diff --git a/attachments.scad b/attachments.scad index fe35a932..3b7d4ec1 100644 --- a/attachments.scad +++ b/attachments.scad @@ -1551,6 +1551,7 @@ module corner_mask(corners=CORNERS_ALL, except=[]) { // r = Radius of corner mask. // --- // d = Diameter of corner mask. +// excess = Excess length to extrude the profile to make edge masks. Default: 0.01 // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // Side Effects: // Tags the children with "remove" (and hence sets `$tag`) if no tag is already set. @@ -1562,13 +1563,13 @@ module corner_mask(corners=CORNERS_ALL, except=[]) { // cube([50,60,70],center=true) // face_profile(TOP,r=10) // mask2d_roundover(r=10); -module face_profile(faces=[], r, d, convexity=10) { +module face_profile(faces=[], r, d, excess=0.01, convexity=10) { req_children($children); faces = is_vector(faces)? [faces] : faces; assert(all([for (face=faces) is_vector(face) && sum([for (x=face) x!=0? 1 : 0])==1]), "Vector in faces doesn't point at a face."); r = get_radius(r=r, d=d, dflt=undef); - assert(is_num(r) && r>0); - edge_profile(faces) children(); + assert(is_num(r) && r>=0); + edge_profile(faces, excess=excess) children(); corner_profile(faces, convexity=convexity, r=r) children(); } @@ -1589,6 +1590,7 @@ module face_profile(faces=[], r, d, convexity=10) { // Arguments: // edges = Edges to mask. See [Specifying Edges](attachments.scad#subsection-specifying-edges). Default: All edges. // except = Edges to explicitly NOT mask. See [Specifying Edges](attachments.scad#subsection-specifying-edges). Default: No edges. +// excess = Excess length to extrude the profile to make edge masks. Default: 0.01 // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // Side Effects: // Tags the children with "remove" (and hence sets `$tag`) if no tag is already set. @@ -1600,7 +1602,7 @@ module face_profile(faces=[], r, d, convexity=10) { // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_roundover(r=10, inset=2); -module edge_profile(edges=EDGES_ALL, except=[], convexity=10) { +module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) { req_children($children); assert($parent_geom != undef, "No object to attach to!"); edges = _edges(edges, except=except); @@ -1619,7 +1621,7 @@ module edge_profile(edges=EDGES_ALL, except=[], convexity=10) { $attach_norot = true; $profile_type = "edge"; psize = point3d($parent_size); - length = [for (i=[0:2]) if(!vec[i]) psize[i]][0]+0.1; + length = [for (i=[0:2]) if(!vec[i]) psize[i]][0] + excess; rotang = vec.z<0? [90,0,180+v_theta(vec)] : vec.z==0 && sign(vec.x)==sign(vec.y)? 135+v_theta(vec) : @@ -1644,8 +1646,8 @@ module edge_profile(edges=EDGES_ALL, except=[], convexity=10) { // PARENT() corner_profile([corners], [except], [r=|d=], [convexity=]) CHILDREN; // Description: // Takes a 2D mask shape, rotationally extrudes and converts it into a corner mask, and attaches it -// to the selected corners with the appropriate orientation. If no tag is set -// then `corner_profile` sets the tag for children to "remove" so that it will work with the default {{diff()}} tag. +// to the selected corners with the appropriate orientation. If no tag is set then `corner_profile()` +// sets the tag for children to "remove" so that it will work with the default {{diff()}} tag. // See [Specifying Corners](attachments.scad#subsection-specifying-corners) for information on how to specify corner sets. // For a step-by-step explanation