mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-09-02 20:52:33 +02:00
Screw update: 4x faster, higbee renamed blunt start and on by default
This commit is contained in:
250
skin.scad
250
skin.scad
@@ -1053,132 +1053,140 @@ module rotate_sweep(
|
||||
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
|
||||
// of a given radius, height and degrees of rotation. The origin in the profile traces out the helix of the specified radius.
|
||||
// If turns is positive the path will be right-handed; if turns is negative the path will be left-handed.
|
||||
// Such an extrusion can be used to make screw threads.
|
||||
// .
|
||||
// The taper options specify tapering at of the ends of the extrusion, and are given as the linear distance
|
||||
// over which to taper. If taper is positive the extrusion lengthened by the specified distance; if taper
|
||||
// is negative, the taper is included in the extrusion length specified by `turns`.
|
||||
// The lead_in options specify a lead-in setiton where the ends of the spiral scale down to avoid a sharp cut face at the ends.
|
||||
// You can specify the length of this scaling directly with the lead_in parameters or as an angle using the lead_in_ang parameters.
|
||||
// If you give a positive value, the extrusion is lengthenend by the specified distance or angle; if you give a negative
|
||||
// value then the scaled end is included in the extrusion length specified by `turns`. If the value is zero then no scaled ends
|
||||
// are produced. The shape of the scaled ends can be controlled with the lead_in_shape parameter. Supported options are "sqrt", "linear"
|
||||
// "smooth" and "cut".
|
||||
// .
|
||||
// The inside argument changes how the extrusion lead-in sections are formed. If it is true then they scale
|
||||
// towards the outside, like would be needed for internal threading. If internal is fale then the lead-in sections scale
|
||||
// towards the inside, like would be appropriate for external threads.
|
||||
// Arguments:
|
||||
// poly = Array of points of a polygon path, to be extruded.
|
||||
// h = height of the spiral to extrude along.
|
||||
// r = Radius of the spiral to extrude along.
|
||||
// turns = number of revolutions to spiral up along the height.
|
||||
// h = height of the spiral extrusion path
|
||||
// r = Radius of the spiral extrusion path
|
||||
// turns = number of revolutions to include in the spiral
|
||||
// ---
|
||||
// d = Diameter of the spiral to extrude along.
|
||||
// d = Diameter of the spiral extrusion path.
|
||||
// d1/r1 = Bottom inside diameter or radius of spiral to extrude along.
|
||||
// d2/r2 = Top inside diameter or radius of spiral to extrude along.
|
||||
// taper = Length of tapers for thread ends. Positive to add taper to threads, negative to taper within specified length. Default: 0
|
||||
// taper1 = Length of taper for bottom thread end
|
||||
// taper2 = Length of taper for top thread end
|
||||
// internal = if true make internal threads. The only effect this has is to change how the extrusion tapers if tapering is selected. When true, the extrusion tapers towards the outside; when false, it tapers towards the inside. Default: false
|
||||
// lead_in = Specify linear length of the lead-in scaled section of the spiral. Default: 0
|
||||
// lead_in1 = Specify linear length of the lead-in scaled section of the spiral at the bottom
|
||||
// lead_in2 = Specify linear length of the lead-in scaled section of the spiral at the top
|
||||
// lead_in_ang = Specify angular length of the lead-in scaled section of the spiral
|
||||
// lead_in_ang1 = Specify angular length of the lead-in scaled section of the spiral at the bottom
|
||||
// lead_in_ang2 = Specify angular length of the lead-in scaled section of the spiral at the top
|
||||
// lead_in_shape = Specify the shape of the thread lead in by giving a text string or function. Default: "sqrt"
|
||||
// lead_in_shape1 = Specify the shape of the thread lead-in at the bottom by giving a text string or function.
|
||||
// lead_in_shape2 = Specify the shape of the thread lead-in at the top by giving a text string or function.
