mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-08-01 12:31:16 +02:00
Correction in _cleave_connected_region and polygon_triangulate and some few tweaks
This commit is contained in:
93
vnf.scad
93
vnf.scad
@@ -414,22 +414,22 @@ function _old_cleave_connected_region(region) =
|
||||
|
||||
/// Internal Function: _cleave_connected_region(region, eps)
|
||||
/// Description:
|
||||
/// Given a region that is connected and has its outer border in region[0],
|
||||
/// produces a polygon with the same points that has overlapping connected paths
|
||||
/// to join internal holes to the outer border. Output is a single path.
|
||||
/// It expect that region[0] be a simple closed CW path and that each hole,
|
||||
/// region[i] for i>0, be a simple closed CCW path.
|
||||
/// The paths are also supposed to be disjoint except for common vertices and
|
||||
/// common edges but no crossing.
|
||||
/// This function implements an extension of the algorithm discussed in:
|
||||
/// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
|
||||
/// Given a region that is connected and has its outer border in region[0],
|
||||
/// produces a overlapping connected path to join internal holes to
|
||||
/// the outer border without adding points. Output is a single non-simple polygon.
|
||||
/// Requirements:
|
||||
/// It expects that all region paths be simple closed paths, with region[0] CW and
|
||||
/// the other paths CCW and encircled by region[0]. The input region paths are also
|
||||
/// supposed to be disjoint except for common vertices and common edges but with
|
||||
/// no crossings. It may return `undef` if these conditions are not met.
|
||||
/// This function implements an extension of the algorithm discussed in:
|
||||
/// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
|
||||
function _cleave_connected_region(region, eps=EPSILON) =
|
||||
len(region)==1 ? region[0] :
|
||||
let(
|
||||
outer = deduplicate(clockwise_polygon(region[0])), //
|
||||
holes = [for(i=[1:1:len(region)-1]) // possibly unneeded
|
||||
let(poly=region[i]) //
|
||||
deduplicate( ccw_polygon(poly) ) ], //
|
||||
outer = deduplicate(region[0]), //
|
||||
holes = [for(i=[1:1:len(region)-1]) // deduplication possibly unneeded
|
||||
deduplicate( region[i] ) ], //
|
||||
extridx = [for(li=holes) max_index(column(li,0)) ],
|
||||
// the right extreme vertex for each hole sorted by decreasing x values
|
||||
extremes = sort( [for(i=idx(holes)) [ i, extridx[i], -holes[i][extridx[i]].x] ], idx=2 )
|
||||
@@ -439,7 +439,7 @@ function _cleave_connected_region(region, eps=EPSILON) =
|
||||
|
||||
// connect the hole paths one at a time to the outer path.
|
||||
// 'extremes' is the list of the right extreme vertex of each hole sorted by decreasing abscissas
|
||||
// see _cleave_connected_region(region, eps)
|
||||
// see: _cleave_connected_region(region, eps)
|
||||
function _polyHoles(outer, holes, extremes, eps=EPSILON, n=0) =
|
||||
let(
|
||||
extr = extremes[n], //
|
||||
@@ -447,17 +447,17 @@ function _polyHoles(outer, holes, extremes, eps=EPSILON, n=0) =
|
||||
ipt = extr[1], // index of the hole point with maximum abscissa
|
||||
brdg = _bridge(hole[ipt], outer, eps) // the index of a point in outer to bridge hole[ipt] to
|
||||
)
|
||||
assert(brdg!=undef, "Error: check input polygon restrictions")
|
||||
brdg == undef ? undef :
|
||||
let(
|
||||
l = len(outer),
|
||||
lh = len(hole),
|
||||
// the new outer polygon bridging the hole to the old outer
|
||||
npoly =
|
||||
approx(outer[brdg], hole[ipt], eps)
|
||||
? [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt+1:1: ipt+lh-1]) hole[i%lh] ]
|
||||
: [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt:1: ipt+lh]) hole[i%lh] ]
|
||||
? [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt+1: 1: ipt+lh-1]) hole[i%lh] ]
|
||||
: [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt: 1: ipt+lh]) hole[i%lh] ]