of attachments, see the [Attachments Tutorial](Tutorial-Attachments). // Arguments: @@ -1668,7 +1670,7 @@ module edge_profile(edges=EDGES_ALL, except=[], convexity=10) { // } module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) { assert($parent_geom != undef, "No object to attach to!"); - r = get_radius(r=r, d=d, dflt=undef); + r = max(0.01, get_radius(r=r, d=d, dflt=undef)); assert(is_num(r)); corners = _corners(corners, except=except); vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]]; @@ -1687,17 +1689,18 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) { $tag = $tag=="" ? str($tag_prefix,"remove") : $tag; translate(anch[1]) { rot(rotang) { - render(convexity=convexity) - difference() { - translate(-0.1*[1,1,1]) cube(r+0.1, center=false); - right(r) back(r) zrot(180) { - rotate_extrude(angle=90, convexity=convexity) { - xflip() left(r) { - difference() { - square(r,center=false); - children(); - } - } + down(0.01) { + linear_extrude(height=r+0.01, center=false) { + difference() { + translate(-[0.01,0.01]) square(r); + translate([r,r]) circle(r=r*0.999); + } + } + } + translate([r,r]) zrot(180) { + rotate_extrude(angle=90, convexity=convexity) { + right(r) xflip() { + children(); } } } diff --git a/color.scad b/color.scad index 807fd307..53387288 100644 --- a/color.scad +++ b/color.scad @@ -17,6 +17,7 @@ use // Module: recolor() // Synopsis: Sets the color for attachable children and their descendants. +// SynTags: Trans // Topics: Attachments // See Also: color_this(), hsl(), hsv() // Usage: @@ -49,6 +50,7 @@ module recolor(c="default") // Module: color_this() // Synopsis: Sets the color for children at the current level only. +// SynTags: Trans // Topics: Attachments // See Also: recolor(), hsl(), hsv() // Usage: @@ -82,6 +84,7 @@ module color_this(c="default") // Module: rainbow() // Synopsis: Iterates through a list, displaying children in different colors. +// SynTags: Trans // Topics: List Handling // See Also: hsl(), hsv() // Usage: @@ -124,6 +127,7 @@ module rainbow(list, stride=1, maxhues, shuffle=false, seed) // Function&Module: hsl() // Synopsis: Sets the color of children to a specified hue, saturation, lightness and optional alpha channel value. +// SynTags: Trans // See Also: hsv(), recolor(), color_this() // Topics: Colors, Colorspace // Usage: @@ -165,6 +169,7 @@ module hsl(h,s=1,l=0.5,a=1) // Function&Module: hsv() // Synopsis: Sets the color of children to a hue, saturation, value and optional alpha channel value. +// SynTags: Trans // See Also: hsl(), recolor(), color_this() // Topics: Colors, Colorspace // Usage: diff --git a/coords.scad b/coords.scad index 83c9745e..272e102b 100644 --- a/coords.scad +++ b/coords.scad @@ -136,13 +136,16 @@ function path4d(points, fill=0) = // Function: polar_to_xy() // Usage: // pt = polar_to_xy(r, theta); -// pt = polar_to_xy([r, theta]); +// pt = polar_to_xy([R, THETA]); +// pts = polar_to_xy([[R,THETA], [R,THETA], ...]); // Topics: Coordinates, Points, Paths // Synopsis: Convert 2d polar coordinates to cartesian coordinates. // See Also: xy_to_polar(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz() // Description: -// Convert polar coordinates to 2D cartesian coordinates. -// Returns [X,Y] cartesian coordinates. +// Called with two arguments, converts the `r` and `theta` 2D polar coordinate into an `[X,Y]` cartesian coordinate. +// Called with one `[R,THETA]` vector