|
||||
// lead_in_sample = Factor to increase sample rate in the lead-in section. Default: 10
|
||||
// internal = if true make internal threads. The only effect this has is to change how the extrusion lead-in section are formed. When true, the extrusion scales towards the outside; when false, it scales towards the inside. Default: false
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
||||
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
|
||||
// See Also: sweep(), linear_sweep(), rotate_sweep(), path_sweep()
|
||||
// See Also: sweep(), linear_sweep(), rotate_sweep(), path_sweep(), thread_helix()
|
||||
// Example:
|
||||
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
|
||||
// spiral_sweep(poly, h=200, r=50, turns=3, $fn=36);
|
||||
function _taperfunc_orig_1d(x,L) =
|
||||
x>1 ? 1 : x<0 ? 0:
|
||||
let(
|
||||
higofs = pow(0.05,2) // Smallest hig scale is the square root of this value
|
||||
)
|
||||
sqrt((1-higofs)*x+higofs);
|
||||
|
||||
function _taperfunc_orig(x,L) =
|
||||
let(s=_taperfunc_orig_1d(x))
|
||||
x>1 ? [1,1]
|
||||
: x<0 ? [0,0]
|
||||
|
||||
: [lerp(s,1,.25),s];
|
||||
function _taperfunc_ellipse(x) =
|
||||
sqrt(1-(1-x)^2);
|
||||
function _taperfunc_linear(x) =
|
||||
x>1 ? 1 : x<0 ? 0 : x;
|
||||
function _taperfunc_ogive_width(x,L) =
|
||||
let( minscale = .2,
|
||||
_leadin_ogive=function (x,L)
|
||||
let( minscale = .05,
|
||||
r=(L^2+(1-minscale^2))/2/(1-minscale),
|
||||
scale = sqrt(r^2-(L*(1-x))^2) -(r-1)
|
||||
)
|
||||
x>1 ? [1,1]
|
||||
: x<0 ? [0,0]
|
||||
: [scale,1];
|
||||
function _taperfunc_ogive_width_circle(x,L,h) =
|
||||
let( minscale = .2,
|
||||
r=(L^2+(1-minscale^2))/2/(1-minscale),
|
||||
scale = sqrt(r^2-(L*(1-x))^2) -(r-1),
|
||||
vscale = x*L>h ? h : sqrt(h^2-(x*L-h)^2)
|
||||
)
|
||||
: x<0 ? [lerp(minscale,1,.25),0]
|
||||
: [lerp(scale,1,.25),scale];
|
||||
|
||||
_leadin_cut = function(x,L) x>0 ? [1,1] : [1,0];
|
||||
|
||||
_leadin_sqrt = function(x,L)
|
||||
let(end=0.05) // Smallest scale at the end
|
||||
x>1 ? [1,1]
|
||||
: x<0.02 ? [0,0]
|
||||
: [scale,vscale/h];
|
||||
function _taperfunc_ogive_height(x,L) =
|
||||
let( minscale = .1,L=3*L,
|
||||
r=(L^2+(1-minscale^2))/2/(1-minscale),
|
||||
scale = sqrt(r^2-(L*(1-x))^2) -(r-1)
|
||||
: x<0 ? [lerp(end,1,.25),0]
|
||||
: let(
|
||||
s = sqrt(x + end^2 * (1-x))
|
||||
)
|
||||
[lerp(s,1,.25),s]; // thread width scale, thread height scale
|
||||
|
||||
_leadin_linear = function(x,L)
|
||||
let(minscale=.1)
|
||||
x>1 ? [1,1]
|
||||
: x<0 ? [0,0] //minscale,0]
|
||||
: [1,scale];
|
||||
function _taperfunc_ogive(x,L) =
|
||||
let( minscale = .3,
|
||||
r=(L^2+(1-minscale^2))/2/(1-minscale),
|
||||
scale = sqrt(r^2-(L*(1-x))^2) -(r-1)
|
||||
)
|
||||
x>1 ? [1,1]
|
||||
: x<0 ? [0,0]
|
||||
: [scale,scale];
|
||||
function _taperfunc_ogive_orig(x,L) =
|
||||
let( minscale = .3,
|
||||
r=(L^2+(1-minscale^2))/2/(1-minscale),
|
||||
scale = sqrt(r^2-(L*(1-x))^2) -(r-1)
|
||||
)
|
||||
x>1 ? [1,1]
|
||||
: x<0 ? [0,0]
|
||||
: [lerp(_taperfunc_orig_1d(x),1,.25),scale];
|
||||
|
||||
function _taperfunc_cut(x,L) = x>1 ? [1,1] : [0,0];
|
||||
|
||||
|
||||
function _taperfunc(x,L,h) = _taperfunc_ogive_width_circle(x,L,h);
|
||||
//function _taperfunc(x,L,h) = _taperfunc_orig(x,L);
