From 7bac9a484da53ee0498d2d9153faf4d9affa7d20 Mon Sep 17 00:00:00 2001 From: Adrian Mariano Date: Mon, 1 Nov 2021 17:34:18 -0400 Subject: [PATCH] point_in_polygon optimization --- geometry.scad | 60 ++++++++++++++++++++++++++++----------------------- 1 file changed, 33 insertions(+), 27 deletions(-) diff --git a/geometry.scad b/geometry.scad index 2ee3b7e..0dd5502 100644 --- a/geometry.scad +++ b/geometry.scad @@ -1583,6 +1583,7 @@ function _point_above_below_segment(point, edge) = ? (edge[1].y > 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0 : (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0; + function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) = // Original algorithms from http://geomalgorithms.com/a03-_inclusion.html assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2, @@ -1597,39 +1598,44 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) = : // Does the point lie on any edges? If so return 0. let( - on_brd = [ - for (i = [0:1:len(poly)-1]) - let( seg = select(poly,i,i+1) ) - if (!approx(seg[0],seg[1],eps) ) - _is_point_on_line(point, seg, SEGMENT, eps=eps)? 1:0 - ] + segs = pair(poly,true), + on_border = [for (seg=segs) + if (norm(seg[0]-seg[1])>eps && _is_point_on_line(point, seg, SEGMENT, eps=eps)) 1] ) - sum(on_brd) > 0? 0 : - nonzero - ? // Compute winding number and return 1 for interior, -1 for exterior - let( - windchk = [ - for(i=[0:1:len(poly)-1]) - let( seg=select(poly,i,i+1) ) - if (!approx(seg[0],seg[1],eps=eps)) - _point_above_below_segment(point, seg) + on_border != [] ? 0 : + nonzero // Compute winding number and return 1 for interior, -1 for exterior + ? let( + winding = [ + for(seg=segs) + let( + p0=seg[0]-point, + p1=seg[1]-point + ) + if (norm(p0-p1)>eps) + p0.y <=0 + ? p1.y > 0 && cross(p0,p1-p0)>0 ? 1 : 0 + : p1.y <=0 && cross(p0,p1-p0)<0 ? -1: 0 ] - ) sum(windchk) != 0 ? 1 : -1 + ) + sum(winding) != 0 ? 1 : -1 : // or compute the crossings with the ray [point, point+[1,0]] let( - n = len(poly), cross = [ - for(i=[0:n-1]) - let( - p0 = poly[i]-point, - p1 = poly[(i+1)%n]-point - ) - if ( - ( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) ) - && -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) - ) 1 + for(seg=segs) + let( + p0 = seg[0]-point, + p1 = seg[1]-point + ) + if ( + ( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) ) + && -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) + ) + 1 ] - ) 2*(len(cross)%2)-1; + ) + 2*(len(cross)%2)-1; + + // Function: polygon_triangulate()