argument, converts the 2D polar coordinate into an `[X,Y]` cartesian coordinate. +// Called with a list of `[R,THETA]` vector arguments, converts each 2D polar coordinate into `[X,Y]` cartesian coordinates. +// Theta is the angle counter-clockwise of X+ on the XY plane. // Arguments: // r = distance from the origin. // theta = angle in degrees, counter-clockwise of X+. @@ -150,6 +153,7 @@ function path4d(points, fill=0) = // xy = polar_to_xy(20,45); // Returns: ~[14.1421365, 14.1421365] // xy = polar_to_xy(40,30); // Returns: ~[34.6410162, 15] // xy = polar_to_xy([40,30]); // Returns: ~[34.6410162, 15] +// xy = polar_to_xy([[40,30],[20,120]]); // Returns: ~[[34.6410162, 15], [-10, 17.3205]] // Example(2D): // r=40; ang=30; $fn=36; // pt = polar_to_xy(r,ang); @@ -157,28 +161,36 @@ function path4d(points, fill=0) = // color("black") stroke([[r,0], [0,0], pt], width=0.5); // color("black") stroke(arc(r=15, angle=ang), width=0.5); // color("red") move(pt) circle(d=3); -function polar_to_xy(r,theta=undef) = let( - rad = theta==undef? r[0] : r, - t = theta==undef? r[1] : theta - ) rad*[cos(t), sin(t)]; +function polar_to_xy(r,theta) = + theta != undef + ? assert(is_num(r) && is_num(theta), "Bad Arguments.") + [r*cos(theta), r*sin(theta)] + : assert(is_list(r), "Bad Arguments") + is_num(r.x) + ? polar_to_xy(r.x, r.y) + : [for(p = r) polar_to_xy(p.x, p.y)]; // Function: xy_to_polar() // Usage: // r_theta = xy_to_polar(x,y); // r_theta = xy_to_polar([X,Y]); +// r_thetas = xy_to_polar([[X,Y], [X,Y], ...]); // Topics: Coordinates, Points, Paths // Synopsis: Convert 2d cartesian coordinates to polar coordinates (radius and angle) // See Also: polar_to_xy(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz() // Description: -// Convert 2D cartesian coordinates to polar coordinates. -// Returns [radius, theta] where theta is the angle counter-clockwise of X+. +// Called with two arguments, converts the `x` and `y` 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate. +// Called with one `[X,Y]` vector argument, converts the 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate. +// Called with a list of `[X,Y]` vector arguments, converts each 2D cartesian coordinate into `[RADIUS,THETA]` polar coordinates. +// Theta is the angle counter-clockwise of X+ on the XY plane. // Arguments: // x = X coordinate. // y = Y coordinate. // Example: // plr = xy_to_polar(20,30); // plr = xy_to_polar([40,60]); +// plrs = xy_to_polar([[40,60],[-10,20]]); // Example(2D): // pt = [-20,30]; $fn = 36; // rt = xy_to_polar(pt); @@ -186,10 +198,14 @@ function polar_to_xy(r,theta=undef) = let( // stroke(circle(r=r), closed=true, width=0.5); // zrot(ang) stroke([[0,0],[r,0]],width=0.5); // color("red") move(pt) circle(d=3); -function xy_to_polar(x,y=undef) = let( - xx = y==undef? x[0] : x, - yy = y==undef? x[1] : y - ) [norm([xx,yy]), atan2(yy,xx)]; +function xy_to_polar(x, y) = + y != undef + ? assert(is_num(x) && is_num(y), "Bad Arguments.") + [norm([x, y]), atan2(y, x)] + : assert(is_list(x), "Bad Arguments") + is_num(x.x) + ? xy_to_polar(x.x, x.y) + : [for(p = x) xy_to_polar(p.x, p.y)]; // Function: project_plane() @@ -324,12 +340,16 @@ function lift_plane(plane, p) = // Function: cylindrical_to_xyz() // Usage: // pt = cylindrical_to_xyz(r, theta, z); -// pt = cylindrical_to_xyz([r, theta, z]); +// pt = cylindrical_to_xyz([RADIUS,THETA,Z]); +// pts = cylindrical_to_xyz([[RADIUS,THETA,Z], [RADIUS,THETA,Z], ...]); // Topics: Coordinates, Points, Paths // See Also: xyz_to_cylindrical(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz() // Synopsis: Convert cylindrical coordinates to cartesian coordinates. // Description: -// Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates. +// Called with three arguments, converts the `r`, `theta`, and 'z' 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate. +// Called with one `[RADIUS,THETA,Z]` vector argument, converts the 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate. +// Called with a list of `[RADIUS,THETA,Z]` vector arguments, converts each 3D cylindrical coordinate into `[X,Y,Z]` cartesian coordinates. +// Theta is the angle counter-clockwise of X+ on the XY plane. Z is height above the XY plane. // Arguments: // r = distance from the Z axis. // theta = angle in degrees, counter-clockwise of X+ on the XY plane. @@ -337,22 +357,28 @@ function lift_plane(plane, p) = // Example: // xyz = cylindrical_to_xyz(20,30,40); // xyz = cylindrical_to_xyz([40,60,50]); -function cylindrical_to_xyz(r,theta=undef,z=undef) = let( - rad = theta==undef? r[0] : r, - t = theta==undef? r[1] : theta, - zed = theta==undef? r[2] : z - ) [rad*cos(t), rad*sin(t), zed]; +function cylindrical_to_xyz(r,theta,z) = + theta != undef + ? assert(is_num(r) && is_num(theta) && is_num(z), "Bad Arguments.") + [r*cos(theta), r*sin(theta), z] + : assert(is_list(r), "Bad Arguments") + is_num(r.x) + ? cylindrical_to_xyz(r.x, r.y, r.z) + : [for(p = r) cylindrical_to_xyz(p.x, p.y, p.z)]; // Function: xyz_to_cylindrical() // Usage: // rtz = xyz_to_cylindrical(x,y,z); // rtz = xyz_to_cylindrical([X,Y,Z]); +// rtzs = xyz_to_cylindrical([[X,Y,Z], [X,Y,Z], ...]); // Topics: Coordinates, Points, Paths // Synopsis: Convert 3d cartesian coordinates to cylindrical coordinates. // See Also: cylindrical_to_xyz(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz() // Description: -// Convert 3D cartesian coordinates to cylindrical coordinates. Returns [radius,theta,Z]. +// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate. +// Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate. +// Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[RADIUS,THETA,Z]` cylindrical coordinates. // Theta is the angle counter-clockwise of X+ on the XY plane. Z is height above the XY plane. // Arguments: // x = X coordinate. @@ -361,17 +387,27 @@ function cylindrical_to_xyz(r,theta=undef,z=undef) = let( // Example: // cyl = xyz_to_cylindrical(20,30,40); // cyl = xyz_to_cylindrical([40,50,70]); -function xyz_to_cylindrical(x,y=undef,z=undef) = let( - p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) - ) [norm([p.x,p.y]), atan2(p.y,p.x), p.z]; +// cyls = xyz_to_cylindrical([[40,50,70], [-10,15,-30]]); +function xyz_to_cylindrical(x,y,z) = + y != undef + ? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.") + [norm([x,y]), atan2(y,x), z] + : assert(is_list(x), "Bad Arguments") + is_num(x.x) + ? xyz_to_cylindrical(x.x, x.y, x.z) + : [for(p = x) xyz_to_cylindrical(p.x, p.y, p.z)]; // Function: spherical_to_xyz() // Usage: // pt = spherical_to_xyz(r, theta, phi); -// pt = spherical_to_xyz([r, theta, phi]); +// pt = spherical_to_xyz([RADIUS,THETA,PHI]); +// pts = spherical_to_xyz([[RADIUS,THETA,PHI], [RADIUS,THETA,PHI], ...]); // Description: -// Convert spherical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates. +// Called with three arguments, converts