mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Merge pull request #701 from adrianVmariano/master
centroid, anchor fix
This commit is contained in:
commit
873c736202
25
arrays.scad
25
arrays.scad
@ -1244,6 +1244,31 @@ function group_sort(list, idx) =
|
||||
|
||||
|
||||
|
||||
// Function: list_smallest()
|
||||
// Usage:
|
||||
// small = list_smallest(list, k)
|
||||
// Description:
|
||||
// Returns a set of the k smallest items in list in arbitrary order. The items must be
|
||||
// mutually comparable with native OpenSCAD comparison operations. You will get "undefined operation"
|
||||
// errors if you provide invalid input.
|
||||
// Arguments:
|
||||
// list = list to process
|
||||
// k = number of items to return
|
||||
function list_smallest(list, k) =
|
||||
assert(is_list(list))
|
||||
assert(is_finite(k) && k>=0, "k must be nonnegative")
|
||||
let(
|
||||
v = list[rand_int(0,len(list)-1,1)[0]],
|
||||
smaller = [for(li=list) if(li<v) li ],
|
||||
equal = [for(li=list) if(li==v) li ]
|
||||
)
|
||||
len(smaller) == k ? smaller :
|
||||
len(smaller)<k && len(smaller)+len(equal) >= k ? [ each smaller, for(i=[1:k-len(smaller)]) v ] :
|
||||
len(smaller) > k ? list_smallest(smaller, k) :
|
||||
let( bigger = [for(li=list) if(li>v) li ] )
|
||||
concat(smaller, equal, list_smallest(bigger, k-len(smaller) -len(equal)));
|
||||
|
||||
|
||||
// Function: group_data()
|
||||
// Usage:
|
||||
// groupings = group_data(groups, values);
|
||||
|
@ -1117,7 +1117,7 @@ function reorient(
|
||||
two_d=false,
|
||||
axis=UP,
|
||||
p=undef
|
||||
) =
|
||||
) =
|
||||
assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor))
|
||||
assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin))
|
||||
assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient))
|
||||
@ -1269,7 +1269,7 @@ function _attach_geom(
|
||||
axis=UP
|
||||
) =
|
||||
assert(is_bool(extent))
|
||||
assert(is_vector(cp))
|
||||
assert(is_vector(cp) || is_string(cp))
|
||||
assert(is_vector(offset))
|
||||
assert(is_list(anchors))
|
||||
assert(is_bool(two_d))
|
||||
@ -1496,6 +1496,21 @@ function _attach_transform(anchor, spin, orient, geom, p) =
|
||||
apply(m, p);
|
||||
|
||||
|
||||
function _get_cp(geom) =
|
||||
let(cp=select(geom,-3))
|
||||
is_vector(cp) ? cp
|
||||
: let(
|
||||
type = in_list(geom[0],["vnf_extent","vnf_isect"]) ? "vnf"
|
||||
: in_list(geom[0],["path_extent","path_isect"]) ? "path"
|
||||
: "other"
|
||||
)
|
||||
assert(type!="other", "Invalid cp value")
|
||||
cp=="centroid" ? centroid(geom[1])
|
||||
: let(points = type=="vnf"?geom[1][0]:geom[1])
|
||||
cp=="mean" ? mean(points)
|
||||
: cp=="box" ? mean(pointlist_bounds(points))
|
||||
: assert(false,"Invalid cp specification");
|
||||
|
||||
|
||||
/// Internal Function: _find_anchor()
|
||||
// Usage:
|
||||
@ -1511,19 +1526,19 @@ function _attach_transform(anchor, spin, orient, geom, p) =
|
||||
// anchor = Vector or named anchor string.
|
||||
// geom = The geometry description of the shape.
|
||||
function _find_anchor(anchor, geom) =
|
||||
let(
|
||||
cp = select(geom,-3),
|
||||
let(
|
||||
cp = _get_cp(geom),
|
||||
offset_raw = select(geom,-2),
|
||||
offset = [for (i=[0:2]) anchor[i]==0? 0 : offset_raw[i]], // prevents bad centering.