|
||||
)
|
||||
n==len(holes)-1 ? npoly :
|
||||
_polyHoles(npoly, holes, extremes, eps, n+1);
|
||||
@@ -472,13 +472,13 @@ function _bridge(pt, outer,eps) =
|
||||
let(
|
||||
l = len(outer),
|
||||
crxs =
|
||||
[for( i=idx(outer) )
|
||||
let( edge = select(outer,i,i+1) )
|
||||
let( edges = pair(outer,wrap=true) )
|
||||
[for( i = idx(edges) )
|
||||
let( edge = edges[i] )
|
||||
// consider just descending outer edges at right of pt crossing ordinate pt.y
|
||||
if( (edge[0].y> pt.y)
|
||||
&& (edge[1].y<=pt.y)
|
||||
&& ( norm(edge[1]-pt)<eps // accepts touching vertices
|
||||
|| _tri_class([pt, edge[0], edge[1]], eps)>0 ) )
|
||||
if( (edge[0].y > pt.y+eps)
|
||||
&& (edge[1].y <= pt.y)
|
||||
&& _is_at_left(pt, [edge[1], edge[0]], eps) )
|
||||
[ i,
|
||||
// the point of edge with ordinate pt.y
|
||||
abs(pt.y-edge[1].y)<eps ? edge[1] :
|
||||
@@ -487,22 +487,21 @@ function _bridge(pt, outer,eps) =
|
||||
]
|
||||
]
|
||||
)
|
||||
assert(crxs!=[], "Error: check input polygon restrictions")
|
||||
crxs == [] ? undef :
|
||||
let(
|
||||
// the intersection point nearest to pt
|
||||
// the intersection point of the nearest edge to pt with minimum slope
|
||||
minX = min([for(p=crxs) p[1].x]),
|
||||
crxcand = [for(crx=crxs) if(crx[1].x < minX+eps) crx ],
|
||||
nearest = min_index([for(crx=crxcand) outer[crx[0]].y]),
|
||||
crxcand = [for(crx=crxs) if(crx[1].x < minX+eps) crx ], // nearest edges
|
||||
nearest = min_index([for(crx=crxcand)
|
||||
(outer[crx[0]].x - pt.x) / (outer[crx[0]].y - pt.y) ]), // minimum slope
|
||||
proj = crxcand[nearest],
|
||||
vert0 = outer[proj[0]], // the two vertices of the nearest crossing edge
|
||||
vert1 = outer[(proj[0]+1)%l],
|
||||
isect = proj[1] // the intersection point
|
||||
)
|
||||
// if pt touches the middle of an outer edge -> error
|
||||
assert( ! approx(pt,isect,eps) || approx(pt,vert0,eps) || approx(pt,vert1,eps),
|
||||
"There is a forbidden self_intersection" )
|
||||
norm(pt-vert0) < eps ? proj[0] : // if pt touches an outer vertex, return its index
|
||||
norm(pt-vert1) < eps ? (proj[0]+1)%l :
|
||||
norm(pt-vert1) < eps ? (proj[0]+1)%l : // if pt touches an outer vertex, return its index
|
||||
// as vert0.y > pt.y then pt!=vert0
|
||||
norm(pt-isect) < eps ? undef : // if pt touches the middle of an outer edge -> error
|
||||
let(
|
||||
// the edge [vert0, vert1] necessarily satisfies vert0.y > vert1.y
|
||||
// indices of candidates to an outer bridge point
|
||||
@@ -553,13 +552,15 @@ function _bridge(pt, outer,eps) =
|
||||
function vnf_from_region(region, transform, reverse=false) =
|
||||
let (
|
||||
regions = region_parts(force_region(region)),
|
||||
vnfs = [
|
||||
for (rgn = regions) let(
|
||||
cleaved = path3d(_cleave_connected_region(rgn)),
|
||||
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
||||
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
|
||||
) [face, [faceidxs]]
|
||||
],
|
||||
vnfs =
|
||||
[ for (rgn = regions)
|
||||
let( cleaved = path3d(_cleave_connected_region(rgn)) )
|
||||
assert( cleaved, "The region is invalid")
|
||||
let(
|
||||
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
||||
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
|
||||
) [face, [faceidxs]]
|
||||
],
|
||||
outvnf = vnf_merge(vnfs)
|
||||
)
|
||||
vnf_triangulate(outvnf);
|
||||
@@ -667,9 +668,13 @@ function _link_indicator(l,imin,imax) =
|
||||
function vnf_triangulate(vnf) =
|
||||
let(
|
||||
verts = vnf[0],
|
||||
faces = [for (face=vnf[1]) each len(face)==3 ? [face] :
|
||||
polygon_triangulate(verts, face)]
|
||||
) [verts, faces];
|
||||
faces = [for (face=vnf[1])
|
||||
each (len(face)==3 ? [face] :
|
||||
let( tris = polygon_triangulate(verts, face) )
|
||||
assert( tris!=undef, "Some `vnf` face cannot be triangulated.")
|
||||
tris ) ]
|
||||
)
|
||||
[verts, faces];
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user