the `r`, `theta`, and 'phi' 3D spherical coordinate into an `[X,Y,Z]` cartesian coordinate. +// Called with one `[RADIUS,THETA,PHI]` vector argument, converts the 3D spherical coordinate into an `[X,Y,Z]` cartesian coordinate. +// Called with a list of `[RADIUS,THETA,PHI]` vector arguments, converts each 3D spherical coordinate into `[X,Y,Z]` cartesian coordinates. +// Theta is the angle counter-clockwise of X+ on the XY plane. Phi is the angle down from the Z+ pole. // Synopsis: Convert spherical coordinates to 3d cartesian coordinates. // Topics: Coordinates, Points, Paths // See Also: cylindrical_to_xyz(), xyz_to_spherical(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz() @@ -382,23 +418,30 @@ function xyz_to_cylindrical(x,y=undef,z=undef) = let( // Example: // xyz = spherical_to_xyz(20,30,40); // xyz = spherical_to_xyz([40,60,50]); -function spherical_to_xyz(r,theta=undef,phi=undef) = let( - rad = theta==undef? r[0] : r, - t = theta==undef? r[1] : theta, - p = theta==undef? r[2] : phi - ) rad*[sin(p)*cos(t), sin(p)*sin(t), cos(p)]; +// xyzs = spherical_to_xyz([[40,60,50], [50,120,100]]); +function spherical_to_xyz(r,theta,phi) = + theta != undef + ? assert(is_num(r) && is_num(theta) && is_num(phi), "Bad Arguments.") + r*[cos(theta)*sin(phi), sin(theta)*sin(phi), cos(phi)] + : assert(is_list(r), "Bad Arguments") + is_num(r.x) + ? spherical_to_xyz(r.x, r.y, r.z) + : [for(p = r) spherical_to_xyz(p.x, p.y, p.z)]; // Function: xyz_to_spherical() // Usage: // r_theta_phi = xyz_to_spherical(x,y,z) // r_theta_phi = xyz_to_spherical([X,Y,Z]) +// r_theta_phis = xyz_to_spherical([[X,Y,Z], [X,Y,Z], ...]) // Topics: Coordinates, Points, Paths // Synopsis: Convert 3d cartesian coordinates to spherical coordinates. // See Also: cylindrical_to_xyz(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz() // Description: -// Convert 3D cartesian coordinates to spherical coordinates. Returns [r,theta,phi], where phi is -// the angle from the Z+ pole, and theta is degrees counter-clockwise of X+ on the XY plane. +// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,PHI]` spherical coordinate. +// Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[RADIUS,THETA,PHI]` spherical coordinate. +// Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[RADIUS,THETA,PHI]` spherical coordinates. +// Theta is the angle counter-clockwise of X+ on the XY plane. Phi is the angle down from the Z+ pole. // Arguments: // x = X coordinate. // y = Y coordinate. @@ -406,21 +449,31 @@ function spherical_to_xyz(r,theta=undef,phi=undef) = let( // Example: // sph = xyz_to_spherical(20,30,40); // sph = xyz_to_spherical([40,50,70]); -function xyz_to_spherical(x,y=undef,z=undef) = let( - p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) - ) [norm(p), atan2(p.y,p.x), atan2(norm([p.x,p.y]),p.z)]; +// sphs = xyz_to_spherical([[40,50,70], [25,-14,27]]); +function xyz_to_spherical(x,y,z) = + y != undef + ? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.") + [norm([x,y,z]), atan2(y,x), atan2(norm([x,y]),z)] + : assert(is_list(x), "Bad Arguments") + is_num(x.x) + ? xyz_to_spherical(x.x, x.y, x.z) + : [for(p = x) xyz_to_spherical(p.x, p.y, p.z)]; // Function: altaz_to_xyz() // Usage: // pt = altaz_to_xyz(alt, az, r); -// pt = altaz_to_xyz([alt, az, r]); +// pt = altaz_to_xyz([ALT,AZ,R]); +// pts = altaz_to_xyz([[ALT,AZ,R], [ALT,AZ,R], ...]); // Topics: Coordinates, Points, Paths // See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), xyz_to_altaz() // Synopsis: Convert altitude/azimuth/range to 3d cartesian coordinates. // Description: // Convert altitude/azimuth/range coordinates to 3D cartesian coordinates. -// Returns [X,Y,Z] cartesian coordinates. +// Called with three arguments, converts the `alt`, `az`, and 'r' 3D altitude-azimuth coordinate into an `[X,Y,Z]` cartesian coordinate. +// Called with one `[ALTITUDE,AZIMUTH,RANGE]` vector argument, converts the 3D alt-az coordinate into an `[X,Y,Z]` cartesian coordinate. +// Called with a list of `[ALTITUDE,AZIMUTH,RANGE]` vector arguments, converts each 3D alt-az coordinate into `[X,Y,Z]` cartesian coordinates. +// Altitude is the angle above the XY plane, Azimuth is degrees clockwise of Y+ on the XY plane, and Range is the distance from the origin. // Arguments: // alt = altitude angle in degrees above the XY plane. // az = azimuth angle in degrees clockwise of Y+ on the XY plane. @@ -428,25 +481,31 @@ function xyz_to_spherical(x,y=undef,z=undef) = let( // Example: // xyz = altaz_to_xyz(20,30,40); // xyz = altaz_to_xyz([40,60,50]); -function altaz_to_xyz(alt,az=undef,r=undef) = let( - p = az==undef? alt[0] : alt, - t = 90 - (az==undef? alt[1] : az), - rad = az==undef? alt[2] : r - ) rad*[cos(p)*cos(t), cos(p)*sin(t), sin(p)]; +function altaz_to_xyz(alt,az,r) = + az != undef + ? assert(is_num(alt) && is_num(az) && is_num(r), "Bad Arguments.") + r*[cos(90-az)*cos(alt), sin(90-az)*cos(alt), sin(alt)] + : assert(is_list(alt), "Bad Arguments") + is_num(alt.x) + ? altaz_to_xyz(alt.x, alt.y, alt.z) + : [for(p = alt) altaz_to_xyz(p.x, p.y, p.z)]; + // Function: xyz_to_altaz() // Usage: // alt_az_r = xyz_to_altaz(x,y,z); // alt_az_r = xyz_to_altaz([X,Y,Z]); +// alt_az_rs = xyz_to_altaz([[X,Y,Z], [X,Y,Z], ...]); // Topics: Coordinates, Points, Paths // See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz() // Synopsis: Convert 3d cartesian coordinates to [altitude,azimuth,range]. // Description: -// Convert 3D cartesian coordinates to altitude/azimuth/range coordinates. -// Returns [altitude,azimuth,range], where altitude is angle above the -// XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and -// range is the distance from the origin. +// Converts 3D cartesian coordinates to altitude/azimuth/range coordinates. +// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into an `[ALTITUDE,AZIMUTH,RANGE]` coordinate. +// Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[ALTITUDE,AZIMUTH,RANGE]` coordinate. +// Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[ALTITUDE,AZIMUTH,RANGE]` coordinates. +// Altitude is the angle above the XY plane, Azimuth is degrees clockwise of Y+ on the XY plane, and Range is the distance from the origin. // Arguments: // x = X coordinate. // y = Y coordinate. @@ -454,9 +513,14 @@ function altaz_to_xyz(alt,az=undef,r=undef) = let( // Example: // aa = xyz_to_altaz(20,30,40); // aa = xyz_to_altaz([40,50,70]); -function xyz_to_altaz(x,y=undef,z=undef) = let( - p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) - ) [atan2(p.z,norm([p.x,p.y])), atan2(p.x,p.y), norm(p)]; +function xyz_to_altaz(x,y,z) = + y != undef + ? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.") + [atan2(z,norm([x,y])), atan2(x,y), norm([x,y,z])] + : assert(is_list(x), "Bad Arguments") + is_num(x.x) + ? xyz_to_altaz(x.x, x.y, x.z) + : [for(p = x) xyz_to_altaz(p.x, p.y, p.z)];