diff --git a/fnliterals.scad b/fnliterals.scad index 678b0341..f55267fc 100644 --- a/fnliterals.scad +++ b/fnliterals.scad @@ -548,7 +548,7 @@ function f_3arg(target_func) = // a = The argument that will be passed through. // b = The argumen that will be discarded. // Example: -// x = while(0, ival(f_lt(5)), xval(fngen_add(1))); +// x = while(0, ival(f_lt(5)), xval(f_add(1))); function ival(target_func) = function(a,b) target_func(a); @@ -564,7 +564,7 @@ function ival(target_func) = function(a,b) target_func(a); // a = The argument that will be passed through. // b = The argumen that will be discarded. // Example: -// x = while(0, ival(f_lt(5)), xval(fngen_add(1))); +// x = while(0, ival(f_lt(5)), xval(f_add(1))); function xval(target_func) = function(a,b) target_func(b); diff --git a/linalg.scad b/linalg.scad index 9bbd59c2..7911f26b 100644 --- a/linalg.scad +++ b/linalg.scad @@ -331,7 +331,7 @@ function outer_product(u,v) = // Description: // Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but // you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds -// of M then the extra entries are ignored. You can pass in A=[[]], a null matrix, and M will be +// of M then the extra entries are ignored. You can pass in `A=[[]]`, a null matrix, and M will be // returned unchanged. This function works on arbitrary lists of lists and the input M need not be rectangular in shape. // Arguments: // M = Original matrix. diff --git a/lists.scad b/lists.scad index 37b3e1a2..131d0a5f 100644 --- a/lists.scad +++ b/lists.scad @@ -970,9 +970,9 @@ function permutations(l,n=2) = // dflt = The default value to fill in with if the list is not a multiple of `cnt` items long. Default: undef // Example: // v = [1,2,3,4,5,6]; -// a = list_to_matrix(v,2) returns [[1,2], [3,4], [5,6]] -// b = list_to_matrix(v,3) returns [[1,2,3], [4,5,6]] -// c = list_to_matrix(v,4,0) returns [[1,2,3,4], [5,6,0,0]] +// a = list_to_matrix(v,2) // returns [[1,2], [3,4], [5,6]] +// b = list_to_matrix(v,3) // returns [[1,2,3], [4,5,6]] +// c = list_to_matrix(v,4,0) // returns [[1,2,3,4], [5,6,0,0]] function list_to_matrix(v, cnt, dflt=undef) = [for (i = [0:cnt:len(v)-1]) [for (j = [0:1:cnt-1]) default(v[i+j], dflt)]]; diff --git a/skin.scad b/skin.scad index 343d1682..089820e9 100644 --- a/skin.scad +++ b/skin.scad @@ -345,7 +345,7 @@ // push = -5; // Push (translates the base away from the top) // flare = 1; // Flare (the two pieces will be different unless this is 1) // midpoint = .5; // Height of the extra vertex (as a fraction of total height); the two pieces will be different unless this is .5) -// pushvec = rot(angle/2,p=push*RIGHT); // Push direction is the the average of the top and bottom mating edges +// pushvec = rot(angle/2,p=push*RIGHT); // Push direction is the average of the top and bottom mating edges // pent = path3d(apply(move(pushvec)*rot(angle),pentagon(side=sidelen,align_side=RIGHT,anchor="side0"))); // hex = path3d(hexagon(side=flare*sidelen, align_side=RIGHT, anchor="side0"),height); // pentmate = path3d(pentagon(side=flare*sidelen,align_side=LEFT,anchor="side0"),height); @@ -1303,7 +1303,7 @@ module spiral_sweep(poly, h, r, turns=1, taper, center, r1, r2, d, d1, d2, taper // During the sweep operation the shape's normal vector aligns with the tangent vector of the path. Note that // this leaves an ambiguity about how the shape is rotated as it sweeps along the path. // For 2D paths, this ambiguity is resolved by aligning the Y axis of the shape to the Z axis of the swept polyhedron. -// You can can force the shape to twist as it sweeps along the path using the `twist` parameter, which specifies the total +// You can force the shape to twist as it sweeps along the path using the `twist` parameter, which specifies the total // number of degrees to twist along the whole swept polyhedron. This produces a result like the one shown below. // Figure(3D,Big,VPR=[66,0,14],VPD=20,VPT=[3.4,4.5,-0.8]): The shape twists as we sweep. Note that it still aligns the origin in the shape with the path, and still aligns the normal vector with the path tangent vector. // tri= [[0, 0], [0, 1], [.25,1],[1, 0]]; @@ -2624,7 +2624,7 @@ function associate_vertices(polygons, split, curpoly=0) = // Values in the height field should range from 0 to 1. A zero height // in the height field corresponds to the height of the surface and 1 // the heighest point in the texture. -// Figure(2D,Big,NoScales): Here is a 2d texture described by a "grid" that just contains a single row. Such a texture can be used to create ribbing. The texture is [[0, 1, 1, 0]], and the fixture shows three repetitions of the basic texture unit. +// Figure(2D,Big,NoScales): Here is a 2d texture described by a "grid" that just contains a single row. Such a texture can be used to create ribbing. The texture is `[[0, 1, 1, 0]]`, and the fixture shows three repetitions of the basic texture unit. // ftex1 = [0,1,1,0,0]; // stroke( transpose([count(5),ftex1]), dots=true, dots_width=3,width=.05); // right(4)stroke( transpose([count(5),ftex1]), dots=true, width=.05,dots_color="red",color="blue",dots_width=3); @@ -2784,7 +2784,7 @@ function associate_vertices(polygons, split, curpoly=0) = // rect(30), texture=tex, h=20*sqrt(3), tex_scale=3, // tex_size=[10,10*sqrt(3)] // ); -// Example(3D): **"diamonds"** (Heightfield) = Four-sided pyramid with the corners of the base aligned aligned with the axes. Compare to "pyramids". Useful for knurling. Giving `n=` sets the number of heightfield samples to `n x n`. Default: 2. Use `style="concave"` for pointed bumps, or `style="default"` or `style="alt"` for a diagonal ribs. +// Example(3D): **"diamonds"** (Heightfield) = Four-sided pyramid with the corners of the base aligned with the axes. Compare to "pyramids". Useful for knurling. Giving `n=` sets the number of heightfield samples to `n x n`. Default: 2. Use `style="concave"` for pointed bumps, or `style="default"` or `style="alt"` for a diagonal ribs. // tex = texture("diamonds"); // linear_sweep( // rect(30), texture=tex, h=30,