|
||||
//function _taperfunc(x,L,h) = _taperfunc_ogive_width(x,L);
|
||||
function _taperfunc(x,L,h) = _taperfunc_orig(x,L);
|
||||
|
||||
: x<0 ? [lerp(minscale,1,.25),0]
|
||||
: let(scale = lerp(minscale,1,x))
|
||||
[lerp(scale,1,.25),scale];
|
||||
|
||||
_lead_in_table = [
|
||||
["default", _leadin_sqrt],
|
||||
["sqrt", _leadin_sqrt],
|
||||
["cut", _leadin_cut],
|
||||
["smooth", _leadin_ogive],
|
||||
["linear", _leadin_linear]
|
||||
];
|
||||
|
||||
|
||||
function _ss_polygon_r(N,theta) =
|
||||
let( alpha = 360/N )
|
||||
cos(alpha/2)/(cos(posmod(theta,alpha)-alpha/2));
|
||||
function spiral_sweep(poly, h, r, turns=1, taper, center, r1, r2, d, d1, d2, taper1, taper2, internal=false, anchor=CENTER, spin=0, orient=UP) =
|
||||
function spiral_sweep(poly, h, r, turns=1, taper, r1, r2, d, d1, d2, internal=false,
|
||||
lead_in_shape,lead_in_shape1, lead_in_shape2,
|
||||
lead_in, lead_in1, lead_in2,
|
||||
lead_in_ang, lead_in_ang1, lead_in_ang2,
|
||||
height,l,length,
|
||||
lead_in_sample = 10,
|
||||
anchor=CENTER, spin=0, orient=UP) =
|
||||
assert(is_num(turns) && turns != 0, "turns must be a nonzero number")
|
||||
assert(all_positive([h]), "Spiral height must be a positive number")
|
||||
let(
|
||||
tapersample = 10, // Oversample factor for higbee tapering
|
||||
dir = sign(turns),
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50),
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50),
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d),
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d),
|
||||
bounds = pointlist_bounds(poly),
|
||||
yctr = (bounds[0].y+bounds[1].y)/2,
|
||||
xmin = bounds[0].x,
|
||||
xmax = bounds[1].x,
|
||||
poly = path3d(clockwise_polygon(poly)),
|
||||
anchor = get_anchor(anchor,center,BOT,BOT),
|
||||
sides = segs(max(r1,r2)),
|
||||
ang_step = 360/sides,
|
||||
turns = abs(turns),
|
||||
taper1 = first_defined([taper1, taper, 0]),
|
||||
taper2 = first_defined([taper2, taper, 0]),
|
||||
taperang1 = 360 * abs(taper1) / (2 * r1 * PI),
|
||||
taperang2 = 360 * abs(taper2) / (2 * r2 * PI),
|
||||
minang = taper1<=0 ? 0 : -taperang1,
|
||||
tapercut1 = taper1<=0 ? taperang1 : 0,
|
||||
maxang = taper2<=0 ? 360*turns : 360*turns+taperang2,
|
||||
tapercut2 = taper2<=0 ? 360*turns-taperang2 : 360*turns
|
||||
lead_in1 = first_defined([lead_in1, lead_in]),
|
||||
lead_in2 = first_defined([lead_in1, lead_in]),
|
||||
lead_in_ang1 =
|
||||
let(
|
||||
user_ang = first_defined([lead_in_ang1,lead_in_ang])
|
||||
)
|
||||
assert(is_undef(user_ang) || is_undef(lead_in1), "Cannot define lead_in/lead_in1 by both length and angle")
|
||||
is_def(user_ang) ? user_ang : default(lead_in1,0)*360/(2*PI*r1),
|
||||
lead_in_ang2 =
|
||||
let(
|
||||
user_ang = first_defined([lead_in_ang2,lead_in_ang])
|
||||
)
|
||||
assert(is_undef(user_ang) || is_undef(lead_in2), "Cannot define lead_in/lead_in2 by both length and angle")
|
||||
is_def(user_ang) ? user_ang : default(lead_in2,0)*360/(2*PI*r2),
|
||||
minang = -max(0,lead_in_ang1),
|
||||
maxang = 360*turns + max(0,lead_in_ang2),
|
||||
cut_ang1 = minang+abs(lead_in_ang1),
|
||||
cut_ang2 = maxang-abs(lead_in_ang1),
|
||||
lead_in_shape1 = first_defined([lead_in_shape1, lead_in_shape, "default"]),