|
||||
anchors = last(geom),
|
||||
type = geom[0]
|
||||
)
|
||||
is_string(anchor)? (
|
||||
anchor=="origin"? [anchor, CENTER, UP, 0] :
|
||||
let(found = search([anchor], anchors, num_returns_per_match=1)[0])
|
||||
assert(found!=[], str("Unknown anchor: ",anchor))
|
||||
anchors[found]
|
||||
) :
|
||||
is_string(anchor)? (
|
||||
anchor=="origin"? [anchor, CENTER, UP, 0]
|
||||
: let(found = search([anchor], anchors, num_returns_per_match=1)[0])
|
||||
assert(found!=[], str("Unknown anchor: ",anchor))
|
||||
anchors[found]
|
||||
) :
|
||||
assert(is_vector(anchor),str("anchor=",anchor))
|
||||
let(anchor = point3d(anchor))
|
||||
anchor==CENTER? [anchor, cp, UP, 0] :
|
||||
@ -1590,27 +1605,25 @@ function _find_anchor(anchor, geom) =
|
||||
eps = 1/2048,
|
||||
points = vnf[0],
|
||||
faces = vnf[1],
|
||||
rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), points),
|
||||
rpts = apply(rot(from=anchor, to=RIGHT) * move(-cp), points),
|
||||
hits = [
|
||||
for (face = faces) let(
|
||||
verts = select(rpts, face),
|
||||
xs = columns(verts,0),
|
||||
ys = columns(verts,1),
|
||||
zs = columns(verts,2)
|
||||
) if (
|
||||
max(xs) >= -eps &&
|
||||
max(ys) >= -eps &&
|
||||
max(zs) >= -eps &&
|
||||
min(ys) <= eps &&
|
||||
min(zs) <= eps
|
||||
) let(
|
||||
poly = select(points, face),
|
||||
pt = polygon_line_intersection(poly, [cp,cp+anchor], bounded=[true,false], eps=eps)
|
||||
) if (!is_undef(pt)) let(
|
||||
plane = plane_from_polygon(poly),
|
||||
n = unit(plane_normal(plane))
|
||||
)
|
||||
[norm(pt-cp), n, pt]
|
||||
for (face = faces)
|
||||
let(
|
||||
verts = select(rpts, face),
|
||||
ys = columns(verts,1),
|
||||
zs = columns(verts,2)
|
||||
)
|
||||
if (max(ys) >= -eps && max(zs) >= -eps &&
|
||||
min(ys) <= eps && min(zs) <= eps)
|
||||
let(
|
||||
poly = select(points, face),
|
||||
isect = polygon_line_intersection(poly, [cp,cp+anchor], eps=eps),
|
||||
ptlist = is_undef(isect) ? [] :
|
||||
is_vector(isect) ? [isect]
|
||||
: flatten(isect), // parallel to a face
|
||||
n = len(ptlist)>0 ? polygon_normal(poly) : undef
|
||||
)
|
||||
for(pt=ptlist) [anchor * (pt-cp), n, pt]
|
||||
]
|
||||
)
|
||||
assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.")
|
||||
@ -1619,17 +1632,17 @@ function _find_anchor(anchor, geom) =
|
||||
dist = hits[furthest][0],
|
||||
pos = hits[furthest][2],
|
||||
hitnorms = [for (hit = hits) if (approx(hit[0],dist,eps=eps)) hit[1]],
|
||||
unorms = len(hitnorms) > 7
|
||||
? unique([for (nn = hitnorms) quant(nn,1e-9)])
|
||||
: [
|
||||
for (i = idx(hitnorms)) let(
|
||||
nn = hitnorms[i],
|
||||
isdup = [
|
||||
for (j = [i+1:1:len(hitnorms)-1])
|
||||
if (approx(nn, hitnorms[j])) 1
|
||||
] != []
|
||||
) if (!isdup) nn
|
||||
],
|
||||
unorms = [
|
||||
for (i = idx(hitnorms))
|
||||
let(
|
||||
thisnorm = hitnorms[i],
|
||||
isdup = [
|
||||
for (j = [i+1:1:len(hitnorms)-1])
|
||||
if (approx(thisnorm, hitnorms[j])) 1
|
||||
] != []
|
||||
)
|
||||
if (!isdup) thisnorm
|
||||
],
|
||||
n = unit(sum(unorms)),
|
||||
oang = approx(point2d(n), [0,0])? 0 : atan2(n.y, n.x) + 90
|
||||
)
|
||||
|
@ -546,7 +546,7 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
||||
// xyzpath = rot(45, v=[0,1,0], p=path3d(star(n=5,step=2,d=100), 70));
|
||||
// plane = plane_from_polygon(xyzpath);
|
||||
// #stroke(xyzpath,closed=true,width=3);
|
||||
// cp = polygon_centroid(xyzpath);
|
||||
// cp = centroid(xyzpath);
|
||||
// move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow(45);
|
||||
function plane_from_polygon(poly, fast=false, eps=EPSILON) =
|
||||
assert( is_path(poly,dim=3), "Invalid polygon." )
|
||||
@ -897,7 +897,7 @@ function plane_line_angle(plane, line) =
|
||||
// proj = plane_closest_point(plane,points);
|
||||
// color("red") move_copies(points) sphere(d=4,$fn=12);
|
||||
// color("blue") move_copies(proj) sphere(d=4,$fn=12);
|
||||
// move(polygon_centroid(proj)) {
|
||||
// move(centroid(proj)) {
|
||||
// rot(from=UP,to=plane_normal(plane)) {
|
||||
// anchor_arrow(50);
|
||||
// %cube([120,150,0.1],center=true);
|
||||
@ -1403,21 +1403,60 @@ function polygon_area(poly, signed=false) =
|
||||
signed ? total : abs(total);
|
||||
|
||||
|
||||
// Function: polygon_centroid()
|
||||
// Function: centroid()
|
||||
// Usage:
|
||||
// cpt = polygon_centroid(poly);
|
||||
// c = centroid(object, [eps]);
|
||||
// Topics: Geometry, Polygons, Centroid
|
||||
// Description:
|
||||
// Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid.
