diff --git a/arrays.scad b/arrays.scad index 0df54af..69bc189 100644 --- a/arrays.scad +++ b/arrays.scad @@ -951,28 +951,34 @@ function shuffle(list,seed) = // idx should be an index of the arrays l[i] function _group_sort_by_index(l,idx) = - len(l) == 0 ? [] : - len(l) == 1 ? [l] : - let( pivot = l[floor(len(l)/2)][idx], - equal = [ for(li=l) if( li[idx]==pivot) li ] , - lesser = [ for(li=l) if( li[idx]< pivot) li ] , - greater = [ for(li=l) if( li[idx]> pivot) li ] - ) - concat( _group_sort_by_index(lesser,idx), - [equal], - _group_sort_by_index(greater,idx) ) ; + len(l) == 0 ? [] : + len(l) == 1 ? [l] : + let( + pivot = l[floor(len(l)/2)][idx], + equal = [ for(li=l) if( li[idx]==pivot) li ], + lesser = [ for(li=l) if( li[idx]< pivot) li ], + greater = [ for(li=l) if( li[idx]> pivot) li ] + ) + concat( + _group_sort_by_index(lesser,idx), + [equal], + _group_sort_by_index(greater,idx) + ); function _group_sort(l) = - len(l) == 0 ? [] : - len(l) == 1 ? [l] : - let( pivot = l[floor(len(l)/2)], - equal = [ for(li=l) if( li==pivot) li ] , - lesser = [ for(li=l) if( li< pivot) li ] , - greater = [ for(li=l) if( li> pivot) li ] - ) - concat( _group_sort(lesser), - [equal], - _group_sort(greater) ) ; + len(l) == 0 ? [] : + len(l) == 1 ? [l] : + let( + pivot = l[floor(len(l)/2)], + equal = [ for(li=l) if( li==pivot) li ] , + lesser = [ for(li=l) if( li< pivot) li ] , + greater = [ for(li=l) if( li> pivot) li ] + ) + concat( + _group_sort(lesser), + [equal], + _group_sort(greater) + ); // Sort a vector of scalar values with the native comparison operator @@ -1171,11 +1177,11 @@ function group_sort(list, idx) = assert(is_list(list), "Input should be a list." ) assert(is_undef(idx) || (is_finite(idx) && idx>=0) , "Invalid index." ) len(list)<=1 ? [list] : - is_vector(list)? _group_sort(list) : - let( idx = is_undef(idx) ? 0 : idx ) - assert( [for(entry=list) if(!is_list(entry) || len(entry)pivot) li ] - ) - concat( _unique_sort(lesser), - equal[0], - _unique_sort(greater) ) ; + len(l) <= 1 ? l : + let( + pivot = l[floor(len(l)/2)], + equal = [ for(li=l) if( li==pivot) li ] , + lesser = [ for(li=l) if( lipivot) li ] + ) + concat( + _unique_sort(lesser), + equal[0], + _unique_sort(greater) + ); // Function: unique_count() @@ -1232,13 +1242,23 @@ function unique_count(list) = assert(is_list(list) || is_string(list), "Invalid input." ) list == [] ? [[],[]] : is_homogeneous(list,1) && ! is_list(list[0]) - ? let( sorted = _group_sort(list) ) - [ [for(s=sorted) s[0] ], [for(s=sorted) len(s) ] ] - : let( list=sort(list) ) - let( ind = [0, for(i=[1:1:len(list)-1]) if (list[i]!=list[i-1]) i] ) - [ select(list,ind), deltas( concat(ind,[len(list)]) ) ]; + ? let( sorted = _group_sort(list) ) [ + [for(s=sorted) s[0] ], + [for(s=sorted) len(s) ] + ] + : let( + list=sort(list), + ind = [ + 0, + for(i=[1:1:len(list)-1]) + if (list[i]!=list[i-1]) i + ] + ) [ + select(list,ind), + deltas( concat(ind,[len(list)]) ) + ]; + - // Section: List Iteration Helpers // Function: idx() diff --git a/bottlecaps.scad b/bottlecaps.scad index 49aa340..8bf1529 100644 --- a/bottlecaps.scad +++ b/bottlecaps.scad @@ -502,7 +502,7 @@ module generic_bottle_neck( } function generic_bottle_neck( - neck_d, + neck_d, id, thread_od, height, diff --git a/geometry.scad b/geometry.scad index 0221a2b..f28299b 100644 --- a/geometry.scad +++ b/geometry.scad @@ -20,7 +20,7 @@ // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function point_on_segment2d(point, edge, eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) - point_segment_distance(point, edge) 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0 - : (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0 ; + ? (edge[1].y > 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0 + : (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0; //Internal function _valid_line(line,dim,eps=EPSILON) = @@ -74,8 +74,8 @@ function collinear(a, b, c, eps=EPSILON) = "Input should be 3 points or a list of points with same dimension.") assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( points = is_def(c) ? [a,b,c]: a ) - len(points)<3 ? true - : noncollinear_triple(points,error=false,eps=eps)==[]; + len(points)<3 ? true : + noncollinear_triple(points,error=false,eps=eps) == []; // Function: point_line_distance() @@ -124,8 +124,7 @@ function point_segment_distance(pt, seg) = // dist = segment_distance([[-14,3], [-15,9]], [[-10,0], [10,0]]); // Returns: 5 // dist2 = segment_distance([[-5,5], [5,-5]], [[-10,3], [10,-3]]); // Returns: 0 function segment_distance(seg1, seg2) = - assert( is_matrix(concat(seg1,seg2),4), - "Inputs should be two valid segments." ) + assert( is_matrix(concat(seg1,seg2),4), "Inputs should be two valid segments." ) convex_distance(seg1,seg2); @@ -147,9 +146,9 @@ function segment_distance(seg1, seg2) = // color("blue") move_copies([p1,p2]) circle(d=2, $fn=12); function line_normal(p1,p2) = is_undef(p2) - ? assert( len(p1)==2 && !is_undef(p1[1]) , "Invalid input." ) + ? assert( len(p1)==2 && !is_undef(p1[1]) , "Invalid input." ) line_normal(p1[0],p1[1]) - : assert( _valid_line([p1,p2],dim=2), "Invalid line." ) + : assert( _valid_line([p1,p2],dim=2), "Invalid line." ) unit([p1.y-p2.y,p2.x-p1.x]); @@ -164,7 +163,8 @@ function line_normal(p1,p2) = function _general_line_intersection(s1,s2,eps=EPSILON) = let( denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]]) - ) approx(denominator,0,eps=eps)? [undef,undef,undef] : let( + ) approx(denominator,0,eps=eps)? [undef,undef,undef] : + let( t = det2([s1[0],s2[0]]-s2) / denominator, u = det2([s1[0],s1[0]]-[s2[0],s1[1]]) / denominator ) [s1[0]+t*(s1[1]-s1[0]), t, u]; @@ -201,11 +201,10 @@ function line_intersection(l1,l2,eps=EPSILON) = function line_ray_intersection(line,ray,eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(line,dim=2,eps=eps) && _valid_line(ray,dim=2,eps=eps), "Invalid line or ray." ) - let( - isect = _general_line_intersection(line,ray,eps=eps) - ) + let( isect = _general_line_intersection(line,ray,eps=eps) ) is_undef(isect[0]) ? undef : - (isect[2]<0-eps) ? undef : isect[0]; + (isect[2]<0-eps) ? undef : + isect[0]; // Function: line_segment_intersection() @@ -221,9 +220,7 @@ function line_ray_intersection(line,ray,eps=EPSILON) = function line_segment_intersection(line,segment,eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(line, dim=2,eps=eps) &&_valid_line(segment,dim=2,eps=eps), "Invalid line or segment." ) - let( - isect = _general_line_intersection(line,segment,eps=eps) - ) + let( isect = _general_line_intersection(line,segment,eps=eps) ) is_undef(isect[0]) ? undef : isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0]; @@ -242,11 +239,10 @@ function line_segment_intersection(line,segment,eps=EPSILON) = function ray_intersection(r1,r2,eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(r1,dim=2,eps=eps) && _valid_line(r2,dim=2,eps=eps), "Invalid ray(s)." ) - let( - isect = _general_line_intersection(r1,r2,eps=eps) - ) + let( isect = _general_line_intersection(r1,r2,eps=eps) ) is_undef(isect[0]) ? undef : - isect[1]<0-eps || isect[2]<0-eps ? undef : isect[0]; + isect[1]<0-eps || isect[2]<0-eps ? undef : + isect[0]; // Function: ray_segment_intersection() @@ -262,9 +258,7 @@ function ray_intersection(r1,r2,eps=EPSILON) = function ray_segment_intersection(ray,segment,eps=EPSILON) = assert( _valid_line(ray,dim=2,eps=eps) && _valid_line(segment,dim=2,eps=eps), "Invalid ray or segment." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) - let( - isect = _general_line_intersection(ray,segment,eps=eps) - ) + let( isect = _general_line_intersection(ray,segment,eps=eps) ) is_undef(isect[0]) ? undef : isect[1]<0-eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0]; @@ -283,9 +277,7 @@ function ray_segment_intersection(ray,segment,eps=EPSILON) = function segment_intersection(s1,s2,eps=EPSILON) = assert( _valid_line(s1,dim=2,eps=eps) && _valid_line(s2,dim=2,eps=eps), "Invalid segment(s)." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) - let( - isect = _general_line_intersection(s1,s2,eps=eps) - ) + let( isect = _general_line_intersection(s1,s2,eps=eps) ) is_undef(isect[0]) ? undef : isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0]; @@ -346,7 +338,7 @@ function line_closest_point(line,pt) = assert(_valid_line(line), "Invalid line." ) assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." ) let( n = unit( line[0]- line[1]) ) - line[1]+((pt- line[1]) * n) * n; + line[1] + ((pt- line[1]) * n) * n; // Function: ray_closest_point() @@ -485,7 +477,9 @@ function line_from_points(points, fast=false, eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( pb = furthest_point(points[0],points) ) norm(points[pb]-points[0])-90 && ang<90, "The angle should be an acute angle." ) hyp*cos(ang); +function ang_hyp_to_adj(ang,hyp) = hyp_ang_to_adj(hyp, ang); + // Function: opp_ang_to_adj() +// Alias: ang_opp_to_adj() // Usage: // adj = opp_ang_to_adj(opp,ang); // Description: @@ -680,8 +681,11 @@ function opp_ang_to_adj(opp,ang) = assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." ) opp/tan(ang); +function ang_opp_to_adj(ang,opp) = opp_ang_to_adj(opp,ang); + // Function: hyp_adj_to_opp() +// Alias: adj_hyp_to_opp() // Usage: // opp = hyp_adj_to_opp(hyp,adj); // Description: @@ -696,8 +700,11 @@ function hyp_adj_to_opp(hyp,adj) = "Triangle side lengths should be a positive numbers." ) sqrt(hyp*hyp-adj*adj); +function adj_hyp_to_opp(adj,hyp) = hyp_adj_to_opp(hyp,adj); + // Function: hyp_ang_to_opp() +// Alias: ang_hyp_to_opp() // Usage: // opp = hyp_ang_to_opp(hyp,adj); // Description: @@ -712,8 +719,11 @@ function hyp_ang_to_opp(hyp,ang) = assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." ) hyp*sin(ang); +function ang_hyp_to_opp(ang,hyp) = hyp_ang_to_opp(hyp,ang); + // Function: adj_ang_to_opp() +// Alias: ang_adj_to_opp() // Usage: // opp = adj_ang_to_opp(adj,ang); // Description: @@ -728,8 +738,11 @@ function adj_ang_to_opp(adj,ang) = assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." ) adj*tan(ang); +function ang_adj_to_opp(ang,adj) = adj_ang_to_opp(adj,ang); + // Function: adj_opp_to_hyp() +// Alias: opp_adj_to_hyp() // Usage: // hyp = adj_opp_to_hyp(adj,opp); // Description: @@ -744,8 +757,11 @@ function adj_opp_to_hyp(adj,opp) = "Triangle side lengths should be a positive numbers." ) norm([opp,adj]); +function opp_adj_to_hyp(opp,adj) = adj_opp_to_hyp(adj,opp); + // Function: adj_ang_to_hyp() +// Alias: ang_adj_to_hyp() // Usage: // hyp = adj_ang_to_hyp(adj,ang); // Description: @@ -760,8 +776,11 @@ function adj_ang_to_hyp(adj,ang) = assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." ) adj/cos(ang); +function ang_adj_to_hyp(ang,adj) = adj_ang_to_hyp(adj,ang); + // Function: opp_ang_to_hyp() +// Alias: ang_opp_to_hyp() // Usage: // hyp = opp_ang_to_hyp(opp,ang); // Description: @@ -776,8 +795,11 @@ function opp_ang_to_hyp(opp,ang) = assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." ) opp/sin(ang); +function ang_opp_to_hyp(ang,opp) = opp_ang_to_hyp(opp,ang); + // Function: hyp_adj_to_ang() +// Alias: adj_hyp_to_ang() // Usage: // ang = hyp_adj_to_ang(hyp,adj); // Description: @@ -792,8 +814,11 @@ function hyp_adj_to_ang(hyp,adj) = "Triangle side lengths should be positive numbers." ) acos(adj/hyp); +function adj_hyp_to_ang(adj,hyp) = hyp_adj_to_ang(hyp,adj); + // Function: hyp_opp_to_ang() +// Alias: opp_hyp_to_ang() // Usage: // ang = hyp_opp_to_ang(hyp,opp); // Description: @@ -808,8 +833,11 @@ function hyp_opp_to_ang(hyp,opp) = "Triangle side lengths should be positive numbers." ) asin(opp/hyp); +function