|
||||
lead_in_shape2 = first_defined([lead_in_shape2, lead_in_shape, "default"]),
|
||||
lead_in_func1 = is_func(lead_in_shape1) ? lead_in_shape1
|
||||
: assert(is_string(lead_in_shape1),"lead_in_shape/lead_in_shape1 must be a function or string")
|
||||
let(ind = search([lead_in_shape1], _lead_in_table,0)[0])
|
||||
assert(ind!=[],str("Unknown lead_in_shape, \"",lead_in_shape1,"\""))
|
||||
_lead_in_table[ind[0]][1],
|
||||
lead_in_func2 = is_func(lead_in_shape2) ? lead_in_shape2
|
||||
: assert(is_string(lead_in_shape2),"lead_in_shape/lead_in_shape2 must be a function or string")
|
||||
let(ind = search([lead_in_shape2], _lead_in_table,0)[0])
|
||||
assert(ind!=[],str("Unknown lead_in_shape, \"",lead_in_shape2,"\""))
|
||||
_lead_in_table[ind[0]][1]
|
||||
)
|
||||
assert( tapercut1<tapercut2 && tapercut1<maxang, "Tapers are too long to fit")
|
||||
assert( cut_ang1<cut_ang2, "Tapers are too long to fit")
|
||||
assert( all_positive([r1,r2]), "Diameter/radius must be positive")
|
||||
let(
|
||||
|
||||
// This complicated sampling scheme is designed to ensure that faceting always starts at angle zero
|
||||
// for alignment with cylinders, and there is always a facet boundary at the $fn specified locations,
|
||||
// regardless of what kind of subsampling occurs for tapers.
|
||||
@@ -1189,17 +1197,17 @@ function spiral_sweep(poly, h, r, turns=1, taper, center, r1, r2, d, d1, d2, tap
|
||||
maxang
|
||||
],
|
||||
anglist = [
|
||||
for(a=orig_anglist) if (a<tapercut1-EPSILON) a,
|
||||
tapercut1,
|
||||
for(a=orig_anglist) if (a>tapercut1+EPSILON && a<tapercut2-EPSILON) a,
|
||||
tapercut2,
|
||||
for(a=orig_anglist) if (a>tapercut2+EPSILON) a
|
||||
for(a=orig_anglist) if (a<cut_ang1-EPSILON) a,
|
||||
cut_ang1,
|
||||
for(a=orig_anglist) if (a>cut_ang1+EPSILON && a<cut_ang2-EPSILON) a,
|
||||
cut_ang2,
|
||||
for(a=orig_anglist) if (a>cut_ang2+EPSILON) a
|
||||
],
|
||||
interp_ang = [
|
||||
for(i=idx(anglist,e=-2))
|
||||
for(i=idx(anglist,e=-2))
|
||||
each lerpn(anglist[i],anglist[i+1],
|
||||
(taper1!=0 && anglist[i+1]<=tapercut1) || (taper2!=0 && anglist[i]>=tapercut2)
|
||||
? ceil((anglist[i+1]-anglist[i])/ang_step*tapersample)
|
||||
(lead_in_ang1!=0 && anglist[i+1]<=cut_ang1) || (lead_in_ang2!=0 && anglist[i]>=cut_ang2)
|
||||
? ceil((anglist[i+1]-anglist[i])/ang_step*lead_in_sample)
|
||||
: 1,
|
||||
endpoint=false),
|
||||
last(anglist)
|
||||
@@ -1207,8 +1215,8 @@ function spiral_sweep(poly, h, r, turns=1, taper, center, r1, r2, d, d1, d2, tap
|
||||
skewmat = affine3d_skew_xz(xa=atan2(r2-r1,h)),
|
||||
points = [
|
||||
for (a = interp_ang) let (
|
||||
hsc = a<tapercut1 ? _taperfunc((a-minang)/taperang1,abs(taper1),xmax-xmin)
|
||||
: a>tapercut2 ? _taperfunc((maxang-a)/taperang2,abs(taper2),xmax-xmin)
|
||||
hsc = a<cut_ang1 ? lead_in_func1((a-minang)/abs(lead_in_ang1),abs(lead_in_ang1)*2*PI*r1/360)
|
||||
: a>cut_ang2 ? lead_in_func2((maxang-a)/abs(lead_in_ang2),abs(lead_in_ang2)*2*PI*r2/360)
|
||||
: [1,1],
|
||||
u = a/(360*turns),
|
||||
r = lerp(r1,r2,u),
|
||||
@@ -1230,15 +1238,30 @@ function spiral_sweep(poly, h, r, turns=1, taper, center, r1, r2, d, d1, d2, tap
|
||||
|
||||
|
||||
|
||||
