[((i+ofs)%4)*6], + upedge=anchors[((i+ofs)%4)*6+1], + downedge=anchors[((i+ofs)%4)*6+2], + faceanch=anchors[((i+ofs)%4)*6+3], + upcorner=anchors[((i+ofs)%4)*6+4], + downcorner=anchors[((i+ofs)%4)*6+5], + ) + each [ + [stddir[i],select(faceanch,1,3)], + [stddir[i]+select(stddir,i-1), select(edgeanch,1,3)], + [stddir[i]+UP, select(upedge,1,3)], + [stddir[i]+DOWN, select(downedge,1,3)], + [stddir[i]+select(stddir,i-1)+UP, select(upcorner,1,3)], + [stddir[i]+select(stddir,i-1)+DOWN, select(downcorner,1,3)], + ] + ], ) - debug ? [concat(top_patch, bot_patch), vnf] : vnf; + !debug && !_full_info ? vnf + : _full_info ? [concat(top_patch, bot_patch), vnf, anchors, override] + : [concat(top_patch, bot_patch), vnf]; diff --git a/shapes3d.scad b/shapes3d.scad index ac8fdd9..9fe181a 100644 --- a/shapes3d.scad +++ b/shapes3d.scad @@ -865,21 +865,22 @@ function octahedron(size=1, anchor=CENTER, spin=0, orient=UP) = // being located at the bottom of the shape, so confirm anchor positions before use. // Additional named face and edge anchors are located on the side faces and vertical edges of the prism. // You can use `EDGE(i)`, `EDGE(TOP,i)` and `EDGE(BOT,i)` as a shorthand for accessing the named edge anchors, and `FACE(i)` for the face anchors. -// When you use `shift`, which moves the top face of the prism, the spin for the side face and edges anchors will align the child with the edge or face direction. -// Named anchors located along the top and bottom edges and corners are pointed in the direction of the associated face or edge to enable positioning -// in the direction of the side faces but positioned at the top/bottom, since {{align()}} cannot be used for this task. These edge and corners anchors do -// not split the edge/corner angle like the standard anchors. +// When you use `shift`, which moves the top face of the prism, the spin for the side face and edges anchors will align +// the child with the edge or face direction. The "edge0" anchor identifies an edge located along the X+ axis, and then edges +// are labeled counting up in the clockwise direction. Similarly "face0" is the face immediately clockwise from "edge0", and face +// labeling proceeds clockwise. The top and bottom edge anchors label edges directly above and below the face with the same label. +// If you set `realign=true` then "face0" is oriented in the X+ direction. // . // This module is very similar to {{cyl()}}. It differs in the following ways: you can specify side length or inner radius/diameter, you can apply roundings with // different `$fn` than the number of prism faces, you can apply texture to the flat faces without forcing a high facet count, // anchors are located on the true object instead of the ideal cylinder and you can anchor to the edges and faces. // Named Anchors: -// "edge0", "edge1", etc. = Center of each side edge, spin pointing up along the edge -// "face0", "face1", etc. = Center of each side face, spin pointing up -// "top_edge0", "top_edge1", etc = Center of each top edge, spin pointing clockwise (from top) -// "bot_edge0", "bot_edge1", etc = Center of each bottom edge, spin pointing clockwise (from bottom) -// "topcorner0", "topcorner1", etc = Top corner, pointing in direction of associated edge anchor, spin up along associated edge -// "botcorner0", "botcorner1", etc = Bottom corner, pointing in direction of associated edge anchor, spin up along associated edge +// "edge0", "edge1", etc. = Center of each side edge, spin pointing up along the edge. Can access with EDGE(i) +// "face0", "face1", etc. = Center of each side face, spin pointing up. Can access with FACE(i) +// "top_edge0", "top_edge1", etc = Center of each top edge, spin pointing clockwise (from top). Can access with EDGE(TOP,i) +// "bot_edge0", "bot_edge1", etc = Center of each bottom edge, spin pointing clockwise (from bottom). Can access with EDGE(BOT,i) +// "top_corner0", "top_corner1", etc = Top corner, pointing in direction of associated edge anchor, spin up along associated edge +// "bot_corner0", "bot_corner1", etc = Bottom corner, pointing in direction of associated edge anchor, spin up along associated edge // Arguments: // l / h / length / height = Length of prism // r = Outer radius of prism. @@ -1174,8 +1175,11 @@ function regular_prism(n, info=[["edge_angle",topedgeangle],["edge_length",2*sin(180/n)*r2]]), named_anchor(str("bot_edge",i), apply(Mface,[r1/sc,0,-height/2]), botnormal, botedgespin, info=[["edge_angle",180-topedgeangle],["edge_length",2*sin(180/n)*r1]]), - named_anchor(str("top_corner",i), apply(Medge,[r2,0,height/2]), unit(edgenormal+UP), edgespin), - named_anchor(str("bot_corner",i), apply(Medge,[r1,0,-height/2]), unit(edgenormal+DOWN), edgespin) + named_anchor(str("top_corner",i), apply(Medge,[r2,0,height/2]), unit(edgenormal+UP), + _compute_spin(unit(edgenormal+UP),edge)), + named_anchor(str("bot_corner",i), apply(Medge,[r1,0,-height/2]), unit(edgenormal+DOWN), + _compute_spin(unit(edgenormal+DOWN),edge)) + ] ], override = approx(shift,[0,0]) ? undef : [[UP, [point3d(shift,height/2), UP]]], From 4d95f81352a8ff8d1815bff247ff56055ca4d955 Mon Sep 17 00:00:00 2001 From: Adrian Mariano Date: Sat, 12 Oct 2024 12:30:52 -0400 Subject: [PATCH 2/2] comma fix --- rounding.scad | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/rounding.scad b/rounding.scad index 91e52c2..3b2599d 100644 --- a/rounding.scad +++ b/rounding.scad @@ -2455,7 +2455,7 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b downedge=anchors[((i+ofs)%4)*6+2], faceanch=anchors[((i+ofs)%4)*6+3], upcorner=anchors[((i+ofs)%4)*6+4], - downcorner=anchors[((i+ofs)%4)*6+5], + downcorner=anchors[((i+ofs)%4)*6+5] ) each [ [stddir[i],select(faceanch,1,3)], @@ -2465,7 +2465,7 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b [stddir[i]+select(stddir,i-1)+UP, select(upcorner,1,3)], [stddir[i]+select(stddir,i-1)+DOWN, select(downcorner,1,3)], ] - ], + ] ) !debug && !_full_info ? vnf : _full_info ? [concat(top_patch, bot_patch), vnf, anchors, override]