|
||||
// Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid.
|
||||
// Collinear points produce an error. The results are meaningless for self-intersecting
|
||||
// polygons or an error is produced.
|
||||
// If you provide a non-planar or collinear polygon you will get an error. For self-intersecting
|
||||
// polygons you may get an error or you may get meaningless results.
|
||||
// .
|
||||
// If object is a manifold VNF then returns the 3d centroid of the polyhedron. The VNF must
|
||||
// describe a valid polyhedron with consistent face direction and no holes in the mesh; otherwise
|
||||
// the results are undefined.
|
||||
// Arguments:
|
||||
// poly = Points of the polygon from which the centroid is calculated.
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
function polygon_centroid(poly, eps=EPSILON) =
|
||||
// object = object to compute the centroid of
|
||||
// eps = epsilon value for identifying degenerate cases
|
||||
function centroid(object,eps=EPSILON) =
|
||||
assert(is_finite(eps) && (eps>=0), "The tolerance should a non-negative value." )
|
||||
is_vnf(object) ? _vnf_centroid(object,eps)
|
||||
: is_path(object,[2,3]) ? _polygon_centroid(object,eps)
|
||||
: is_region(object) ? (len(object)==1 ? _polygon_centroid(object[0],eps) : _region_centroid(object,eps))
|
||||
: assert(false, "Input must be a VNF, a region, or a 2D or 3D polygon");
|
||||
|
||||
|
||||
/// Internal Function: _region_centroid()
|
||||
/// Compute centroid of region
|
||||
function _region_centroid(region,eps=EPSILON) =
|
||||
let(
|
||||
region=force_region(region),
|
||||
parts = region_parts(region),
|
||||
// Rely on region_parts returning all outside polygons clockwise
|
||||
// and inside (hole) polygons counterclockwise, so areas have reversed sign
|
||||
cent_area = [for(R=parts, p=R)
|
||||
let(A=polygon_area(p,signed=true))
|
||||
[A*_polygon_centroid(p),A]],
|
||||
total = sum(cent_area)
|
||||
)
|
||||
total[0]/total[1];
|
||||
|
||||
|
||||
/// Function: _polygon_centroid()
|
||||
/// Usage:
|
||||
/// cpt = _polygon_centroid(poly);
|
||||
/// Topics: Geometry, Polygons, Centroid
|
||||
/// Description:
|
||||
/// Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid.
|
||||
/// Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid.
|
||||
/// Collinear points produce an error. The results are meaningless for self-intersecting
|
||||
/// polygons or an error is produced.
|
||||
/// Arguments:
|
||||
/// poly = Points of the polygon from which the centroid is calculated.
|
||||
/// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
function _polygon_centroid(poly, eps=EPSILON) =
|
||||
assert( is_path(poly,dim=[2,3]), "The input must be a 2D or 3D polygon." )
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
let(
|
||||
n = len(poly[0])==2 ? 1 :
|
||||
let( plane = plane_from_points(poly, fast=false))
|
||||
@ -1633,21 +1672,21 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with a hole and one "contact" edge
|
||||
// poly = [ [-10,0], [10,0], [0,10], [-10,0], [-4,4], [4,4], [0,2], [-4,4] ];
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with "touching" vertices and no holes
|
||||
// poly = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ];
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with "contact" edges and no holes
|
||||
// poly = [ [0,0], [10,0], [10,10], [0,10], [0,0], [3,3], [7,3],
|
||||
// [7,7], [7,3], [3,3] ];
|
||||
@ -1655,7 +1694,7 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(3D):
|
||||
// include <BOSL2/polyhedra.scad>
|
||||
// vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf");
|
||||
|
@ -93,8 +93,8 @@ function _is_cw(a,b,c,all) =
|
||||
// Returns a path as a list of indices into `points`.
|
||||
// When all==true, returns extra points that are on edges of the hull.
|
||||
// Arguments:
|
||||
// points - list of 2d points to get the hull of.
|
||||
// all - when true, includes all points on the edges of the convex hull. Default: false.
|
||||
// points = list of 2d points to get the hull of.
|
||||
// all = when true, includes all points on the edges of the convex hull. Default: false.
