mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-08-01 12:31:16 +02:00
doc tweaks for skin(), faster 2d hull()
This commit is contained in:
54
skin.scad
54
skin.scad
@@ -47,31 +47,29 @@
|
||||
// profiles that you specify. It is generally best if the triangles forming your polyhedron
|
||||
// are approximately equilateral. The `slices` parameter specifies the number of slices to insert
|
||||
// between each pair of profiles, either a scalar to insert the same number everywhere, or a vector
|
||||
// to insert a different number between each pair. To resample the profiles you can use set
|
||||
// `refine=N` which will place `N` points on each edge of your profile. This has the effect of
|
||||
// multiplying the number of points by N, so a profile with 8 points will have 8*N points after
|
||||
// refinement. Note that when dealing with continuous curves it is always better to adjust the
|
||||
// to insert a different number between each pair.
|
||||
// .
|
||||
// Resampling may occur, depending on the `method` parameter, to make profiles compatible.
|
||||
// To force (possibly additional) resampling of the profiles to increase the point density you can set `refine=N`, which
|
||||
// will multiply the number of points on your profile by `N`. You can choose between two resampling
|
||||
// schemes using the `sampling` option, which you can set to `"length"` or `"segment"`.
|
||||
// The length resampling method resamples proportional to length.
|
||||
// The segment method divides each segment of a profile into the same number of points.
|
||||
// This means that if you refine a profile with the "segment" method you will get N points
|
||||
// on each edge, but if you refine a profile with the "length" method you will get new points
|
||||
// distributed around the profile based on length, so small segments will get fewer new points than longer ones.
|
||||
// A uniform division may be impossible, in which case the code computes an approximation, which may result
|
||||
// in arbitrary distribution of extra points. See `subdivide_path` for more details.
|
||||
// Note that when dealing with continuous curves it is always better to adjust the
|
||||
// sampling in your code to generate the desired sampling rather than using the `refine` argument.
|
||||
// .
|
||||
// Two methods are available for resampling, `"length"` and `"segment"`. Specify them using
|
||||
// the `sampling` argument. The length resampling method resamples proportional to length.
|
||||
// The segment method divides each segment of a profile into the same number of points.
|
||||
// A uniform division may be impossible, in which case the code computes an approximation.
|
||||
// See `subdivide_path` for more details.
|
||||
//
|
||||
// You can choose from four methods for specifying alignment for incommensurate profiles.
|
||||
// The available methods are `"distance"`, `"tangent"`, `"direct"` and `"reindex"`.
|
||||
// It is useful to distinguish between continuous curves like a circle and discrete profiles
|
||||
// like a hexagon or star, because the algorithms' suitability depend on this distinction.
|
||||
// .
|
||||
// The "direct" and "reindex" methods work by resampling the profiles if necessary. As noted above,
|
||||
// for continuous input curves, it is better to generate your curves directly at the desired sample size,
|
||||
// but for mapping between a discrete profile like a hexagon and a circle, the hexagon must be resampled
|
||||
// to match the circle. You can do this in two different ways using the `sampling` parameter. The default
|
||||
// of `sampling="length"` approximates a uniform length sampling of the profile. The other option
|
||||
// is `sampling="segment"` which attempts to place the same number of new points on each segment.
|
||||
// If the segments are of varying length, this will produce a different result. Note that "direct" is
|
||||
// the default method. If you simply supply a list of compatible profiles it will link them up
|
||||
// The default method for aligning profiles is `method="direct"`.
|
||||
// If you simply supply a list of compatible profiles it will link them up
|
||||
// exactly as you have provided them. You may find that profiles you want to connect define the
|
||||
// right shapes but the point lists don't start from points that you want aligned in your skinned
|
||||
// polyhedron. You can correct this yourself using `reindex_polygon`, or you can use the "reindex"
|
||||
@@ -79,12 +77,25 @@
|
||||
// in the polyhedron---in will produce the least twisted possible result. This algorithm has quadratic
|
||||
// run time so it can be slow with very large profiles.
|
||||
// .
|
||||
// When the profiles are incommensurate, the "direct" and "reindex" resampling them to match. As noted above,
|
||||
// for continuous input curves, it is better to generate your curves directly at the desired sample size,
|
||||
// but for mapping between a discrete profile like a hexagon and a circle, the hexagon must be resampled
|
||||
// to match the circle. When you use "direct" or "reindex" the default `sampling` value is
|
||||
// of `sampling="length"` to approximate a uniform length sampling of the profile. This will generally
|
||||
// produce the natural result for connecting two continuously sampled profiles or a continuous
|
||||
// profile and a polygonal one. However depending on your particular case,
|
||||
// `sampling="segment"` may produce a more pleasing result. These two approaches differ only when
|
||||
// the segments of your input profiles have unequal length.
|
||||
// .
|
||||
// The "distance" and "tangent" methods work by duplicating vertices to create
|
||||
// triangular faces. The "distance" method finds the global minimum distance method for connecting two
|
||||
// profiles. This algorithm generally produces a good result when both profiles are discrete ones with
|
||||
// a small number of vertices. It is computationally intensive (O(N^3)) and may be
|
||||
// slow on large inputs. The resulting surfaces generally have curved faces, so be
|
||||
// sure to select a sufficiently large value for `slices` and `refine`.
|
||||
// sure to select a sufficiently large value for `slices` and `refine`. Note that for
|
||||
// this method, `sampling` must be set to `"segment"`, and hence this is the default setting.
|
||||
// Using sampling by length would ignore the repeated vertices and ruin the alignment.
|
||||
// .
|
||||
// The `"tangent"` method generally produces good results when
|
||||
// connecting a discrete polygon to a convex, finely sampled curve. It works by finding
|
||||
// a plane that passed through each edge of the polygon that is tangent to
|
||||
@@ -92,9 +103,8 @@
|
||||
// all of the tangent points from each other. It connects all of the points of the curve to the corners of the discrete
|
||||
// polygon using triangular faces. Using `refine` with this method will have little effect on the model, so
|
||||
// you should do it only for agreement with other profiles, and these models are linear, so extra slices also
|
||||
// have no effect. For best efficiency set `refine=1` and `slices=0`. When you use refinement with either
|
||||
// of these methods, it is always the "segment" based resampling described above. This is necessary because
|
||||
// sampling by length will ignore the repeated vertices and break the alignment.
|
||||
// have no effect. For best efficiency set `refine=1` and `slices=0`. As with the "distance" method, refinement
|
||||
// must be done using the "segment" sampling scheme to preserve alignment across duplicated points.
|
||||
// .
|
||||
// It is possible to specify `method` and `refine` as arrays, but it is important to observe
|
||||
// matching rules when you do this. If a pair of profiles is connected using "tangent" or "distance"
|
||||
|
Reference in New Issue
Block a user