opp_hyp_to_ang(opp,hyp) = hyp_opp_to_ang(hyp,opp); + // Function: adj_opp_to_ang() +// Alias: opp_adj_to_ang() // Usage: // ang = adj_opp_to_ang(adj,opp); // Description: @@ -824,6 +852,8 @@ function adj_opp_to_ang(adj,opp) = "Triangle side lengths should be positive numbers." ) atan2(opp,adj); +function opp_adj_to_ang(opp,adj) = adj_opp_to_ang(adj,opp); + // Function: triangle_area() // Usage: @@ -866,8 +896,7 @@ function plane3pt(p1, p2, p3) = let( crx = cross(p3-p1, p2-p1), nrm = norm(crx) - ) - approx(nrm,0) ? [] : + ) approx(nrm,0) ? [] : concat(crx, crx*p1)/nrm; @@ -893,8 +922,7 @@ function plane3pt_indexed(points, i1, i2, i3) = p1 = points[i1], p2 = points[i2], p3 = points[i3] - ) - plane3pt(p1,p2,p3); + ) plane3pt(p1,p2,p3); // Function: plane_from_normal() @@ -917,7 +945,7 @@ function plane_from_normal(normal, pt=[0,0,0]) = // Based on: https://en.wikipedia.org/wiki/Eigenvalue_algorithm function _eigenvals_symm_3(M) = let( p1 = pow(M[0][1],2) + pow(M[0][2],2) + pow(M[1][2],2) ) - (p1=0), "The tolerance should be a non-negative value." ) - len(points) == 3 - ? let( plane = plane3pt(points[0],points[1],points[2]) ) - plane==[] ? [] : plane - : let( + len(points) == 3 + ? let( plane = plane3pt(points[0],points[1],points[2]) ) + plane==[] ? [] : plane + : let( covmix = _covariance_evec_eval(points), pm = covmix[0], evec = covmix[1], eval0 = covmix[2], - plane = [ each evec, pm*evec] ) + plane = [ each evec, pm*evec] + ) !fast && _pointlist_greatest_distance(points,plane)>eps*eval0 ? undef : plane ; @@ -1016,8 +1045,8 @@ function plane_from_polygon(poly, fast=false, eps=EPSILON) = triple==[] ? [] : let( plane = plane3pt(poly[triple[0]],poly[triple[1]],poly[triple[2]])) fast? plane: points_on_plane(poly, plane, eps=eps)? plane: []; - - + + // Function: plane_normal() // Usage: // plane_normal(plane); @@ -1121,10 +1150,10 @@ function _general_plane_line_intersection(plane, line, eps=EPSILON) = b = plane*[each(line[1]-line[0]),0] // difference between the plane expression evaluation at line[1] and at line[0] ) approx(b,0,eps) // is (line[1]-line[0]) "parallel" to the plane ? - ? approx(a,0,eps) // is line[0] on the plane ? - ? [line,undef] // line is on the plane - : undef // line is parallel but not on the plane - : [ line[0]-a/b*(line[1]-line[0]), -a/b ]; + ? approx(a,0,eps) // is line[0] on the plane ? + ? [line,undef] // line is on the plane + : undef // line is parallel but not on the plane + : [ line[0]-a/b*(line[1]-line[0]), -a/b ]; // Function: normalize_plane() @@ -1152,8 +1181,7 @@ function plane_line_angle(plane, line) = normal = plane_normal(plane), sin_angle = linedir*normal, cos_angle = norm(cross(linedir,normal)) - ) - atan2(sin_angle,cos_angle); + ) atan2(sin_angle,cos_angle); // Function: plane_line_intersection() @@ -1176,8 +1204,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = let( bounded = is_list(bounded)? bounded : [bounded, bounded], res = _general_plane_line_intersection(plane, line, eps=eps) - ) - is_undef(res) ? undef : + ) is_undef(res) ? undef : is_undef(res[1]) ? res[0] : bounded[0] && res[1]<0 ? undef : bounded[1] && res[1]>1 ? undef : @@ -1207,41 +1234,37 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) = bounded = is_list(bounded)? bounded : [bounded, bounded], poly = deduplicate(poly), indices = noncollinear_triple(poly) - ) - indices==[] ? undef : + ) indices==[] ? undef : let( p1 = poly[indices[0]], p2 = poly[indices[1]], p3 = poly[indices[2]], plane = plane3pt(p1,p2,p3), res = _general_plane_line_intersection(plane, line, eps=eps) - ) - is_undef(res)? undef : - is_undef(res[1]) - ? ( let(// Line is on polygon plane. + ) is_undef(res)? undef : + is_undef(res[1]) ? ( + let(// Line is on polygon plane. linevec = unit(line[1] - line[0]), lp1 = line[0] + (bounded[0]? 0 : -1000000) * linevec, lp2 = line[1] + (bounded[1]? 