|
||||
// Example(2D):
|
||||
// pts = [[-10,-10], [0,10], [10,10], [12,-10]];
|
||||
// path = hull2d_path(pts);
|
||||
|
40
math.scad
40
math.scad
@ -827,27 +827,21 @@ function mean(v) =
|
||||
sum(v)/len(v);
|
||||
|
||||
|
||||
// Function: ninther()
|
||||
// Usage:
|
||||
// med = ninther(v)
|
||||
// Description:
|
||||
// Finds a value in the input list of numbers `v` that is the median of a
|
||||
// sample of 9 entries of `v`.
|
||||
// It is a much faster approximation of the true median computation.
|
||||
// Arguments:
|
||||
// v = an array of numbers
|
||||
function ninther(v) =
|
||||
let( l=len(v) )
|
||||
l<=4 ? l<=2 ? v[0] : _med3(v[0], v[1], v[2]) :
|
||||
l==5 ? _med3(v[0], _med3(v[1], v[2], v[3]), v[4]) :
|
||||
_med3(_med3(v[0],v[floor(l/6)],v[floor(l/3)]),
|
||||
_med3(v[floor(l/3)],v[floor(l/2)],v[floor(2*l/3)]),
|
||||
_med3(v[floor(2*l/3)],v[floor((5*l/3 -1)/2)],v[l-1]) );
|
||||
|
||||
// the median of a triple
|
||||
function _med3(a,b,c) =
|
||||
a < c ? a < b ? min(b,c) : min(a,c) :
|
||||
b < c ? min(a,c) : min(a,b);
|
||||
// Function: median()
|
||||
// Usage:
|
||||
// middle = median(v)
|
||||
// Description:
|
||||
// Returns the median of the given vector.
|
||||
function median(v) =
|
||||
assert(is_vector(v), "Input to median must be a vector")
|
||||
len(v)%2 ? max( list_smallest(v, ceil(len(v)/2)) ) :
|
||||
let( lowest = list_smallest(v, len(v)/2 + 1),
|
||||
max = max(lowest),
|
||||
imax = search(max,lowest,1),
|
||||
max2 = max([for(i=idx(lowest)) if(i!=imax[0]) lowest[i] ])
|
||||
)
|
||||
(max+max2)/2;
|
||||
|
||||
|
||||
// Function: convolve()
|
||||
@ -953,7 +947,7 @@ function linear_solve(A,b,pivot=true) =
|
||||
// Description:
|
||||
// Compute the matrix inverse of the square matrix `A`. If `A` is singular, returns `undef`.
|
||||
// Note that if you just want to solve a linear system of equations you should NOT use this function.
|
||||
// Instead use [[`linear_solve()`|linear_solve]], or use [[`qr_factor()`|qr_factor]]. The computation
|
||||
// Instead use {{linear_solve()}}, or use {{qr_factor()}}. The computation
|
||||
// will be faster and more accurate.
|
||||
function matrix_inverse(A) =
|
||||
assert(is_matrix(A) && len(A)==len(A[0]),"Input to matrix_inverse() must be a square matrix")
|
||||
@ -1002,7 +996,7 @@ function null_space(A,eps=1e-12) =
|
||||
// qr = qr_factor(A,[pivot]);
|
||||
// Description:
|
||||
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
|
||||
// used to solve linear systems of equations. The factorization is A = Q*R*transpose(P). If pivot is false (the default)
|
||||
// used to solve linear systems of equations. The factorization is `A = Q*R*transpose(P)`. If pivot is false (the default)
|
||||
// then P is the identity matrix and A = Q*R. If pivot is true then column pivoting results in an R matrix where the diagonal
|
||||
// is non-decreasing. The use of pivoting is supposed to increase accuracy for poorly conditioned problems, and is necessary
|
||||
// for rank estimation or computation of the null space, but it may be slower.
|
||||
@ -1083,7 +1077,7 @@ function _back_substitute(R, b, x=[]) =
|
||||
// L = cholesky(A);
|
||||
// Description:
|
||||
// Compute the cholesky factor, L, of the symmetric positive definite matrix A.
|
||||
// The matrix L is lower triangular and L * transpose(L) = A. If the A is
|
||||
// The matrix L is lower triangular and `L * transpose(L) = A`. If the A is
|
||||
// not symmetric then an error is displayed. If the matrix is symmetric but
|
||||
// not positive definite then undef is returned.
|
||||
function cholesky(A) =
|
||||
|
33
regions.scad
33
regions.scad
@ -390,20 +390,25 @@ function region_parts(region) =
|
||||
// If called as a module, creates a polyhedron that is the linear extrusion of the given 2D region or path.
|
||||
// If called as a function, returns a VNF that can be used to generate a polyhedron of the linear extrusion
|
||||
// of the given 2D region or path. The benefit of using this, over using `linear_extrude region(rgn)` is
|
||||
// that you can use `anchor`, `spin`, `orient` and attachments with it. Also, you can make more refined
|
||||
// that it supports `anchor`, `spin`, `orient` and attachments. You can also make more refined
|
||||
// twisted extrusions by using `maxseg` to subsample flat faces.