module spiral_sweep(poly, h, r, turns=1, taper, center, r1, r2, d, d1, d2, taper1, taper2, internal=false, anchor=CENTER, spin=0, orient=UP) {
|
||||
vnf = spiral_sweep(poly, h, r, turns, taper, center, r1, r2, d, d1, d2, taper1, taper2, internal);
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50);
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50);
|
||||
taper1 = first_defined([taper1,taper,0]);
|
||||
taper2 = first_defined([taper2,taper,0]);
|
||||
extra = PI/2*(max(0,taper1/r1)+max(0,taper2/r2));
|
||||
module spiral_sweep(poly, h, r, turns=1, taper, r1, r2, d, d1, d2, internal=false,
|
||||
lead_in_shape,lead_in_shape1, lead_in_shape2,
|
||||
lead_in, lead_in1, lead_in2,
|
||||
lead_in_ang, lead_in_ang1, lead_in_ang2,
|
||||
height,l,length,
|
||||
lead_in_sample=10,
|
||||
anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
vnf = spiral_sweep(poly=poly, h=h, r=r, turns=turns, r1=r1, r2=r2, d=d, d1=d1, d2=d2, internal=internal,
|
||||
lead_in_shape=lead_in_shape,lead_in_shape1=lead_in_shape1, lead_in_shape2=lead_in_shape2,
|
||||
lead_in=lead_in, lead_in1=lead_in1, lead_in2=lead_in2,
|
||||
lead_in_ang=lead_in_ang, lead_in_ang1=lead_in_ang1, lead_in_ang2=lead_in_ang2,
|
||||
height=height,l=length,length=length,
|
||||
lead_in_sample=lead_in_sample);
|
||||
h = one_defined([h,height,length,l],"h,height,length,l");
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d);
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d);
|
||||
lead_in1 = u_mul(first_defined([lead_in1,lead_in]),1/(2*PI*r1));
|
||||
lead_in2 = u_mul(first_defined([lead_in2,lead_in]),1/(2*PI*r2));
|
||||
lead_in_ang1 = first_defined([lead_in_ang1,lead_in_ang]);
|
||||
lead_in_ang2 = first_defined([lead_in_ang2,lead_in_ang]);
|
||||
extra_turns = max(0,first_defined([lead_in1,lead_in_ang1,0]))+max(0,first_defined([lead_in2,lead_in_ang2,0]));
|
||||
attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) {
|
||||
vnf_polyhedron(vnf, convexity=ceil(2*(abs(turns)+extra)));
|
||||
vnf_polyhedron(vnf, convexity=ceil(2*(abs(turns)+extra_turns)));
|
||||
children();
|
||||
}
|
||||
}
|
||||
@@ -1796,7 +1819,22 @@ function path_sweep(shape, path, method="incremental", normal, closed, twist=0,
|
||||
)
|
||||
assert(approx(ynormal*znormal,0),str("Supplied normal is parallel to the path tangent at point ",i))
|
||||
translate(path[i%L])*rotation*zrot(-twist*tpathfrac[i])
|
||||
]
|
||||
]
|
||||
: method=="cross"?
|
||||
let(
|
||||
crossnormal_mid = [for(i=[(closed?0:1):L-(closed?1:2)])
|
||||
let(v= cross( select(path,i+1)-path[i], path[i]-select(path,i-1)),
|
||||
f=assert(norm(v)>EPSILON)
|
||||
)
|
||||
v
|
||||
],
|
||||
crossnormal = closed ? crossnormal_mid : [crossnormal_mid[0], each crossnormal_mid, last(crossnormal_mid)]
|
||||
)
|
||||
[for(i=[0:L-(closed?0:1)]) let(
|
||||
rotation = frame_map(x=crossnormal[i%L], z=tangents[i%L])
|
||||
)
|
||||
translate(path[i%L])*rotation*zrot(-twist*tpathfrac[i])
|
||||
]
|
||||
: method=="natural" ? // map x axis of shape to the path normal, which points in direction of curvature
|
||||
let (pathnormal = path_normals(path, tangents, closed))
|
||||
assert(all_defined(pathnormal),"Natural normal vanishes on your curve, select a different method")
|
||||
|
Reference in New Issue
Block a user