0 : 1000000) * linevec, poly2d = clockwise_polygon(project_plane(plane, poly)), line2d = project_plane(plane, [lp1,lp2]), parts = split_path_at_region_crossings(line2d, [poly2d], closed=false), - inside = [for (part = parts) - if (point_in_polygon(mean(part), poly2d)>0) part - ] - ) - !inside? undef : - let( - isegs = [for (seg = inside) lift_plane(plane, seg) ] - ) + inside = [ + for (part = parts) + if (point_in_polygon(mean(part), poly2d)>0) part + ] + ) !inside? undef : + let( isegs = [for (seg = inside) lift_plane(plane, seg) ] ) isegs - ) - : bounded[0] && res[1]<0? undef : - bounded[1] && res[1]>1? undef : - let( - proj = clockwise_polygon(project_plane([p1, p2, p3], poly)), - pt = project_plane([p1, p2, p3], res[0]) - ) - point_in_polygon(pt, proj) < 0 ? undef : res[0]; + ) : + bounded[0] && res[1]<0? undef : + bounded[1] && res[1]>1? undef : + let( + proj = clockwise_polygon(project_plane([p1, p2, p3], poly)), + pt = project_plane([p1, p2, p3], res[0]) + ) point_in_polygon(pt, proj) < 0 ? undef : + res[0]; // Function: plane_intersection() @@ -1260,19 +1283,20 @@ function plane_intersection(plane1,plane2,plane3) = assert( _valid_plane(plane1) && _valid_plane(plane2) && (is_undef(plane3) ||_valid_plane(plane3)), "The input must be 2 or 3 planes." ) is_def(plane3) - ? let( - matrix = [for(p=[plane1,plane2,plane3]) point3d(p)], - rhs = [for(p=[plane1,plane2,plane3]) p[3]] + ? let( + matrix = [for(p=[plane1,plane2,plane3]) point3d(p)], + rhs = [for(p=[plane1,plane2,plane3]) p[3]] ) linear_solve(matrix,rhs) - : let( normal = cross(plane_normal(plane1), plane_normal(plane2)) ) + : let( normal = cross(plane_normal(plane1), plane_normal(plane2)) ) approx(norm(normal),0) ? undef : let( matrix = [for(p=[plane1,plane2]) point3d(p)], rhs = [plane1[3], plane2[3]], point = linear_solve(matrix,rhs) ) - point==[]? undef: [point, point+normal]; + point==[]? undef: + [point, point+normal]; // Function: coplanar() @@ -1287,18 +1311,18 @@ function coplanar(points, eps=EPSILON) = assert( is_path(points,dim=3) , "Input should be a list of 3D points." ) assert( is_finite(eps) && eps>=0, "The tolerance should be a non-negative value." ) len(points)<=2 ? false - : let( ip = noncollinear_triple(points,error=false,eps=eps) ) + : let( ip = noncollinear_triple(points,error=false,eps=eps) ) ip == [] ? false : let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]) ) _pointlist_greatest_distance(points,plane) < eps; -// the maximum distance from points to the plane +// the maximum distance from points to the plane function _pointlist_greatest_distance(points,plane) = - let( + let( normal = point3d(plane), pt_nrm = points*normal - ) + ) abs(max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3])) / norm(normal); @@ -1429,6 +1453,7 @@ function circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) = ) [cp, n, tp1, tp2, dang1, dang2]; + module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) { c = circle_2tangents(pt1=pt1, pt2=pt2, pt3=pt3, r=r, d=d); assert(!is_undef(c), "Cannot find circle when both rays are collinear."); @@ -1445,6 +1470,7 @@ module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) { } } + // Function&Module: circle_3points() // Usage: As Function // circ = circle_3points(pt1, pt2, pt3); @@ -1572,7 +1598,7 @@ function circle_point_tangents(r, d, cp, pt) = // returns only two entries. If one circle is inside the other one then no tangents exist // so the function returns the empty set. When the circles are tangent a degenerate tangent line // passes through the point of tangency of the two circles: this degenerate line is NOT returned. -// Arguments: +// Arguments: // c1 = Center of the first circle. // r1 = Radius of the first circle. // c2 = Center of the second circle. @@ -1689,7 +1715,7 @@ function circle_line_intersection(c,r,d,line,bounded=false,eps=EPSILON) = // If all points are collinear returns [] when `error=true` or an error otherwise . // Arguments: // points = List of input points. -// error = Defines the behaviour for collinear input points. When `true`, produces an error, otherwise returns []. Default: `true`. +// error = Defines the behaviour for collinear input points. When `true`, produces an error, otherwise returns []. Default: `true`. // eps = Tolerance for collinearity test. Default: EPSILON. function noncollinear_triple(points,error=true,eps=EPSILON) = assert( is_path(points), "Invalid input points." ) @@ -1699,19 +1725,17 @@ function noncollinear_triple(points,error=true,eps=EPSILON) = b = furthest_point(pa, points), pb = points[b], nrm = norm(pa-pb) - ) - nrm <= eps*max(norm(pa),norm(pb)) - ? assert(!error, "Cannot find three noncollinear points in pointlist.") - [] - : let( - n = (pb-pa)/nrm, - distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)] - ) - max(distlist) < eps*nrm - ? assert(!error, "Cannot find three noncollinear points in pointlist.") - [] - : [0,b,max_index(distlist)]; - + ) + nrm <= eps*max(norm(pa),norm(pb)) ? + assert(!error, "Cannot find three noncollinear points in pointlist.") [] : + let( + n = (pb-pa)/nrm, + distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)] + ) + max(distlist) < eps*nrm ? + assert(!error, "Cannot find three noncollinear points in pointlist.") [] : + [0, b, max_index(distlist)]; + // Function: pointlist_bounds() // Usage: @@ -1724,12 +1748,14 @@ function noncollinear_triple(points,error=true,eps=EPSILON) = // pts = List of points. function pointlist_bounds(pts) = assert(is_path(pts,dim=undef,fast=true) , "Invalid pointlist." ) - let( + let( select = ident(len(pts[0])), - spread = [for(i=[0:len(pts[0])-1]) - let( spreadi = pts*select[i] ) - [min(spreadi), max(spreadi)] ] ) - transpose(spread); + spread = [ + for(i=[0:len(pts[0])-1]) + let( spreadi = pts*select[i] ) + [ min(spreadi), max(spreadi) ] + ] + ) transpose(spread); // Function: closest_point() @@ -1782,12 +1808,12 @@ function polygon_area(poly, signed=false) = : let( plane = plane_from_polygon(poly) ) plane==[]? undef : let( - n = plane_normal(plane), - total = - sum([ for(i=[1:1:len(poly)-2]) - cross(poly[i]-poly[0], poly[i+1]-poly[0]) - ]) * n/2 - ) + n = plane_normal(plane), + total = sum([ + for(i=[1:1:len(poly)-2]) + cross(poly[i]-poly[0], poly[i+1]-poly[0]) + ]) * n/2 + ) signed ? total : abs(total); @@ -1869,7 +1895,7 @@ function reindex_polygon(reference, poly, return_error=false) = [for(i=[0:N-1]) (reference[i]*poly[(i+k)%N]) ] ]*I, optimal_poly = polygon_shift(fixpoly, max_index(val)) - ) + ) return_error? [optimal_poly, min(poly*(I*poly)-2*val)] : optimal_poly; @@ -1901,7 +1927,8 @@ function align_polygon(reference, poly, angles, cp) = "The `angle` parameter must be a range or a non void list of numbers.") let( // alignments is a vector of entries of the form: [polygon, error] alignments = [ - for(angle=angles) reindex_polygon( + for(angle=angles) + reindex_polygon( reference, zrot(angle,p=poly,cp=cp), return_error=true @@ -1927,22 +1954,21 @@ function centroid(poly, eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( n = len(poly[0])==2 ? 1 : - let( - plane = plane_from_points(poly, fast=true) ) + let( plane = plane_from_points(poly, fast=true) ) assert( !is_undef(plane), "The polygon must be planar." ) plane_normal(plane), v0 = poly[0] , - val = sum([for(i=[1:len(poly)-2]) - let( - v1 = poly[i], - v2 = poly[i+1], - area = cross(v2-v0,v1-v0)*n - ) - [ area, (v0+v1+v2)*area ] - ] ) - ) - assert(!approx(val[0],0, eps), "The polygon is self-intersecting or its points are collinear.") - val[1]/val[0]/3; + val = sum([ + for(i=[1:len(poly)-2]) + let( + v1 = poly[i], + v2 = poly[i+1], + area = cross(v2-v0,v1-v0)*n + ) [ area, (v0+v1+v2)*area ] + ]) + ) + assert(!approx(val[0],0, eps), "The polygon is self-intersecting or its points are collinear.") + val[1]/val[0]/3; @@ -1972,38 +1998,39 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) = assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) // Does the point lie on any edges? If so return 0. let( - on_brd = [for(i=[0:1:len(poly)-1]) - let( seg = select(poly,i,i+1) ) - if( !approx(seg[0],seg[1],eps) ) - point_on_segment2d(point, seg, eps=eps)? 