|
||||
// Note that the center option centers vertically using the named anchor "zcenter" whereas
|
||||
// `anchor=CENTER` centers the entire shape relative to
|
||||
// the shape's centroid, or other centerpoint you specify. The centerpoint can be "centroid", "mean", "box" or
|
||||
// a custom point location.
|
||||
// Arguments:
|
||||
// region = The 2D [Region](regions.scad) or path that is to be extruded.
|
||||
// height = The height to extrude the region. Default: 1
|
||||
// center = If true, the created polyhedron will be vertically centered. If false, it will be extruded upwards from the origin. Default: `false`
|
||||
// center = If true, the created polyhedron will be vertically centered. If false, it will be extruded upwards from the XY plane. Default: `false`
|
||||
// slices = The number of slices to divide the shape into along the Z axis, to allow refinement of detail, especially when working with a twist. Default: `twist/5`
|
||||
// maxseg = If given, then any long segments of the region will be subdivided to be shorter than this length. This can refine twisting flat faces a lot. Default: `undef` (no subsampling)
|
||||
// twist = The number of degrees to rotate the shape clockwise around the Z axis, as it rises from bottom to top. Default: 0
|
||||
// scale = The amount to scale the shape, from bottom to top. Default: 1
|
||||
// style = The style to use when triangulating the surface of the object. Valid values are `"default"`, `"alt"`, or `"quincunx"`.
|
||||
// convexity = Max number of surfaces any single ray could pass through. Module use only.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"`
|
||||
// anchor_isect = If true, anchoring it performed by finding where the anchor vector intersects the swept shape. Default: false
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
// Example: Extruding a Compound Region.
|
||||
@ -427,18 +432,18 @@ function region_parts(region) =
|
||||
// mrgn = union(rgn1,rgn2);
|
||||
// orgn = difference(mrgn,rgn3);
|
||||
// linear_sweep(orgn,height=20,convexity=16) show_anchors();
|
||||
module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", convexity, anchor_isect=false, anchor, spin=0, orient=UP) {
|
||||
module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", convexity, anchor_isect=false, anchor, spin=0, orient=UP, cp="centroid", anchor="origin") {
|
||||
region = force_region(region);
|
||||
dummy=assert(is_region(region),"Input is not a region");
|
||||
cp = mean(pointlist_bounds(flatten(region)));
|
||||
anchor = get_anchor(anchor, center, "origin", "origin");
|
||||
anchor = center ? "zcenter" : anchor;
|
||||
anchors = [named_anchor("zcenter", [0,0,height/2], UP)];
|
||||
vnf = linear_sweep(
|
||||
region, height=height,
|
||||
twist=twist, scale=scale,
|
||||
slices=slices, maxseg=maxseg,
|
||||
style=style
|
||||
);
|
||||
attachable(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect) {
|
||||
attachable(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect, anchors=anchors) {
|
||||
vnf_polyhedron(vnf, convexity=convexity);
|
||||
children();
|
||||
}
|
||||
@ -446,15 +451,15 @@ module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg,
|
||||
|
||||
|
||||
function linear_sweep(region, height=1, center, twist=0, scale=1, slices,
|
||||
maxseg, style="default", anchor_isect=false, anchor, spin=0, orient=UP) =
|
||||
maxseg, style="default", cp="centroid", anchor_isect=false, anchor, spin=0, orient=UP) =
|
||||
let(
|
||||
region = force_region(region)
|
||||
)
|
||||
assert(is_region(region), "Input is not a region")
|
||||
let(
|
||||
anchor = get_anchor(anchor,center,BOT,BOT),
|
||||
anchor = center ? "zcenter" : anchor,
|
||||
anchors = [named_anchor("zcenter", [0,0,height/2], UP)],
|
||||
regions = region_parts(region),
|
||||
cp = mean(pointlist_bounds(flatten(region))),
|
||||
slices = default(slices, floor(twist/5+1)),
|
||||
step = twist/slices,
|
||||
hstep = height/slices,
|
||||