1:0 ] - ) - sum(on_brd) > 0 - ? 0 - : nonzero - ? // Compute winding number and return 1 for interior, -1 for exterior - let( - windchk = [for(i=[0:1:len(poly)-1]) - let(seg=select(poly,i,i+1)) - if(!approx(seg[0],seg[1],eps=eps)) - _point_above_below_segment(point, seg) - ] + on_brd = [ + for (i = [0:1:len(poly)-1]) + let( seg = select(poly,i,i+1) ) + if (!approx(seg[0],seg[1],eps) ) + point_on_segment2d(point, seg, eps=eps)? 1:0 + ] + ) + sum(on_brd) > 0? 0 : + nonzero + ? // Compute winding number and return 1 for interior, -1 for exterior + let( + windchk = [ + for(i=[0:1:len(poly)-1]) + let( seg=select(poly,i,i+1) ) + if (!approx(seg[0],seg[1],eps=eps)) + _point_above_below_segment(point, seg) + ] + ) sum(windchk) != 0 ? 1 : -1 + : // or compute the crossings with the ray [point, point+[1,0]] + let( + n = len(poly), + cross = [ + for(i=[0:n-1]) + let( + p0 = poly[i]-point, + p1 = poly[(i+1)%n]-point ) - sum(windchk) != 0 ? 1 : -1 - : // or compute the crossings with the ray [point, point+[1,0]] - let( - n = len(poly), - cross = - [for(i=[0:n-1]) - let( - p0 = poly[i]-point, - p1 = poly[(i+1)%n]-point - ) - if( ( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) ) - && -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) ) - 1 - ] - ) - 2*(len(cross)%2)-1; + if ( + ( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) ) + && -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) + ) 1 + ] + ) 2*(len(cross)%2)-1; // Function: polygon_is_clockwise() @@ -2052,7 +2079,7 @@ function ccw_polygon(poly) = // poly = The list of the path points for the perimeter of the polygon. function reverse_polygon(poly) = assert(is_path(poly), "Input should be a polygon") - [poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ]; + [ poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ]; // Function: polygon_normal() @@ -2230,7 +2257,7 @@ function split_polygons_at_each_z(polys, zs, _i=0) = // Usage: // is_convex_polygon(poly); // Description: -// Returns true if the given 2D or 3D polygon is convex. +// Returns true if the given 2D or 3D polygon is convex. // The result is meaningless if the polygon is not simple (self-intersecting) or non coplanar. // If the points are collinear an error is generated. // Arguments: @@ -2244,14 +2271,16 @@ function split_polygons_at_each_z(polys, zs, _i=0) = // is_convex_polygon(spiral); // Returns: false function is_convex_polygon(poly,eps=EPSILON) = assert(is_path(poly), "The input should be a 2D or 3D polygon." ) - let( lp = len(poly), - p0 = poly[0] ) + let( + lp = len(poly), + p0 = poly[0] + ) assert( lp>=3 , "A polygon must have at least 3 points" ) let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] ) len(p0)==2 - ? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" ) + ? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" ) min(crosses) >=0 || max(crosses)<=0 - : let( prod = crosses*sum(crosses), + : let( prod = crosses*sum(crosses), minc = min(prod), maxc = max(prod) ) assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" ) @@ -2261,12 +2290,12 @@ function is_convex_polygon(poly,eps=EPSILON) = // Function: convex_distance() // Usage: // convex_distance(pts1, pts2,); -// See also: +// See also: // convex_collision // Description: -// Returns the smallest distance between a point in convex hull of `points1` +// Returns the smallest distance between a point in convex hull of `points1` // and a point in the convex hull of `points2`. All the points in the lists -// should have the same