@ -484,14 +489,14 @@ function linear_sweep(region, height=1, center, twist=0, scale=1, slices,
|
||||
for (i=[0:1:slices]) let(
|
||||
sc = lerp(1, scale, i/slices),
|
||||
ang = i * step,
|
||||
h = i * hstep - height/2
|
||||
h = i * hstep //- height/2
|
||||
) scale([sc,sc,1], p=rot(ang, p=path3d(path,h)))
|
||||
]
|
||||
) vnf_vertex_array(verts, caps=false, col_wrap=true, style=style),
|
||||
for (rgn = regions) vnf_from_region(rgn, down(height/2), reverse=true),
|
||||
for (rgn = trgns) vnf_from_region(rgn, up(height/2), reverse=false)
|
||||
for (rgn = regions) vnf_from_region(rgn, ident(4), reverse=true),
|
||||
for (rgn = trgns) vnf_from_region(rgn, up(height), reverse=false)
|
||||
])
|
||||
) reorient(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect, p=vnf);
|
||||
) reorient(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect, p=vnf, anchors=anchors);
|
||||
|
||||
|
||||
|
||||
|
@ -1041,7 +1041,7 @@ module offset_sweep(path, height,
|
||||
quality=quality, check_valid=true, extra=extra, cut=cut, chamfer_width=chamfer_width,
|
||||
chamfer_height=chamfer_height, joint=joint, k=k, angle=angle);
|
||||
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : vnf_centroid(vnf))
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf))
|
||||
{
|
||||
vnf_polyhedron(vnf,convexity=convexity);
|
||||
children();
|
||||
@ -1818,7 +1818,7 @@ module rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot
|
||||
result = rounded_prism(bottom=bottom, top=top, joint_bot=joint_bot, joint_top=joint_top, joint_sides=joint_sides,
|
||||
k_bot=k_bot, k_top=k_top, k_sides=k_sides, k=k, splinesteps=splinesteps, h=h, length=length, height=height, l=l,debug=debug);
|
||||
vnf = debug ? result[1] : result;
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : vnf_centroid(vnf))
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf))
|
||||
{
|
||||
if (debug){
|
||||
vnf_polyhedron(vnf, convexity=convexity);
|
||||
|
14
skin.scad
14
skin.scad
@ -278,12 +278,12 @@
|
||||
// Example(FlatSpin,VPD=32,VPT=[1.2,4.3,2]): Another "distance" example:
|
||||
// off = [0,2];
|
||||
// shape = turtle(["right",45,"move", "left",45,"move", "left",45, "move", "jump", [.5+sqrt(2)/2,8]]);
|
||||
// rshape = rot(180,cp=polygon_centroid(shape)+off, p=shape);
|
||||
// rshape = rot(180,cp=centroid(shape)+off, p=shape);
|
||||
// skin([shape,rshape],z=[0,4], method="distance",slices=10,refine=15);
|
||||
// Example(FlatSpin,VPD=32,VPT=[1.2,4.3,2]): Slightly shifting the profile changes the optimal linkage
|
||||
// off = [0,1];
|
||||
// shape = turtle(["right",45,"move", "left",45,"move", "left",45, "move", "jump", [.5+sqrt(2)/2,8]]);
|
||||
// rshape = rot(180,cp=polygon_centroid(shape)+off, p=shape);
|
||||
// rshape = rot(180,cp=centroid(shape)+off, p=shape);
|
||||
// skin([shape,rshape],z=[0,4], method="distance",slices=10,refine=15);
|
||||
// Example(FlatSpin,VPD=444,VPT=[0,0,50]): This optimal solution doesn't look terrible:
|
||||
// prof1 = path3d([[-50,-50], [-50,50], [50,50], [25,25], [50,0], [25,-25], [50,-50]]);
|
||||
@ -386,7 +386,7 @@ module skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=
|
||||
anchor="origin",cp,spin=0, orient=UP, extent=false)
|
||||
{
|
||||
vnf = skin(profiles, slices, refine, method, sampling, caps, closed, z, style=style);
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : vnf_centroid(vnf))
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf))
|
||||
{
|
||||
vnf_polyhedron(vnf,convexity=convexity);
|
||||
children();
|
||||
@ -816,7 +816,7 @@ module path_sweep(shape, path, method="incremental", normal, closed=false, twist
|
||||
{
|
||||
vnf = path_sweep(shape, path, method, normal, closed, twist, twist_by_length,
|
||||
symmetry, last_normal, tangent, relaxed, caps, style);
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : vnf_centroid(vnf))
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf))
|
||||
{
|
||||
vnf_polyhedron(vnf,convexity=convexity);
|
||||
children();
|
||||
@ -1001,7 +1001,7 @@ module path_sweep2d(profile, path, closed=false, caps, quality=1, style="min_edg
|
||||
anchor="origin", cp, spin=0, orient=UP, extent=false)
|
||||
{
|
||||
vnf = path_sweep2d(profile, path, closed, caps, quality, style);
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : vnf_centroid(vnf))
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf))
|
||||
{
|
||||
vnf_polyhedron(vnf,convexity=convexity);
|
||||
children();
|
||||
@ -1128,7 +1128,7 @@ module sweep(shape, transforms, closed=false, caps, style="min_edge", convexity=
|
||||
anchor="origin",cp,spin=0, orient=UP, extent=false)
|
||||
{
|
||||
vnf = sweep(shape, transforms, closed, caps, style);
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : vnf_centroid(vnf))
|
||||
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf))
|
||||
{
|
||||
vnf_polyhedron(vnf,convexity=convexity);
|
||||
children();
|
||||
@ -1591,7 +1591,7 @@ function _skin_tangent_match(poly1, poly2) =
|
||||
swap = len(poly1)>len(poly2),
|
||||
big = swap ? poly1 : poly2,
|
||||
small = swap ? poly2 : poly1,
|
||||
curve_offset = polygon_centroid(small)-polygon_centroid(big),
|
||||
curve_offset = centroid(small)-centroid(big),
|
||||
cutpts = [for(i=[0:len(small)-1]) _find_one_tangent(big, select(small,i,i+1),curve_offset=curve_offset)],
|
||||
shift = last(cutpts)+1,
|
||||
newbig = polygon_shift(big, shift),
|
||||
|
@ -46,7 +46,7 @@ test_is_polygon_convex();
|
||||
test_polygon_shift();
|
||||
test_reindex_polygon();
|
||||
test_align_polygon();
|
||||
test_polygon_centroid();
|
||||
test_centroid();
|
||||
test_point_in_polygon();
|
||||
test_polygon_triangulate();
|
||||
test_is_polygon_clockwise();
|
||||
@ -835,15 +835,31 @@ module test_noncollinear_triple() {
|
||||
*test_noncollinear_triple();
|
||||
|
||||
|
||||
module test_polygon_centroid() {
|
||||
module test_centroid() {
|
||||
// polygons
|
||||
$fn = 24;
|
||||
assert_approx(polygon_centroid(circle(d=100)), [0,0]);
|
||||
assert_approx(polygon_centroid(rect([40,60],rounding=10,anchor=LEFT)), [20,0]);
|
||||
assert_approx(polygon_centroid(rect([40,60],rounding=10,anchor=FWD)), [0,30]);
|
||||
assert_approx(centroid(circle(d=100)), [0,0]);
|
||||
assert_approx(centroid(rect([40,60],rounding=10,anchor=LEFT)), [20,0]);
|
||||
assert_approx(centroid(rect([40,60],rounding=10,anchor=FWD)), [0,30]);
|
||||
poly = move([1,2.5,3.1],p=rot([12,49,24], p=path3d(circle(10,$fn=33))));
|
||||
assert_approx(polygon_centroid(poly), [1,2.5,3.1]);
|
||||
assert_approx(centroid(poly), [1,2.5,3.1]);
|
||||
|
||||
// regions
|
||||
R = [square(10), move([5,4],circle(r=3,$fn=32)), right(15,square(7)), move([18,3],circle(r=2,$fn=5))];
|
||||
assert_approx(centroid(R), [9.82836532809, 4.76313546433]);
|
||||
|
||||
// VNFs
|
||||
assert_approx(centroid(cube(100, center=false)), [50,50,50]);
|
||||
assert_approx(centroid(cube(100, center=true)), [0,0,0]);
|
||||
assert_approx(centroid(cube(100, anchor=ALLPOS)), [-50,-50,-50]);
|
||||
assert_approx(centroid(cube(100, anchor=BOT)), [0,0,50]);
|
||||
assert_approx(centroid(cube(100, anchor=TOP)), [0,0,-50]);
|
||||
assert_approx(centroid(sphere(d=100, anchor=CENTER, $fn=36)), [0,0,0]);
|
||||
assert_approx(centroid(sphere(d=100, anchor=BOT, $fn=36)), [0,0,50]);
|
||||
ellipse = xscale(2, p=circle($fn=24, r=3));
|
||||
assert_approx(centroid(path_sweep(pentagon(r=1), path3d(ellipse), closed=true)),[0,0,0]);
|
||||
}
|
||||
*test_polygon_centroid();
|
||||
*test_centroid();
|
||||
|
||||
|
||||
|
||||
|
@ -78,7 +78,7 @@ module test_exclusive_or() {
|
||||
assert(are_regions_equal(exclusive_or(R9,R8),[[[-5, -5], [-13, -5], [-13, 5], [-5, 5], [-5, 3], [-3, 3], [-3, -3], [-5, -3]], [[-3, -5], [-5, -5], [-5, -13], [5, -13], [5, -5], [3, -5], [3, -3], [-3, -3]], [[-5, 5], [-3, 5], [-3, 3], [3, 3], [3, 5], [5, 5], [5, 13], [-5, 13]], [[3, -3], [3, 3], [5, 3], [5, 5], [13, 5], [13, -5], [5, -5], [5, -3]]],either_winding=true));