dimension, either 2D or 3D. +// should have the same dimension, either 2D or 3D. // A zero result means the hulls intercept whithin a tolerance `eps`. // Arguments: // points1 - first list of 2d or 3d points. @@ -2284,44 +2313,44 @@ function is_convex_polygon(poly,eps=EPSILON) = // Example(3D): // sphr1 = sphere(2,$fn=10); // sphr2 = move([4,0,0], p=sphr1); -// sphr3 = move([4.5,0,0], p=sphr1); +// sphr3 = move([4.5,0,0], p=sphr1); // vnf_polyhedron(sphr1); // vnf_polyhedron(sphr2); // echo(convex_distance(sphr1[0], sphr2[0])); // Returns: 0 // echo(convex_distance(sphr1[0], sphr3[0])); // Returns: 0.5 function convex_distance(points1, points2, eps=EPSILON) = - assert(is_matrix(points1) && is_matrix(points2,undef,len(points1[0])), + assert(is_matrix(points1) && is_matrix(points2,undef,len(points1[0])), "The input list should be a consistent non empty list of points of same dimension.") assert(len(points1[0])==2 || len(points1[0])==3 , "The input points should be 2d or 3d points.") let( d = points1[0]-points2[0] ) norm(d)); -// See also: +// See also: // convex_distance // Description: // Returns `true` if the convex hull of `points1` intercepts the convex hull of `points2` @@ -2344,20 +2373,20 @@ function _GJK_distance(points1, points2, eps=EPSILON, lbd, d, simplex=[]) = // Example(3D): // sphr1 = sphere(2,$fn=10); // sphr2 = move([4,0,0], p=sphr1); -// sphr3 = move([4.5,0,0], p=sphr1); +// sphr3 = move([4.5,0,0], p=sphr1); // vnf_polyhedron(sphr1); // vnf_polyhedron(sphr2); // echo(convex_collision(sphr1[0], sphr2[0])); // Returns: true // echo(convex_collision(sphr1[0], sphr3[0])); // Returns: false // function convex_collision(points1, points2, eps=EPSILON) = - assert(is_matrix(points1) && is_matrix(points2,undef,len(points1[0])), + assert(is_matrix(points1) && is_matrix(points2,undef,len(points1[0])), "The input list should be a consistent non empty list of points of same dimension.") assert(len(points1[0])==2 || len(points1[0])==3 , "The input points should be 2d or 3d points.") let( d = points1[0]-points2[0] ) norm(d) eps ? false : // no collision let( newsplx = _closest_simplex(concat(simplex,[v]),eps) ) @@ -2378,7 +2407,7 @@ function _GJK_collide(points1, points2, d, simplex, eps=EPSILON) = // - the smallest sub-simplex of s that contains that point function _closest_simplex(s,eps=EPSILON) = assert(len(s)>=2 && len(s)<=4, "Internal error.") - len(s)==2 ? _closest_s1(s,eps) : + len(s)==2 ? _closest_s1(s,eps) : len(s)==3 ? _closest_s2(s,eps) : _closest_s3(s,eps); @@ -2387,10 +2416,10 @@ function _closest_simplex(s,eps=EPSILON) = // Based on: http://uu.diva-portal.org/smash/get/diva2/FFULLTEXT01.pdf function _closest_s1(s,eps=EPSILON) = norm(s[1]-s[0])1 ? [ s[1], [s[1]] ] : [ s[0]+t*c, s ]; @@ -2420,13 +2449,13 @@ function _closest_s2(s,eps=EPSILON) = + (cross(nr,c-a)*a<0 ? 2 : 0 ) + (cross(nr,b-c)*b<0 ? 4 : 0 ) ) - assert( class!=1, "Internal error" ) + assert( class!=1, "Internal error" ) class==0 ? [ nr*(nr*a)/(nr*nr), s] : // origin projects (or is) on the tri // class==1 ? _closest_s1([s[0],s[1]]) : - class==2 ? _closest_s1([s[0],s[2]],eps) : + class==2 ? _closest_s1([s[0],s[2]],eps) : class==4 ? _closest_s1([s[1],s[2]],eps) : -// class==3 ? a*(a-b)> 0 ? _closest_s1([s[0],s[1]]) : _closest_s1([s[0],s[2]]) : - class==3 ? _closest_s1([s[0],s[2]],eps) : +// class==3 ? a*(a-b)> 0 ? _closest_s1([s[0],s[1]]) : _closest_s1([s[0],s[2]]) : + class==3 ? _closest_s1([s[0],s[2]],eps) : // class==5 ? b*(b-c)<=0 ? _closest_s1([s[0],s[1]]) : _closest_s1([s[1],s[2]]) : class==5 ? _closest_s1([s[1],s[2]],eps) : c*(c-a)>0 ? _closest_s1([s[0],s[2]],eps) : _closest_s1([s[1],s[2]],eps); @@ -2438,13 +2467,13 @@ function _closest_s3(s,eps=EPSILON) = assert( len(s[0])==3 && len(s)==4, "Internal error." ) let( nr = cross(s[1]-s[0],s[2]-s[0]), sz = [ norm(s[1]-s[0]), norm(s[1]-s[2]), norm(s[2]-s[0]) ] ) - norm(nr)