|
||||
|
||||
p = turtle(["move",100,"left",144], repeat=4);
|
||||
p2 = move(-polygon_centroid(p),p);
|
||||
p2 = move(-centroid(p),p);
|
||||
p3 = polygon_parts(p2);
|
||||
p4 = exclusive_or(p3,square(51,center=true));
|
||||
|
||||
|
@ -43,18 +43,6 @@ module test_vnf_from_polygons() {
|
||||
test_vnf_from_polygons();
|
||||
|
||||
|
||||
module test_vnf_centroid() {
|
||||
assert_approx(vnf_centroid(cube(100, center=false)), [50,50,50]);
|
||||
assert_approx(vnf_centroid(cube(100, center=true)), [0,0,0]);
|
||||
assert_approx(vnf_centroid(cube(100, anchor=ALLPOS)), [-50,-50,-50]);
|
||||
assert_approx(vnf_centroid(cube(100, anchor=BOT)), [0,0,50]);
|
||||
assert_approx(vnf_centroid(cube(100, anchor=TOP)), [0,0,-50]);
|
||||
assert_approx(vnf_centroid(sphere(d=100, anchor=CENTER, $fn=36)), [0,0,0]);
|
||||
assert_approx(vnf_centroid(sphere(d=100, anchor=BOT, $fn=36)), [0,0,50]);
|
||||
ellipse = xscale(2, p=circle($fn=24, r=3));
|
||||
assert_approx(vnf_centroid(path_sweep(pentagon(r=1), path3d(ellipse), closed=true)),[0,0,0]);}
|
||||
test_vnf_centroid();
|
||||
|
||||
|
||||
module test_vnf_volume() {
|
||||
assert_approx(vnf_volume(cube(100, center=false)), 1000000);
|
||||
|
@ -494,7 +494,7 @@ function _bt_tree(points, ind, leafsize=25) =
|
||||
pmc = mean(projc),
|
||||
pivot = min_index([for(p=projc) abs(p-pmc)]),
|
||||
radius = max([for(i=ind) norm(points[ind[pivot]]-points[i]) ]),
|
||||
median = ninther(projc),
|
||||
median = median(projc),
|
||||
Lind = [for(i=idx(ind)) if(projc[i]<=median && i!=pivot) ind[i] ],
|
||||
Rind = [for(i=idx(ind)) if(projc[i] >median && i!=pivot) ind[i] ]
|
||||
)
|
||||
|
26
vnf.scad
26
vnf.scad
@ -462,7 +462,7 @@ function is_vnf(x) =
|
||||
len(x)==2 &&
|
||||
is_list(x[0]) &&
|
||||
is_list(x[1]) &&
|
||||
(x[0]==[] || (len(x[0])>=3 && is_vector(x[0][0]))) &&
|
||||
(x[0]==[] || (len(x[0])>=3 && is_vector(x[0][0],3))) &&
|
||||
(x[1]==[] || is_vector(x[1][0]));
|
||||
|
||||
|
||||
@ -684,7 +684,7 @@ function _slice_3dpolygons(polys, dir, cuts) =
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin", spin=0, orient=UP) {
|
||||
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf;
|
||||
cp = is_def(cp) ? cp : vnf_centroid(vnf);
|
||||
cp = is_def(cp) ? cp : centroid(vnf);
|
||||
attachable(anchor,spin,orient, vnf=vnf, extent=extent, cp=cp) {
|
||||
polyhedron(vnf[0], vnf[1], convexity=convexity);
|
||||
children();
|
||||
@ -760,17 +760,17 @@ function vnf_area(vnf) =
|
||||
sum([for(face=vnf[1]) polygon_area(select(verts,face))]);
|
||||
|
||||
|
||||
// Function: vnf_centroid()
|
||||
// Usage:
|
||||
// vol = vnf_centroid(vnf);
|
||||
// Description:
|
||||
// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
||||
// no holes; otherwise the results are undefined.
|
||||
/// Function: _vnf_centroid()
|
||||
/// Usage:
|
||||
/// vol = _vnf_centroid(vnf);
|
||||
/// Description:
|
||||
/// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
||||
/// no holes; otherwise the results are undefined.
|
||||
|
||||
// Divide the solid up into tetrahedra with the origin as one vertex.
|
||||
// The centroid of a tetrahedron is the average of its vertices.
|
||||
// The centroid of the total is the volume weighted average.
|
||||
function vnf_centroid(vnf) =
|
||||
/// Divide the solid up into tetrahedra with the origin as one vertex.
|
||||
/// The centroid of a tetrahedron is the average of its vertices.
|
||||
/// The centroid of the total is the volume weighted average.
|
||||
function _vnf_centroid(vnf,eps=EPSILON) =
|
||||
assert(is_vnf(vnf) && len(vnf[0])!=0 )
|
||||
let(
|
||||
verts = vnf[0],
|
||||
@ -784,7 +784,7 @@ function vnf_centroid(vnf) =
|
||||
[ vol, (v0+v1+v2)*vol ]
|
||||
])
|
||||
)
|
||||
assert(!approx(pos[0],0, EPSILON), "The vnf has self-intersections.")
|
||||
assert(!approx(pos[0],0, eps), "The vnf has self-intersections.")
|
||||
pos[1]/pos[0]/4;
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user